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IDEAL PERTURBATIONS OF NESTS
‘ KENNETH R. DAVIDSON

Dedicated to the memory of John Bunce

Voiculescu -[13, 14] has shown that it is interesting to consider perturbations
relative to ideals properly contained in the compact operators. He introduced a
quantitative measure of the obstruction to the existence of a quasi-central approximate
unit relative to such an ideal. We carry out this program for nests. This yields a
version of Andersen’s Theorem relative to every ideal properly containing the trace
class operators. On the other hand, approximate unitary equivalence relative to the
trace class operators implies unitary equivalence.

The prototype for this type of theorem has its roots in Weyl’s Theorem that
every self-adjoint operator is the sum of a diagonal operator and a small compact
one. Kuroda [11] generalized this to show that the compact operator may be chosen
to have small norm in any ideal properly containing the trace class. On the other hand,
the Kato-Rosenblum Theorem [10,12] shows that the part of the spectrum absolutely
continuous to Lebesgue measure is an obstruction to a trace class perturbation which
is diagonal. Voiculescu, in a celebrated paper [13], applied his ideas to n-tuples
of commuting self-adjoint operators. By constructing an appropriate quasi-central
approximate unit, he was able to simultaneously diagonalize this n-tuple modulo
the ideal C,. At the same time, he identified an ideal C,—. The (joint) absolutely
continuous part of the spectral measure yielded a finite obstruction to a C,- quasi-
-central approximate unit, and hence to the desired ideal perturbation. ,

The theory of nests in many ways parallels the theory of a single self-adjoint
operator. The unitary invariants for a nest [6] are exactly analogous to the multiplicity
theory of a self-adjoint operator. On the other hand, Andersen {1} showed that any two
continuous nests are approximately unitarily equivalent. In [2], I show that there is a
quasi-central approximate unit for any nest, and use this to give a much easier proof
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in the spirit of Voiculescu and Arveson. In this paper, we show that every (separable)
nest has a quasi-central approximate unit relative to any ideal properly containing the
trace class. This is used to obtain a version of Andersen’s Theorem for all such ideals.
On the other hand, the obstruction to a quasi-central approximate unit relative to C;
is exactly proportional to the maximum multiplicity of the nest’s non-atomic part.
This in turn leads to the fact that nests which are approximately unitary equivalent
relative to the trace class are in fact unitarily equivalent. The reason that we obtain
a much stronger result here than in the self-adjoint theory is that the parametrization
of a nest is arbitrary. In particular, it can be reparametrized to make any portion of
the continuous part of the nest absolutely continuous to Lebesgue measure.

For background on nests, see [3]. In particular, we will make frequent reference
to the material on approximate unitary equivalence and similarity of nests in chapters
12 and 13.

1. QUASI-CENTRAL APPROXIMATE UNITS

Let @ be an ideal of compact cperators with norm || - || satisfying
HAKB|le < ||Al||IK|le(|Bl| for all A, B € B(K), K € &.

It is well-known that ||K||s is a function of the singular values of K (cf. [7]). If @
properly contains C;, the norm of projections P, of rank n satify ||P]|le = e,n = o(n).
Hence for finite rank operators,

“F“Q IFllerankaankF

Voiculescu [13] introduced the following measure of the obstruction to a quasi-
-central approximate unit relative to the ideal @. Let }1 denote the set of positive
finite rank contractations endowed with the usual order on positive operators. If § is
a set of operators, define

rg(S) = lgg inf max||(R, Sllie.

It is clear that if Ks(S) = 0, then a quasi-central approximate unit relative to @ exists
for §. For most ideals, this quantity is either 0 or co. An ideal for which this quantity
is finite and non-zero can be thought of as a dimensicn for the set in the spirit of
Hausdorft dimension for Euclidian sets. We will write «; instead of «¢,.

