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DIFFERENTIAL BANACH ALGEBRA NORMS
AND SMOOTH SUBALGEBRAS OF C*-ALGEBRAS

B. BLACKADAR and J. CUNTZ

1. INTRODUCTION

It is frequently important in topology to consider additional structure such as
a smooth or piecewise linear structure on certain topological spaces. A somewhat
unconventional approach to defining such structures, which admits generalization to
operator algebras, is to specify a certain dense *-subalgebra of the C*-algebra of
continuous functions. For example, a smooth structure on a manifold X may be
defined by specifying the subalgebra C§°(X) of Co(X). A piecewise-linear structure
(triangulation) or a structure of an affine algebraic variety on X may be regarded as
a choice of a suitable family of generators of Co(X).

In the study of operator algebras, it has long been recognized that there are
circumstances where it is natural to consider dense #-subalgebras of C*-algebras (in
particular in connection with cyclic cohomology or with the study of unbounded
derivations on C*-algebras.) If one adopts the familiar philosophy that C*-algebras
are generalizations of topological spaces, then dense subalgebras may be regarded as
means to specify additional structure on the underlying “space”. Recent developments
in noncommutative differential geometry are based on this idea, [2], [4].

There are also other contexts (e.g. group algebras, [11], [12], [8]) where dense
subalgebras appear naturally which do not at first seem to be closely related to the
notion of a smooth structure, but which can sometimes fit into the same picture.
While there has now been accumulated a number of “standard” examples of smooth
subalgebras of C*-algebras, which have been defined and studied in a largely ad hoc
manner, there has been no general theory tying these examples together.
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In this paper, we will begin the study of a reasonable abstract notion of a smooth
subalgebra of a C*-algebra which includes the “standard” examples. In analogy with
the algebras C*°(X), X a compact manifold, such an algebra should have the following
properties:

(1) It should be closed under holomorphic functional calculus of all elements
(i.e. should be a “local C*-algebra” in the language of [1]) and under C*°-functional
calculus of self-adjoint elements

(2) Tt should be complete with respect to a locally convex algebra topology anal-
ogous to the usual topology on C*(X).

(3) Certain (derivationlike) natural linear and multilinear maps defined on gen-
erating subalgebras, such as the ones appearing in Hochschild and cyclic cohomology,
should be continuous for this topology.

The principal examples of such algebras are of course the definition domains of
closed derivations and their powers.

Our main contribution is the notion of a differential seminorm. A differential
seminorm is an algebra “seminorm” T (i.e. T(z) 2 0, T(Az) = |A\|T(z), T(z + y) <
< T(z) + T(y), T(zy) < T(z)T(y)) with values in the convolution algebra £}(N).
Such a map T is the sum of its degree 0 part and of the part of degree > 1, which is
nilpotent for differential seminorms of finite order. The part of degree 0 is assumed to
be a C*-seminorm or to be continuous with respect to a C*-seminorm. This implies a
restriction on the growth of the differential seminorm T on products and exponentials.
A discovery that we made is the role of the “logarithmic order” which contributes to
the total order of the seminorm just like the number of “derivatives” that it contains
(its order). The completion of a subalgebra 2 of a C*-algebra A with respect to a
closable differential seminorm is a smooth subalgebra of A with the properties listed
above.

Differential seminorms on 2 arise from derivations and compositions of deriva-
tions but also from homomorphisms of 2 into normed N-graded algebras or from
filtered structures. We show that the most general differential seminorm on 2 can be
obtained fromn a linear map with “non-negative curvature” from 2 into an N-graded
Banach *-algebras whose degree () part is isomorphic to a C*-algebra, and that every
“flat” differential seminorm is induced by the powers of a derivation on an algebra
containing .

The main shortcoming of differential seminorms is the fact that they do not
behave well under quotients. This is related to the fact that a quotient of a graded
algebra is not graded in general. To circumvent this difficulty, we introduce derived
norms as quotient norms for the total norms of differential seminorms, and study

their properties.
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We can introduce smooth subalgebras of C*-algebras as subalgebras complete
with respect to the topology defined by a suitable family of such seminorms. One fea-
ture of this approach is that it then makes sense to talk about the smooth subalgebra
generated by an arbitrary dense #-subalgebra of a C*-algebra. For every C*-norm on
an involutive algebra 2, there will be a family of derived norms and one can naturally
define the smooth completion A(2) with respect to these norms. The completion will
be invariant under holomorphic functional calculus for arbitrary elements, and under
C>-functional calculus for normal elements (we also introduce the C*-completions,
C%(2) being the C*-completion of 2, in a slightly different spirit). Another feature of
the smooth completion is that every closable derivation of 2 extends to a continuous
derivation A(2) — A(?) and to a continuous derivation C¥+1(2) — C*(2). Smooth
algebras behave in many respects like C*-algebras. We study some of their basic
properties in section 6.

Even though some of our definitions are still somewhat experimental, we believe
that we essentially have developed the right framework for smooth algebras in the
non-commutative setting. The groundwork laid in this paper is only a beginning of
a reasonable théory of smooth structures on non-commutative algebras and leads to
many intriguing and difficult questions which we have to leave open.

2. PRELIMINARIES ON GRADED AND FILTERED ALGEBRAS

All our algebras are over the complex numbers. When speaking of graded al-
gebras in the following, we always mean N-graded algebras, where N is the set
of natural numbers, including 0. An N-graded algebra is an algebra B equipped
with projections pr, £ € N, p;p; = 0, i # j, onto subspaces Br of B such that

B;B; C B;+; and such that Z pr. = id. This implies the important relation pi(zy) =
k

= E pi(z)p;i(y), =,y € B. Every N-graded algebra B carries a canonical derivation
4=k

6 defined by 6(z,) = nz,, z, € By, and a corresponding one-parameter automor-

phism group ay, t € C, defined by ay(z,) =t"z,, z, € B,. For each graded algebra

B, we denote by 9B the ideal of elements z of degree > 1, i.e. for which po(z) = 0.
One can also consider graded Banach algebras, where one only requires that the

(algebraic) direct sum of the B; is dense.In that case we assume that E Pk (2)]] < o0,

k
Yz € B, and moreover that ||pg|| < 1 for all k and Z pi = id (norm convergence). In
k
many of our examples, only finitely many B;’s are nonzero.