In [2], we construct a quasi-central approximate unit for a continuous nest /" with
cyclic vector. We will refer to the treatment in [3, Lemma 13.5]. This quasi-central
approximate unit Fy, has the following properties:
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(i) Fn e F}
(ii) FpFpyy = Fyforalln>1
(i) F, 11
(iv) [P(N), F,,] has rank at most n for all N € N
(V) |I[P(N), Fn)|| € 2/n for all N € N.
Hence for any ideal @ properly containing Cy, we obtain

I[P(N), Falll < enll[P(N), Fu]l| rank[P(N), Fa] < 265 = o(1).

Hence this sequence is a quasi-central approximate unit relative to every ideal @
properly containing C;. From this, it is easy to deduce the following lemma:

LEMMA 1.1. Let M be a nest on a separable Hilbert space, and let ® be an ideal
properly containing the trace class. There is a quasi-central approximate unit for M
relative to @. It may be chosen to satisfy property (ii) above.

Proof. It is trivial to construct a central approximate unit for the atomic part
of M, so without loss of generality, we may assume that M is continuous. By (3,
Lemma 13.3], M is unitarily equivalent to the direct sum of cyclic continuous nests
M= Z ® M;. Let F,Ej bea quasi-central approximate unit for M; as constructed
above. Choose a strictly increasing sequence nj, so that ¢,,, < k=2, Then

k
F=) oFf)
j=1

is the desired quasi-central approximate unit. ]

Let M, be the operator of multiplication by z on L?(0,1). Voiculescu [13] quan-
tifies the Kato-Rosenblum Theorem in the statement ky(Mz) = 1/7. Let Ap denote
the Volterra nest on L2(0, 1) consisting of the subspaces

Ni = {f € L*(0,1) | supp(f) C [0,1] }.

Set v = xk1(No). We will show that this lies in the interval [1/7, 1]. From the unitary
invariants of a nest, we have the multiplicity function. For a nest M, let mem(M)
denote the maximum multiplicity of the continuous part of M. This is always an
element of {0,1,2,...,00}.

THEOREM 1.2. For any nest M, k1(M) = ymem(M).

Proof. First consider the Volterra nest. Let Fy; be the quasi-central approximate
unit constructed above. Following the notation in [3, Lemma 13.5], we obtain

, 1 & . . 1
NPV, Fulll < = " llys © 25 — 2 @1l < = - 2wl
=1 j=1
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where y; is orthogonal to z; and ||y; + z;|| = 1. Thus 2||y;||/|zj|| € 1. Consequently,
v=rmMN) <L
On the other hand,

N

1
M, = / P(N;)tde.
[V}
Thus,

1
M, Flll: = ”/[Fv P(Ny)]dt|ly < max||[P(N:), f]|la-
0

Thus, 1/7 = k1(M;) < £1(Mo) = 7.
It is an easy exercise (c.f. [13, Prop. 1.5]) to see that

k1 (N ® C™) = mk1 (M) = my.

Now, let us consider a general nest M. As before, the atomic part of M has a
central approximate unit. So we may assume that M is continuous. First, suppose
that M is cyclic (i.e. mem(M) = 1). Then by a theorem of Kadison and Singer
[9](c.f. [3, Prop. 7.17]), M is unitarily equivalent to M. Hence, x1(M) = 7.

Next suppose that M has multiplicity m on a set 2 of positive spectral measure.
The restriction M; of M to the spectral subspace Exq(2)H has uniform multiplicity
m, and thus is unitarily equivalent fo N/ ® C™. Thus

£1(M) 2 k1(My) = my.

Hence, x1(M) > mem(M)y.

Converscly, suppose that M has finite mem(M) = m. Then M can be written as
the direct sum of m cyclic nests, say M; for 1 € j € m. Each is unitarily equivalent
to the Volterra nest (with different reparametizations), and so has a quasi-central
approximate unit F,Sj ) with

lim sup [[[F), P(M))|| = 7.
n-—-vooMeMJ.

n
Clearly, F,, = E (BF,(,j )isa quasi-central approximate unit such that
j=1

£1(M) £ lim [|[F, P(M))||: = mem(M)y.

Hence equality is assured. u

I have been unable to determine the exact value of v, but my gut feeling is that
that y = 1.
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2. CONTINUOUS NESTS MOD ¢

The proof of Andersen’s Theorem given in [2], (also [3, Theorem 13.9]) can be
modified to work for any ideal with a quasi-central approximate unit. In this section,
let & be a fixed ideal properly containing the trace class.

LEMMA 2.1. Let N and M be cyclic continuous nests with cyclic vectors z and
y respectively. For each positive integer k, let P, be the projection onto the subspace
span{ Ex((27¥(j — 1),2" %)z | 1 < j < 2¥}. For e > 0, there is a unitary operator
U satisfying

S\[lp [|(P(M)U — UP(Ny))Pe|l1 < €.

Proof. The proof of [3, Lemma 13.6] produces a unitary U with the required
property. Indeed, it is shown that the difference is a rank one operator with norm at
most €. Hence the trace norm is the same. u

In the operator norm version, we used a lemma [3, Lemma 13.7)] stating that for
a positive operator F, one has

. B2, 7)) < V2B, TNV 2)T)2.
This enables us to get a reasonable estimate of the quantity
[(Fm — Fa)/2, PN

However, we do not expect that such an estimate is valid for all ideal norms. Helton
and Howe [8] show that an appropiate estimate is valid for C*° functions, but the
square root does not qualify. Instead, we use a device that we introduced in [4].
Recall that our quasi-central approximate unit {F,} has the special property
that
FoFp = Fmin(n,m)-

We will see that G,, = sinz(lz’-F,',) is a quasi-central approximate unit with the same
properties plus, for n > m,

(Gn = Gm)Y? = (Gu(I — G))M? =sin (%Fn) cos (%Fm)

LEMMA 2.2, Let F, and G, be given as above. Then for all operators T,

(G, Tlle < 2c08h () ILFn, Tllle

and for n > m,

(G = Gm)/2, Tlls < cosh (3) lIFn, Tle + sinh () Fm, Tl
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Proof. As in [4], this is a routine power series calculation. We have

sm( ) E (2(n i)'l‘)' (7r )2n+1

and

‘The well known estimate ||[A¥, T)}is < k||A)|*~||[4, T)||s is valid for all ideal norms.
So it is easy to obtain the estimates

[fin (57) 71, \(EW (3 )Iﬂm"wosh( ) ILF. Tl

and

“ [cos ( T] " (g@"_i_l_)_! (g)zn ) I[F, T}ll¢ = sinh ( ) NF T]lls-

Thus we obtain the estimates

NGn, Tl < 2 "sm ( ) [sm ( ) T] " < 2cosh ( ) [Fn, T)lls

and for n > m, ||[((Gn — Gm)!/?,T)||s is dominated by

[lsin (57) 7]l leoe () + o GGE) [ Lo (57) 7, <

< cosh () ILFn, Tlls + sinh (Z) I(Fm, Tlls- "

Now the intertwining lemma replacing [3, Lemma 13.8] follows by standard tech-

nique.

LeMMA 2.3. Let N be a continuous nest with cyclic vector, and let M be
another continuous nest. Given an ¢ > 0, there is an isometry U so that f(t) =
= P(M;)U — UP(N,) is a continuous function from [0, 1] into & with norm

IAll = sup ||f(t)||¢ <e.

(419!
@
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Sketch. As nothing new is introduced here, the ideas will only be briefly outlined.
Split M as a direct sum of countably many cyclic continuous nests M;. Choose a
sequence n; growing sufficiently fast, and use the lemma above to construct unitaries
Uj so that

IUFn;, P(Ne)lls < 273/ (4 cosh(3))

and
I(PMPVU; — U P(N)) P lle < 277 e/2.
Then
U= z Uj(Gn, — Gﬂj-x)llz
S i
is an isometry satisfying ||P(My)U — UP(N:)|ls < €. [

We are ready to prove the main theorem of this section, the analogoue of Ander-
sen’s Theorem for the ideal &.

THEOREM 2.4. Let N and M be continuous nests, and let @ be an ideal properly
containing the trace class. Let @ be any order isomorphism of N onto M. Givene > 0,
there is a unitary operator W so that the function f(N) = P(O(N)) - WP(N)W"* is
a continuous function from N into ® with norm at most €.