One of the simplest examples of a graded Banach algebra is the algebra £'(N) of
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summable complex-valued functions on N, with the obvious grading. The sum and
product with complex numbers of elements in £1(N) are defined pointwise, while the
product ' * G which we will usually abbreviate to FG is the convolution product
(FG) = Z F;G;. The function 1 defined by 1o =1, 1 =0, k > 0, is a unit for
iti=k

£(N). "

Let £ (N) denote the set of functions with values in Ry on N. If F,G are real-
-valucd functions in £1(N) we write F < G if Fy < Gy for all k € N. Thus F € £} (N)
iff F 2> 0. One has €} (N)£X (N) C £} (N). Finally, there is a positive homomorphism

/:el(N)e«»c, defined by /F:ZFk.
k

The algebra £*(N) is isomorphic to the graded algebra of formal power series in
one variable with complex £!-summable coefficients.

For each algebra 2, there is a universal graded algebra D2 containing 2 as
a subalgebra and invariant under a linear operator d satisfying d(zy) = zd(y) +
+d(z)y (but without assuming d® = 0!). Take the universal algebra generated by
symbols d*(z) of degree k, that are linear in z and satisfy the relations d*(zy) =
= Z d'(2)d’ (y) where k > 0 (we think of d*(z) as representing il times the k-th

itj=k
power of d applied to z). Note that the relations respect the degree so that D2 is a

graded algebra. If we set
d(d*(2)) = (k + 1)d**'(2),

d(d™ (z1)d"?(z3) . . . d™* (2)) == Z dii(zy)...d(d% (2;)) . ..d"*(zz)
15k
we obtain an operator d : DA —» DU of degree 1, satisfying d(zy) = zd(y) + d(z)y.
We also have the derivation é of degree 0. One checks that éd — dé = d.

DU is a graded quotient of the free graded algebra over the vector space 2 which
we denote by GU. The algebra G2 is by definition the universal algebra generated
by symbols ¢*(z), = € 2, of degree &, that are linear in z with no further relations.
It is the tensor algebra over N copies of the vector space U, one copy (corresponding
to d*¥(20)) for each k in N. Every element of G2 is a sum of elements of the form
dir(z1)d=2(z2) .. . d'*(zy), z; € Y, i 2 0. GU is graded if we define the degree of
such an element to be i3 + 45 + -+ + 4.

Besides the standard inclusion 2 — D2 given by z — d°(z) there is the “ho-
momorphism” e? : £ — d°z) + d*(z) + .... This map is well defined only as a
homomorphism into the quotient of D2 by the ideal of all elements of degree > n,
where the series defining it is finite, or in the case where DY is equipped and com-
pleted with respect to a norm for which the series d®(z)+d*(z) +. .. converges for all
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z. It has the following universal property: if ¢ : d — B is a homomorphism of 2 into
an N-graded algebra B, then there is a unique graded homomorphism ¢ : DA — B
such that ¢ = e? := E ¥d* (in particular, e? converges). In fact, if p,(z) denotes
the part of degree n of ¢(z), we have pr(zy) = Z @i(z)p;j(y) and we can define

i+j=k
by 9(d*(2)) = pr(z).

Derivations into bimodules and compositions of derivations are best described
by homomorphisms into graded algebras. Let us look at the example of a derivation.
If 6 is a derivation from 2 into an 2-bimodule M, then ¢(z) = (z,6(z)) defines a
homomorphism from 2 into ABG M, and AP M is a graded algebra with multiplication
(z,m)(y,w) = (zy,zw + my). If p is an algebra norm on A and M a normed A-
-bimodule with norm || ||ar satisfying |[zm||m, |Imz||m < p(z)}|m||, then A D M
becomes a graded normed algebra with the norm ||(z, m)|| = p(z) + ||m||m.

Another natural example of a graded algebra is the algebra 7,(B) of upper
triangular matrices in M,(B), B some C*-algebra. The elements of degree k are
those for which a;; = 0, j —i # k. It is well known that derivations of B can also be
described as homomorphisms into 7;(B).

An algebra with a decreasing filtration is an algebra B equipped with a decreasing
family of subspaces By of B such that By = B, B;B; C B;;;j. Every algebra B with
a decreasing filtration can be written as a quotient of an N-graded algebra B. Take,
for instance, B=B&B @ B & ... (with convolution product).

If 7 is an ideal in a graded algebra B, then B/Z is canonically graded iff px(Z) C
C Z for all k. On the other hand, a filtered structure on B is conserved in the quotient
by any ideal.

3. DIFFERENTIAL SEMINORMS AND SPECTRAL INVARIANCE

A C*-(semi)normed algebra is an involutive algebra 2 over C with a fixed C*-
-(semi)norm, which will usually be denoted by || ||. A C*-normed algebra can also
be viewed as a dense involutive subalgebra of a C*-algebra (its completition). A
morphism between C*-seminormed algebras is by definition a C*-seminorm decreasing
*-homomorphism.

3.1 DEFINITION. Let 2 be C*-(semi)normed. A differential seminorm on 2 is a
map T : % — €4 (N) such that To(z) < Cl|z||, for some constant C > 0, and such that
forz,y€ U and for A € C

(a) T(Az) = A|T(z), T(z +y) < T(=z) + T(y)

(b) T(zy) € T(2)T(y) (multiplication in £} (N)).
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Fach T} is a seminorm. We say that T is a differential norm if T'(z) = 0 implies
z = (. Adding a C*-norm (if it exists) to Tp turns any differential seminorm into
a differential norm. The sup and sum of a finite family of differential seminorms is
differential where (sup T%); := sup T. Given a differential seminorm T and t € R,

o [ 4
put 7'(t);(z) := /T;(z). Then T(t) is again a differential seminorm.

3.2 EXAMPLE. Let U be a subalgebra of a C*-algebra A and é a derivation of
A. Given n, define T by Tj(z) = (%)”6’(3)”, 1< j < n. Then T is a differential
norm on %. In the case where 2 is the Schwartz space A(R) with the ordinary
derivativce as derivation, the T; are the usual j-norms || ||; on A(R), defined as the
sup-norm of the j-th derivative of f. A similar construction works, given a finite
family of derivations. Assume, to be specific, that we have two derivations 6;, 62 of

2A. Then we define a differential semninorm of order 2 setting To(z) = ||z||, Ti(z) =
= ||61{z) + b2(2)||, To(z) = ||6162(z)]||, where || || is a C*-norm on 2.

As another example, take a p-summable quasihomomorphism, i.e. a pair a, 3 of
*-homomorphisms A — L(H), H a Hilbert space, such that a(z) ~ 8(z) € LP(H) for
all z € A. Then a differential seminorm on 2 is defined by

To(z) = max{lla(2)|],[8(2)1}, Ta(=) = ila(z) = B()lp-

3.3 ProrosiTioN-DEFINITION. Let T be a differential seminorm. Set Tio(z) =

= / T(x) == ZTL(:B) Then Tt is a submultiplicative seminorm, called the total
k
seminorm of T'.

Proof. The map / : 1(N) — C is a positive homomorphism. Therefore

[r6< [16) [16). .

Any differential seminorm T' can be written as T = Ty + 9T where (by abuse of
notation), 1 is the degree 0 part of T' and 0T is the “differential part” of T with
(810 = 0. Clearly, (8T)" vanishes on the interval 0 < k < n — 1. If Ti(z) = 0 for
{ > n, we say that the order of T is n. If T is any differential seminorm then its
restriction te 0 < k < n is a differential seminorm of order n. If T is of finite order
n then §T'(z)"+! = 0 for all z. If To(a) = 0, then To(ay) = 0 for all y € A and
T'(ay)**! = 0. Thus J = {a € A|Ty(a) = 0} is an ideal such that J**+! is contained
in the nullspace of T

The inegnality T'(zy) < T(z)T(y) in the definition of a differential seminorm is
mercly shorthand for the inequality 87(zy) < C(||2l|0T (y)+0T(z)|¥)))+0T(=)6T (y).
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3.4 DEFINITION. The logarithmic order of T is defined to be p = log, L + 1,
where L is the minimal positive constant possible in the inequality

8T (zy) < L(||=)|0T(y) + 8T (=)llyll) + 8T (z)OT (y).

Note that, for a unital algebra, the logarithmic order is always non-negative and
vanishes only if each T is dominated by a multiple of || ||. For non-unital algebras
the situation is different; see the comment in 6.5 (c) below.

Another useful way to write a differential seminorm is to use the isomorphism of
the graded algebra £!(N) with an algebra of power series in one variable t. If T is a
differential seminorm of degree n, then with each z € 2 we may associate the n-th

order polynomial f, defined by f:(t) = Z T;(z)t'. This gives a one-parameter
0<ign
family of submultiplicative seminorms on %. The defining property of a differential

seminorm then corresponds to f:(0) < C||z|| and to the fact that all derivatives at 0
of the function f.(t)f,(t) — fzy(t) are positive.

Differential seminorms extend to the unification of A and to algebras of matrices
over 2 at the cost of raising their logarithmic order.

3.4 PROPOSITION Let T be a differential seminorm on U with Ty = C|| ||.

(a) An extension of T to a differential seminorm T on the unitification 2 of 2 is
defined by To = (1+2C)|| ||, A € C and 8T(A\1+ z) = 8T(z), A € C where || || is the
natural C*-seminorm on .

(b) An extension of T to a differential seminorm T' on the algebra M, (%) of
matrices over 2 is defined by 8T((z;)) = E(’)T(x.-j) and Ty = nC]|| || where || || is

: =
the natural C*-seminorm on M, ().
Proof. (a)
8T((A1 + z)(ul +y)) = 0Ty + pz + zy)) <

< (A + To(2))0T (y) + 0T (z)(p + To(y)) + 8T (z)0T(y)

One easily checks that 1+ 2C is the best possible constant G for which |A] + Cllz|| €
< G|IA1 + || (for [|]] < 2, one has ||1 + z|| > 1 and 1+ C||z|| < 1+ 2C, while, for
lell > 2, 11+ =l 3 fizll - 1).

(b) Given X = (zi;), Y = (¥ij) € M (), one has

OT(XY) = ) 8T (zijyj) <
ijk

< D To(=i)0T (yir) + Y 0T (xi5)Tolyiz) + Y 0T (2:5)0T (yjx) <

ijk ijk ik
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< nC||X]|| E@T(yjk) + (Z 6T(z,-,-)) nC|Y|| + Z OT (24 )OT (ys1)- a
ik i irsk
Let é be a derivation of 2 and T a differential seminorm on 2. Then we can
define a differential seminorm T” by setting T} (z) = Ti(z) + Ti-1(6(z)). If T is of
finite order n then T” is of order n + 1. This is a special case (see section 2) of the
following

3.6. ProPOSITION. Let ¢ : A — B be a morphism of C*-seminormed algebras,
where B is N-graded. Let p; be the part of degree i of ¢, ¢(z) = po(z) + ¢1(z) +
..., and let T : B — €4 (N) be a submultiplicative seminorm (i.e. T is subadditive,
submultiplicative and homogeneous) with values in £} (N) such that the restriction of
Ty to By is bounded by a multiple of a C*-seminorm on By. One defines a differential
seminorm T on U by

Ti(z) = z Ti(pj(x)) (T'is the “convolution product” T * ).
t+j=k

Proof.

Ti(zy)= Y Tilei(zv)) = Y. Tilpr(2)es(v) <

i+j=k i+r4s=k
< Y Te@Dew) = Y, T =
atbd4r+s=k i+j=k

In particular, every N-graded normed #-algebra B, for which the norm on By is
bounded by a multiple of a C*-seminorm, carries a canonical differential seminorm
T8 defined by TE(z) = ||px(z)||5-

The following lemma contains the basic estimate which allows us to control the
growth of a differential seminorm on products.