Proof. Parametrize N and M as {N;} and {M;} so that §(N;) = M;. Following
the proof of [3, Theorem 13.9] verbatim yields a isometry U from H* into M so that

9(t) = P(My)U — UP(N;)(>)

is a continuous function into @ with norm at most €. From this it follows that
h(t) = [P(M;),UU*] is a continuous function into @ with the norm at most 2¢. The
formalism is that M has been approximately split as

M~ LONC) = (LONP)GN ~MaN.

Chasing through the calculations exactly as in [3, Theorem 13.9] yields the the-
orem. ]

3. TRACE CLASS PERTURBATIONS

The sharp dichotomy between the trace class and larger ideals observed for quasi-
-central approximate units persist for approximate unitary equivalence. Although we
cannot get the whole picture from the x; invariant, we will extract some of the
information from it.
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LEmMMA 3.1. Suppose that 8 is an dimension preserving order isomorphism of a
nest N onto another nest M, and that W is a unitary operator such that f(N) =
= P(O(N)) — WP(N)W?* is a continuous function of N into Cy. Then there is an
approximate unitary equivalence of N' and M modulo C; implementing 6.

Proof. We may assume that W = I. Fix € with 0 < ¢ < .5. By the uniform
continuity of f, the nest A/ may be partitioned into intervals by a finite subset

0=Ny< N1 <...< Ny =H

so that either ||f(N) — f(Nj-1)ll1 < € for all N in the interval [Nj_1, N,,], or Nj_;
is the immediate predeccessor of NV; in the nest. Let E; = P(Nj) — P(N;j_1) and
F; = P(8(N;))— P(8(Nj-1)). Whenever E; is an atom of N, the fact that 6 preserves
dimension guarantees that rank(E;) := rank(F;) and hence there is a partial isometry
U; with initial space E; and final space Fj. Otherwise, let U; be the partial isometry
in the polar decomposition of F;E;. Since F; — Ej is trace class of norm less than
one, U; intertwines E; and F; and U; — Ej is trace class. Define U = Z U;. This is
unitary and a trace class perturbation of the identity. It is clear tha.t’ UINJ- = 6(N;)
for 0 € j < n. It remains to show that the function g(N) = P(6(N)) — UP(N)U*
has the desired properties. Clearly, it is a continuous trace class valued function.
Furthermore, g(N;) = 0 for each j. Suppose that N is an element of A such that
Nj_1 < N < Nj. Let E = P(N)— P(N;-1) and F = P(8(N)) — P(8(N;-1)), and
R = (E} + E;F;E;)"Y/2. As in [3, Theorem 12.16], compute

g(N)U = FU; - U;E = (FF;E; - F;E;E)(R) =
= (F(F - E)E;E* — FL1F;(F - E)E)R.

It follows that |lg(N)|li € 2||E - Fil1||R|| < 2¢(1 — ¢)~*/2. As € may be chosen
arbitrarily small, A and M are approximately unitarily equivalent modulo the trace
class. ]

The following corollary is an imrnediate consequence.

CoroLLARY 3.2. If f(N) = P(6(N)) — WP(N)W* is a continuous function of
N into Cy, then k1(N) = £1(M), and hence mem(N) = mem(M).

COROLLARY 3.3. Suppose that mem(N) is finite. If f(N)=P(8(N))-W P(N)W*
is a continuous function of N into Cy, then N and M are unitarily equivalent.

Proof. Let p be a scalar measure so that both spectral measures of A' and M
are absolutely continuous with respect to p. Suppose that there is a set £ of positive
1 measure on which A has uniform multiplicity n and M has uniform multiplicity



IDEAL PERTURBATIONS OF NESTS 249

m. Let £ be a cyclic nest supported on £ such that the restrictions of A and M
to £ are unitarily equivalent to £ ® C* and £ ® C™ respectively. Pick an integer
p > mcm(N), and consider the nests Ny = N @ L) and M; = M & L), 1t is clear
that these nests are approximately unitary equivalent modulo Cy. Moreover, since
L) has multiplicity 0 off of £, and uniform multiplicity p on £,

n + p = mem(N;) = mem(M;) = m + p.