3.7 LEMMA. Let a(k), k = 0,1,2,... be elements of 3£ (N) such that a(k) <
< Ga(k = 1) + a(k — 1)? for k > 1 where G is a positive constant. Then

a(k) € G*a(0) + kG?*a(0)® + - - - + k=G a(0)" + ...

(since (a(0)*); = 0 for n > j, the sum on the right hand side is finite in each
component j).

Proof. Assume, by induction, that a(k) < Y k~'G7*a(0)/. Then

J

2
a(k +1)< G (E kf-lcfka(o)ﬁ) + (Zkf-laf*a(oy') =Y uja(0y
J J
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where

Hi = kj—lij+l + Zka—lGakk(j—a)—lG(j—c)k = kj—Iij-i-l + (] _ l)kj—Zij <

S GIER (R 4 (5~ 1R -2) < GIEHD(k 4+ 1YL, ]
Here is a typical application of Lemma 3.7. We say that a subset B of ¥ is
T-bounded if ||z}| < 1 for all z € B and if {T(z)|z € B} is bounded in ¢} (N).

3.8 LEMMA. Let T be a differential seminorm of order n on 2 with logarithmic
order p =log, L + 1 and let B be a T-bounded set with R = sup{0T(z)|z € B}. Let
s=2% and z;,...,z, € B. Then

T (z12,...2,) < QLR+ k(Q2LY*R? + .- + K- D(2L)** R"

Proof. Let z € A with ||z|| = 1. Set a(j) = sup{dT(z1 . ..z35)|z; € B}. Then

OT(zy...29i) € L||z1 ... 295-1||0T(225-141 .. . Z25)+
+LOT(xy ... 2951 )||T25-141 ... Zos|| + OT (21 . . . £25-1)8T(T35-1 41 . . . T25) €
< 2La(j - 1) + (a(G - 1))’
whence
a(j) < 2La(j = 1) +a(j - 1)°.
Thus, by Lemma 3.7

OT(z122...2,) € (2L)*a(0) + k(2L)?*a(0) + - - - + k"1 (2L)"*a(0)". [

3.9 DEFINITION. Let T be a differential seminorm. We say that the order of T
is € k if, for each i and for each T-bounded sequence {z,},

(los(ﬂ(-"i';:i' : -z'))) <k

lim sup
8§—00

3.10 ProPoOSITION. Let T be a differential seminorm of order n and logarithmic
order p. Then the total order of T is < np.

Proof. If B is T-bounded, then so is B2 = {zy|z,y € B}. Let {z;} be a sequence
in B and 2* < s < 281, Then z;z;...z, can be written as yyy2...y,x With y; €
BU B?. Thus, by 3.8, 8T (2123 ...7,) < (2L)* + k(2L)*R? + - - - + k(*~V(2L)"*R",
where R is the sup of 8T over B U B2. [ |
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Cauchy sequences, completion etc. for differential seminorms are defined in the
obvious way. A sequence in 2 is a Cauchy sequence for T if it is a Cauchy sequence
for each T;. Let Az be the completion of U with respect to a differential norm T of
order n. T extends to a differential norm on 2y and Uy is a Banach algebra for the
total norm Tie.

Let A be the C*-completion of A with respect to || | and assume that Tp =
= C|| ||, € > 0. There is a natural continuous map Ur — A. The kernel T
of this map consists of all ¢ € %y for which To(z) = 0, Z = {z|To(z) = 0}
= {2|T'(2)" = 0}. Therefore T'(z1z2...24) < T'(z1)...T(2n) = 8T(z1)...0T(2zn) =
= 0 for z,,z2,...2, € Z whence 7" = {0}.

We say that T is closable if, for any T-Cauchy sequence (z) with ||zg]| — 0, also
T'(xx) — 0. Thus T is closable if and only if Z = {0} so that %r C A.

In any case the map 2y — A induces an isomorphism in K-theory. In fact
K(2yp) = K(Ur/7) since a nilpotent algebra has trivial K-theory and K(27/T) =
= K(A) since M, (r/Z) C Mp(A) is dense and invariant under holomorphic func-
tional caleulus for all n by 3.12.

il

ReEMARK. If the order of T is 1, then there is a unique closable maximal dif-
ferential seminorm 7' dominated by T on 2. Take Ty = Tb, and for Tl the quotient
seminorm associated with 7} on %/J. In the case of higher order, one obtains in
general only a derived seminorm T, see below.

3.11 DeFiNiTION. Let 2 be a C*-seminormed algebra with C*-seminorm || || and
let o be a scminorm on U. We say that « is analytic if for each finite set F' in 2, with
livll < 1 for ally € F, and for each sequence {z,} in F,

limsup (log(a(:clmg . .z,))) <o

s—00 s

This is the case if and only if the radius of convergence of the complex power

Series E a(z12p...25)2°, z € C, is > 1. Since every finite set F as above can be

8
hifted to a set with the same property, it is clear that any quotient seminorm for an
analytic seminorm, in the quotient by a || ||-closed ideal, is again analytic.
The seminorms associated with differential seminorms of finite order are analytic
by 3.10.

3.12 PROPOSITION. Let B be a unital C*-normed algebra with C*-norm || ||
which is complete with respect to an analytic algebra norm «a. Then for, each ¢ € B,
the spectral radius of x with respect to a is less or equal to ||z||. Therefore, the
spectrum of each ¢ € B equals the spectrum of = in the C*-completion B of B.
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In particular, if T is a differential norm on 2 and ¢ : 2y — A is as above, then
the spectrum of z in YUr coincides with the spectrum of ¢(z) in A (so that Ay is
closed under functional calculus by holomorphic functions in A).

Proof. If ||z|| < 1, then a(z") < 1 for large n, so that the spectral radius of z
with respect tio a is < 1. Given w € B with inverse u in B, there is u’ € B such that
- wv'| < 3 This shows that 1 is not in Spz(1 — wu'), so that 0 is not in Spzwu’
and w is invertible in B. : n

Now let T be a differential seminorm of order n and of logarithmic order p, p =
= log, L + 1. We assume that 1 € 2 ard that 2 is complete with respect to T.

1
Then clearly T(e®) < T(1) + T(z) + ﬁT(:z:)2 +...=(TQ)-1) + eT(*), whence
OT(e%) < 7).
If f(z) = E a,2’° is a complex power series which absolutely converges for |z| <

< r, then for each z € % with ||z|| < r, the series f(z) = Ea,z’ converges and
T(f(2))< 3 la0T(z)’.

3.13 PROPOSITION. Let z be a selfadjoint element of A and

p .
K = sup { (tl) aT(e'**) | % St < 1} € £} (N).
0 .
Then
AT (e"™*) < tPK + (logy t + 1)(tPK)? + - - - + (log, t + 1)("41)(tPK)"

for allt > 1. Moreover K can be estimated by K < 2Pg(T(z))0T (z) € 8¢} (N) where
(¢ - 1)

—
Proof. Let k = [log, t+1] be the integer part of logy t+1 and s = log, t—k so that

t = 2F+s = ¢,2% where 3 <to=2°< 1. Given z = z* in %, put a(k) = 6T(ei"°2k).
We have a(k) < 2La(k — 1) + a(k — 1)? since ||¢**2"|| < 1. Thus by Lemma 3.7

g is the power series representing

aT(ei.ﬂ) < (2L)k3T(eiztn) + k(2L)2kaT(eizto)2 4+ k("‘l)(2L)""6T(ei"°)".

P
With p = log, L + 1 one has (2L)% = 2*F = (ti) . It follows that
0

t

2 . t np .
_> aT(e""'t“)z +.- '+k("'1) (_) 3T(e”"°)” =
to to

AT (") < (%), AT (e'"*) +k (

=tPK(to) + k(tpK(to))2 +---4+ k("_l)(tpK(to))"
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p
where K(to) = (ti) 0T (e'**). Let K be the sup of K(to) in % < to < 1 which
0
exists by the inequality T'(e®) < (7(1) — 1) + e7(%). We finally obtain

OT(e™!) K P K + k(tPK)? + -+ + k- D(tP K)" <

StPK + (logy t + 1)(tPK)? + - - 4 (logy t + 1)("~ V(¢ K)"
forallt > 1. |

3.14 REMARK. In the special case where the order of T is 1 and §T(1) = 0 we
obtain the following estimate:

AT (e'=") < (eT@), = t,0T(z) + 323(2T0(z)aT(z)) + §(3To(z)23T(z)) +...<

< to(1 + e ZaT(2)

Thus 8T(e!*!) = Ty(z) < 2P~1(1 + eL)tPdT(z) whenever ||z|| < 1, ¢ > 1, whence
AT () < 2AP=1(1 + eL)(1 + |jz]|P~1)OT (=) for all z.

The estimate in 3.13 shows that the order and the logarithmic order of a differen-
tial seminorm contribute equally to the growth of T'(e'**). This is neither an accident
nor due to a limitation of our estimates. In fact, the following two examples show
that there are seminorms that may be regarded as the leading term in a differential
seminorm of order n and logarithmic order 1, or, at the same time, as the leading

term of another differential seminorm of order 1 and logarithmic order n.

3.15 ExaMPLE. Let £ be a bounded open subset of R* with smooth boundary
and X its closure. Let 2 denote the algebra consisting of restrictions, to X, of C™-
-functions on R™ and let f € A. Given k € N, define pi(f) = max{||D*f||| || < k}
where {] || is the sup-norm taken over X. Then as before p; may be embedded in
a differential norm of order k. But, using Sobolev’s inequalities [7, Part 1, 10.1], it
follows that 73 = py also defines a differential norm of order 1 if we set To(f) = C||f||
where C is a constant that depends on k and X.

3.16 EXAMPLE. Let U be a x-algebra acting on some Hilbert space H. Let D be
a selfadjoint operator on H and E), X € R, the projection operators onto the spectral
subspaces of 1) for the interval (—oco, A]. Assume that 2 ={J 2, where

A = {:L' € Qll:L‘E,\(H), :L‘*EA(H) C E,\+k(H), V/\}

There are two natural ways to associate differential seminorms on 2 with these data.
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(a) Consider §(z) = [D z] as a derivation of 2 into L(H) and take as above
Ti(z) = ( E)M67(2)]l, 1 < j € n. T is a differential norm of order n and logarithmic
order 1.

(b) First define vi(z) = sup{||Ex;1zE|l, ||Ex;zz* EallIA € R}. One has

1Bx+xzyExll = || Bxyrz(Exy g + Ex g3 VBNl <

< IBx a2 Exy g B + | BX ez Ery s Bl < llllvy () + 75 ()19l

whence 7 (zy) < [lzllvs(v) + 75 (2)llvll. Now, set pm(z) = sup{k™y(z)|k € R }.

One finds ~ m
k(e <27 (el (5) ")+ () "ol

so that py,(zy) < C(l|z]lpm(y) + pm(2)||y]]) with m = log, C. Defining T by T(z) =
= Cl||z||, T1(z) = pm(z), gives a differential norm of order 1 and logarithmic order m+
+1 on 2. We leave it to the reader to verify that,in the case where H = ¢2(Z), D(&)
= k€x(€x, k € Z the orthonormal basis) and 2 is the *-algebra generated algebraically
by the bilateral shift operator U, U(€) = €41, the two differential seminorms induce
equivalent total norms Tior and TY, on 2, if n = m + 1.