Consequently, n = m. This holds yu almost everywhere, and hence N’ and M are
. unitarily equivalent. B

In order to deal with nests of infinite multiplicity, a way is needed to isolate parts
of the nests.

LEMMA 3.4. Suppose that f(N) = P(8(N)) — WP(N)W?* is a continuous func-
tion of N into Cy. For any monotone scalar function h(N),

/ h(N)dP((N)) = W / h(N)AP(N)W*

is In the trace class.

Proof. The quantity in question is easily seen to be / h(N)df(N), which after

integration by parts becomes — / F(N)dh(N). Standard estimates for the Riemann-

-Stieltes integral show that this converges uniformly in the trace norm. n

THEOREM 3.5. Suppose that 0 is a dimension preserving order isomorphism of
a nest N onto another nest M, and that U is a unitary operator such that f(N) =
= P(8(N))—UP(N)U* is a continuous function of N' into C,. Then there is a unitary
operator implementing the isomorphism 6.

Proof. Let p be a scalar measure dominating the spectral measures of both A
and M. Suppose that there is a set £ of positive u measure on which A’ and M
have uniform multiplicities n and m respectively. Let h(N) = p(£2Nn{0, N]). Consider
the operators A = /h(N)dP(N) and B = [ h(N)dP(6(N)). By the lemma, these
two self-adjoint operators are unitarily equivalent modulo the trace class. Thus by
Kato-Rosenblum Theorem [10, 12], the absolutely continuous parts of A and B are
unitarily equivalent. By construction, the spectral measures of A and B are equiv-
alent to Lebesgue measure on (0, u($2)] plus a large point mass at 0. However, they
have multiplicities n and m respectively. Consequently, n = m. It follows that the
multiplicity functions of ' and M agree x4 almost everywhere. Hence A and M are
unitarily equivalent. a
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4. ARBITRARILY NESTS MOD ¢

In this section, the results for continuous nests of section 2 will be extended to
arbitrary nests. This turns out to be mostly a technical exercise. Let us fix an ideal
& properly containing the trace class. Let us also fix a pair of nests A" and M and a
dimension preserving order isomorphism # from A onto M. By the author’s Similarity
Theorem [5], there is a similarity and also an approximate unitary equivalence between
N and M implementing 8. One of the points of the proof is that the order type of NV,
say w, can be split into a countable subset ¢ and the maximal perfect subset wg. The
portions of A and M corresponding to c are unitarily equivalent. So we can restrict
our attention to wg. So without loss of generality, we may assume that w is perfect.
We may assume that A and M are parametrized as {N;} and {M;} for t € w.

The problem would appear to be that A" might be atomic while M may have
non-atomic part. For then the non-atomic parts cannot be matched up. In the proof
of the Similarity Theorem, this problem was overcome by showing that there existed
some (essentially non-constructible) similarity which introduced a non-atomic part
everywhere. By a Theorem of Gohberg and Krein [7], the similarity cannot have the
form scalar plus Macaev ideal. This makes it hard to imagine a way to force the
difference to lie in the trace class. We proceed in a different way.

First we note that Lemma 2.1 does not require continuous nests. Some extra care
is needed if the embedded nest A has atoms. We do not need this, so A” will continue
to be a non-atomic. However, the case of real interest here occurs when M is totally
atomic with a dense set of atoms. The prototype is the Cantor nest on £2(Q) with
usual order (see [3, sections 2.14, 13.15]). In this case, the order type is the Cantor
set. The Cantor set is similar to the analogous nest defined on £2(Q) & L2(R), which
has a large continuous part. Our problem is to embed this continuous part into the
Cantor nest with a small ¢-norm perturbation.

LemMa 4.1. Let w be a perfect compact subset of R. Suppose that M and N’
are cyclic nests with support w, and that A is non-atomic. Given € > 0 and a finite
rank projection P, there is a unitary operator U so that

f‘EIP“(P(Mt)U - UP(Ny))P|ls < €.