4. REPRESENTATION OF DIFFERENTIAL SEMINORMS

We have seen above that every homomorphism ¢ from % into a graded Banach
algebra B with By isomorphic to a C*-algebra, gives rise to a differential seminorm
on 2 by setting T;(z) = ||pi(¢(z))||p where p; denotes the projection B — B; and
|| ||z the norm of B. Let us consider the following more general situation, where one
obtains a differential seminorm on 2 in an obvious way. Let ¢ : 2f — B be a linear map
from 2 into a graded Banach algebra B such that ||px(¢(zy))lls < llpr(p(z)e(¥))llB
for all k, and such that [|[po(¢(2))|lp < C||z|| for some constant C > 1. If we set
Ti(2) = lIpi(e(@))llz, i > 1, To(z) = Clle]l, we obtain

Ti(zy) = llee(e(zy)llz < llpe(e(2)p (W)l =

< Y T(=)T)

i+j=k

> pile(2))pi(e(®))

i+j=k

for k > 1, so that T is a differential seminorm.

Let us analyze this situation in more detail. For this, let T2 denote the map
B — £*(N) defined by TB(z); = ||pr(z)||p. One has TB(zy) < T?(z)T3(y). Given
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a linear map ¢ : A — B, the norm curvature of ¢ is the function 7 of two variables
with values in £2(N) defined by 7(z, y) = TB(p(2))T2(¢(y)) — T2 (p(zy)). We have

4.1 PROPOSITION. Assume that the restriction of || ||p to By is equivalent to a
C*-norm and that py o ¢ is continuous. Then Ti(z) = ||pi(¢(z))|lB, i = 0, gives a
differential seminorm on U if and only if the norm curvature of ¢ Is positive, i.e. takes

values in £} (N).

Proof.

Y. BTG -Te(zy) = Y Ilpile(=)lizlpi (e@)ls - lip(e(zy)iin = 7(z.3).

t§ =k i+i=k
]

‘We will now show that every differential seminorm arises that way. In fact, we will
prove mmuch; more precise results. For this , we use the free graded algebra G2 over the
veetor space U and various quotients of it. By definition, G2 is the universal algebra
gencrated Dy symbols d*(z), = € 9, of degree k, that are linear in z with no further
relations. For a fixed multiindex (4y,da, .. ., 9 ), the subspace of type (i1,42,...,8) is
the subspace generated by all clements of the form d*:(zy)d'2(z2)...d"* (). Then
(A is the direct sum of subspaces of different types. Iivery differential seminorm 7" on
2l induces naturally an algebra seminorm T® on G% (the projective tensor product

seminorin) defined by
T9(w) = int {30 T, (1) Tia(02) .- T (@) | w = Y d(@1)d(z2) .. d™(za)}

4.2 ProrosITION. Let T be any differential seminorm of order n on % for which
Ty is equivalent to the C*-seminorm of %. There exists a graded Banach algebra B,
with By C*-equivalent, and a linear map ¢ : U — B such that

(a) ¢ has positive norm curvature and pg o ¢ is a continuous *-homomorphism

{b) Ti(z) = lip:(p(z))|lp for all i 2 0.

Proof. Yor B, we take a certain guotient of the algebra GU. We divide G2 by
the relations d%(zy) — d%(z)d%(y), =,y € A and by the ideal of elements of degree
= n+ 1. On this quotient we define a submultiplicative seminorm o as the quotient

seminorm for 7¥. Thus

o(w) = inf{z Tiy(21) Ty (22) ... T () [w = 3 d (22)d"(22) .. .d‘*(zk)}

where = means equality in the quotient,
1<k < nand wis equivalent to d*(z) in G, then w = d*(z) + R, where

3

R is a sum of clements in subspaces of type (i3, 42, . .., 1), with at least one i; equal
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to 0 or with ¢y + i3 + --- 4+ ¢ = n + 1. This shows that the inf in the definition for
o(d*(z)) is attained with Ty(z) and thus that o(d*(z)) = Ti(z). If w is equivalent
to d°(z), then w = Ro + Ry, where Ry is in the subspace K consisting of sums of
elements of type (i1,13,...,4) with all i; = 0, while R, is a sum of elements of type
(31,42...,1¢) with at least one ¢; > 1. The multiplication map m : K — 2, K
equipped with T®, 2 equipped with Tp, is norm decreasing and m(Ry) = z. This
shows that also o(d°(z)) = To(z). Now, we further divide by the null space of o and
take for B the completion of this quotient, with the norm || ||p induced by o. Note
that By is isomorphic to the Ty-completion of . Also, all the quotients respect the
graded structure.

The linear map ¢ = e : 2 — B, defined by e = d® + d' +--- + d" (recall that
d’ means the symbol and not the i-th power of d) has all the required properties. Wl

4.3 DEFINITION. Let T be a differential seminorm of order n on U. We say that
T is flat if T can realized as T;(z) = ||pi(¢(2))|lB, ¢ > 0, for a *-homomorphism
¢ : A — B (curvature 0) from 2 into a graded algebra B equipped with an algebra
seminorm || ||B.

We say that T is almost flat if T can be realized as T;(z) = ||pi(¢(z))||B, i > 0,
for a x-linear map ¢ : A — B from 2 into a graded seminormed algebra B such that
Pe(p(zy) — p(z)p(y)) =0 for k< m, z,y € A

REMARK. A neccesary condition for a differential seminorm T to be flat is that

T: (za:zaya> <) T@Tj (;3701@3/&)

i+j=k
where T; ® T; is the projective tensor seminorm on 2 @ 2 defined by T; and 7j.
Another neccesary condition will be given in 4.7.
We now show that flat differential norms are induced by the powers of a derivation
of a normed algebra D containing 2.

4.4 THEOREM. Let T be differential seminorm of order n on Y. The following
are equivalent: .

(a) T is flat.

(b) The quotient seminorm for T® in the quotient D of G takes the value
Ti(z) on d¥(z).

(c) There is a seminormed algebra D, that contains % in such a way that the
restriction of the seminorm || ||p of D to 2 is Ty, and a derivation § of D, such that
Ti(2) = 75 @llo, = €.