Proof. It is not really necessary to consider arbitrary finite projections P. It
is enough to demonstrate this for a sequence of such projections increasing strongly
to the identity as Lemma 2.1. For such a sequence will eventually dominate any P
within an arbitrary ¢ in the trace norm. Fix cyclic vectors £ and y for N and M
respectively. Let 4 be a (non-atomic) probability measure on w mutually absolutely
continuous to the spectral measure of A”. Then map w onto [0, 1] by h(t) = p((—~o0, t]).
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For each positive integer n, let Ej, denote the spectral projection En((h~((k—
~1)/n),h=1(k/n)]) for 1 < k < 2". Let 2k = Ej nz||Ex nz||”!, and set P, to be the
projection onto span{z | 1 < k < 2" }. Because z is a cyclic vector, the projections
P, increase strongly to the identity. Similarly, let F} ,, and yi » be the corresponding
projections and vectors corresponding to M. Note that we are following the notation
of [3, Lemmas 13.5-6]. Even though M may be totally atomic, it has the important
feature that Fy, are always non-zero, and hence the vectors yi , are always well
defined.

The arguments of [3, Lemmas 13.5-6] and Lemma. 2.1 go through verbatim. It is
worth noting that the proof of Lemma 13.5 uses the continuity of A’ but not of M.
This is crucial here. [ |

THEOREM 4.2. Let N' and M be isomorphic nests, and let 8 be a dimension pre-
serving order isomorphism from N onto M. Then for any ideal @ properly containing
the trace class, there is an approximate unitary equivalence of N' and M modulo &
implementing 6.

Proof. The discussion at the beginning of this section reduces the problem to
nests of perfect order type, say w. It suffices to show that the nest M (and similarly
N) is approximately unitary equivalent to another with its non-atomic part supported
on all of w. For then Theorem 2.4 will allow us to match up the non-atomic parts.
This follows the spirit of our proof of the Similarity Theorem. To this end, let £ be a
cyclic continuous nest parametrized by w. It is easy to split M into an infinite direct
sum of cyclic nests M; each with support w. This is analogous to [3, Lemma 13.3].
To deal with the atomic part, one need only split the atoms into countably many
subsets, each dense in the largest possible set (namely, the maximal perfect subset of
the closure of the atoms in w).

Now, follow the details of Lemma 2.3 to intertwine M and £* via an isometry
U so that f(t) = P(My)U — UP(L;){®) is a continuous function from w into @ with
norm at most €. It follows as in the proof of Theorem 2.4 that M and M @ £ are
approximately unitary equivalent modulo &. [ ]

5. FINAL REMARKS

We are at a loss to explain the connection between these results and the Theorem
of Gohberg and Krein. Their result states that if an operator 7" has the form unitary
plus a compact in the Macaev ideal, then the nests A" and TN are unitarily equivalent.
The reason this is so is that such T factor as T' = UA where U is unitary and A is
invertible in the nest algebra 7 (N). Their proof has two parts. The most important
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ingredient, is that triangular truncation is bounded from the Macaev ideal into the
compact operators. It is then possible to use this operator to explicitly compute the
factorization when the compact perturbation is norm at most 1 in the Macaev ideal.
The other step is to prove the result for finite rank operators. Gohberg and Krein’s
original proof of this is quite independent from the first part, but in [3, Lemma 14.8]
we give an easier proof as a corollary of the small Macaev norm case. Now using the
results of this section 3, it is easy to deduce that if T is unitary plus trace class, then
N and TN are unitarily equivalent. Unfortunately, this is a far cry from the Macaev
ideal.

The reason we cannot find a tight connection betweem these two results is that if
T is unitary plus Macaev, there is no apparent reason for A" and TN to be unitarily
equivalent modulo trace class. They are unitarily equivalent modulo the Macaev ideal,
but we have now seem that this (and much more!) is true of all similar nests. This
means that similarity by compact operators (which are necessarily not in the Macaev
ideal) can perturb a nest A to another which is a small C, ( or even Cy) perturbation
of NV, but is not unitarily equivalent. It would seem to be an important problem to
draw some connection between these results. The hope is still to shed some light on
the similarities of nests which change the unitary equivalence class.
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