Proof. (a)=>(b): If T is realized by a homomorphism ¢ from 2 into a graded
seminormed algebra B, then, by the universal property of D2, ¢ factors through
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e? : U — DU and Jjpr(z)||s = Ti(z). On the other hand, by construction, the
quotiens seminorm for T® in D necessarily majorizes any algebra seminorm || |}’ on

D% for which ||d*(z)||' = Ti(z), 0K k< n.

(b):5(c): We may take D2 equipped with the quotient seminorm of T® for D,
together with the universal derivation d of D.

{c)=>(a): From D, we construct the graded seminormed algebra B = D& D ®
--+@& D (n times), with convolution product and with ||z||s = E llpi(z)|lp- One has

Ti(2) = lpr(e’(@))|lp (with ¢f = Y %5‘ :A— B, §:%— B). =

REMARK. In 4.4 (c), the derivation 6 can be chosen closable if and only if T' is

closable.

4.5 ProOPOSITION. Every differential seminorm T of finite order majorizes a
unique maximal flat differential seminorm S.

Proof. Let o be the quotient seminorm for T® in D and set Si(z) = o(d*(z)).
[

Flat differential seminorms on 9 correspond exactly to certain submultiplicative
seminorms on DU.

We say that two differential seminorms of order n are equivalent if they have
equivalent total seminorms. Replacing T with an equivalent seminorm, we arrive at
a considerable strengthening of 4.2.

4.6 TurorREM. Every differential seminorm of order n is equivalent to an almost

flat differential seminorm of order n.

Proof. Given such a differential seminorm T, let S, = To+T1+- - -+T%. Thisisan
equivalent differential seminorm. Since S, is the total seminorm of T', any differential
seminorm $ of order n with S}, = S, and S} < Sk, k < n, will still be equivalent
to 7. On G4l we define the seminorm $® as above. Consider its quotient seminorm
il in the quotient B by the relations d*(zy) = Z di(z)d’ (y) where k < n — 1.

4k
If w € GU is equivalent to d"(z) modulo the ideal generated by these relations, then

w = d*(z) + R with R an element in the sum of subspaces of type (i1, 13, ..., %) with
at least one {5 € n = 1, so that the inf in the definition of the quotient seminorm is
attained with 1 = 0 and |}d”(z)}lp = Sn(z). As linear map A — B we take of course
the composition @ of d® 4 d! + .-+ d* : A — G with the quotient map G2 — B.
One has pi(¢(zy) — @(2)e(y)) = d*(zy) - z di(z)d’(y) =0in Bfor k < n—1
i+i=k
and Su(a) = ()5 = Ipale(@)lls. Put Sy(z) = [d*(z)la. S has the required
properties. |
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If T is flat, then the logarithmic order of T does not contribute essentially to the
growth of T on products.

4.7 PROPOSITION. If T is a flat differential seminorm of order n, then the total
order of T is < n.

Proof. Let T be given by T;(z) = ;,17”6"(12)”1_) asin 4.4 (c) and let To = C|| ||. We
say that {iy,...,i,} is a partition of the natural number k if 0 < ij<kandij+---+
+i, = k. With this notation, one has for each sequence {z;} in 2 and for natural
numbers s and k with s > k,

6k(1!1$2 e z,) =

= Z .. .z;o6j‘(a:;°+1)x;,,+g .. .z,'°+.-,+16j’(x.-o+,-,+2) AL (Tozin)Ts—ip41 .- Ts

where the sum is taken over all partitions {ji,...,jx} of k with j; > 1 and over all
partitions {ip,...,ix} of s — k. If ||z,|| < 1, for all 5, and if {T'(z,)} is bounded by
R € £4(N), then

"6"(.’01.’52 e I,)”D £ Z Ck.HleRj, .. .Rj,, S Ck+1sk(Rk)k

since there are < s* partitions {4o,...,4} of s — k. The assertion follows since
lI16¥(z)|lp = O for k > n. [ ]

This shows that the differential seminorms in 3.15 and 3.16 are not flat. We end
this section with a construction of (presumably non-flat) differential seminorms from
filtered structures.

4.8 PROPOSITION. Let B be a Banach x-algebra and J a closed ideal in B
such that B/J is a C*-algebra with the quotient norm. Let % be an involutive
subalgebra of B and denote the quotient norm in B/J* by || ||s«. Then Ti(z) :=

= ||z||l7 + |z]|s2 + - - -+ ||z|| sx+2, k < n, defines a differential seminorm of order n on

A

Proof. Let =,y € 2 and choose zg, yo such that z — 29 € J, y — yo € J and such
that ||zo||, ||lyo|| approximate ||z]|; and ||y||s respectively. Choose further rq,...,r,
and si, ..., 5, with r;,s; € J7 such that |[zg||, zx = zo + 71 + - - - + ri, approximates

[|lz]| sx+2 for each k, while ||yx|l, yx = yo + 81 + - - - + s&, approximates ||y||;x+: and
such that z — z, y — yx € J¥*1. Now modulo J*+1

.

(otri+--+re)(vo+si+--+sk) = zo(yo+si+---+se)+ri(yo+s+- - +se-1)+

+ra(go+ o1+t s-2) +oH o= Y (@i — Tica)yj
i+i=k
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where z..; = 0. Putting 4}(2) = |lz}|ss+1, ||2i|ls»+: approximates Ti(z) for i < k and
it follows that
Tx(zy) = [lzyllsesr = (o +ri4+ -+ r)wo+ 514+ skl €
< Y E@G@) + ha@hg +e= Y TG+ Y, T@)@) +e
idjok t4i=k i+j=k~-1
whence the assertion. |

5. DERIVED SEMINORMS

We now introduce derived norms as quotient norms for differential seminorms.
The analog of this idea in the commutative case would be the following. Consider
a compact space X equipped with an algebra of functions (“coordinate functions”).
One would then take all embeddings of X as a closed subspace of a compact manifold
Y and demand that differentiable functions on X extend, for each such embedding,
to differentiable functions on Y if this is the case for all coordinate functions.

5.1 DEFINITION. Let 2 be a C*-normed algebra. We say that an algebra semi-
norm « on A is a derived seminorm (of order < k) if there is a surjective map
¥ : B — % of C*"-seminormed algebras and a differential seminorm 7' (of total order
< k) on B such that « is the quoticnt seminorm for Ty .

It is clear that B may be chosen to be a free algebra. In the case where % is
finitely gencrated, say with generators z3, ..., T, every derived norm on 2 is obtained
as a quotient seminorm for the total seminorm of a differential seminorm on the free
C"*-normed algebra F¢ on n generators zy,...,2, with only the relation ||z|| < C,
for some C > 0. In fact, any surjective morphism ¢ : B — 2 of C*-normed algebras
gives rise to a surjective morphism F¢ — B of C*-normed algebras for sufficicntly
large C.

An important immediate consequence of Definition 5.1 is the fact that a quotient
norm of a derived seminorm, in a quotient by an ideal that is closed for the C*-norm,
is again in the same class. In special cases, it can be shown that the quotient norm
of the total norm for a differential norm is again the total norm of a differential norm
(possibly of higher order). This holds, in particular, for differential seminorms of
order 1 and logarithmic order 1, using the estimnate in 3.14.

Another useful consequence of this definition is the fact that any derived norm o
on U extends to a derived norm on the completion U, of U with respect to . In fact,
if e is the quotient norm for T,y under the map 7 : B — U and Br is the completion
of B with respect to Tige, then 7 extends to a map By — U, of norm < 1, for which

@ is the quoticnt norm.
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The total order of a derived seminorm p does not seem to be necessarily finite.
However, p clearly still is analytic (the quotient norm of any analytic seminorm is
analytic) and remains analytic on the completion 2,. In particular, if in analogy
with the analysis after 3.10, we consider the ideal T = {z € ,|||z]| = 0} in %, then
Z is quasinilpotent: p(z") — 0 for all z € Z. Moreover 2, and %,/Z have the same
K-theory. The seminorm p is closable if and only if Z = {0}.

5.2 PROPOSITION. Let B be the C*-normed algebra with a derived seminorm p.
Let ¢ : A — B be a morphism of C*-normed algebras. Then o(z) = p(¢(z)) defines

a derived seminorm on .

Proof. Assume that p is the quotient seminorm for a total seminorm p’ on B’
under a surjective map 8 : B’ — B of C*-seminormed algebras. We use the fibered
product

AP B = {(a,b) € A® B'lp(a) = (b))
74

A is a quotient of this algebra under the C*-normed map 7 : (a,b) — a. On Ql@ B

74
there is a seminorm a defined by a((a, b)) = p/(b). The induced derived norm on A

is given by
o(z) = inf{a((z, y))le(z) = B(y)} = inf{p' (V)|B(y) = ()} = plp(z)). ®@

5.3 PROPOSITION. The sum of a finite family of derived seminorms is a derived
seminorm.

Proof. Assume that p; is the quotient seminorm for a total seminorm p! on B;
under surjective maps f; : B; — B of C*-seminormed algebras. We use again a fibered
product

D = P Bi = {(=:)|Bi(x:) = Bi(=5) Vi, 5}
Bi

Clearly a((z;)) = Z p'(z;) is the total seminorm of a differential seminorm on D.

i
The quotient seminorm under the natural map D — B is
o(z) = int {3 pi(@)lBi(zi) = 2} = 3" pilz)- =
5.4 PROPOSITION. Let § be a derivation of B and p a derived seminorm on B.

Then p+ po b is a derived seminorm on B.

Proof. Assume that p is a quotient seminorm for a total seminorm p’ on B’ under

a surjective map 8 : B’ — B of a C*-seminormed algebras and that p’ is associated
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with the differential seminorm 7' on B'. Let T; be the quotient seminorm for T} on B.
If 2,y are preimages of 6(z),6(y) in B, respectively, then

Ti(8(zy)) = Ti(e8(y) + 8(2)9) < T2y +2'y) € Y T(@)T(Y) + Ti(=')Tj(y)
i+i=k

whence
Tu((zy) < Y_ Ti(@)T;(5(2)) + Ti(6(=))T; (v)-
idg=h
Thus we define a new differential seminorm R on B’ setting Ri(z) = Ti(z) +
+Ti-1(8(2)). The total seminorm for R is p’ + p o § which induces p’ + po § as

a quotient seminorm. ]

Let 21 be a unital C*-normed algebra, T a differential seminorm of total order
€ kon U and 7 = Tioe its total seminorm. Assume that 2 is complete with re-

izn
spect to 7. Then, for each z = z* in U, limsup (%%%) < k whence, for all
”n
g > 0, 7(¢"**) < n**¢ for sufficiently large n. Fer sufficiently large t € Ry, ¢ =

=n+s nEN, 0<s <1, 77 = 7(e2%") € 7(e!”*)nk+e < KtF+e where K =
= sup{r{c”*)|0 € s < 1}. This estimate of course is still valid in any C*-normed

guotient of A and therefore also holds for derived seminorms.

6. ENVELOPING SMOOTH ALGEBRAS AND FUNCTIONAL CALCULUS

We first consider a class of C*-(semi)normed algebras that are closed under kolo-

morphic functional calculus.

6.1 DERINITION. An analytic algebra is a C*-seminormed algebra that is a Ba-
nach algebro with respect to an analytic (cf. Definition 3.11) algebra norm «.

The spectral radius with respect to o equals the spectral radius with respect
to the C*-scminorm. Also *-homomorphisms between analytic algebras are always
C*-seminorr) decreasing. In fact, if ¢ is such a homomorphism, then using 3.12

eI = lle("»il = r(2(@*y) < r@"'y) = vl = Iyl

where r denotes the spectral radius. The completion of a C*-normed algebra with
respect to a derived norm is analytic. If 2 is analytic with the algebra norm «, then
M () is anclytic with the algebra norm a((z;;)) = z afz;;).

iJ
Let ¥ be an analytic Banach algebra. We denote by P(2) the set of all  in
A that can be lifted under any surjective *-homoemorphism B — 2 between analytic
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algebras to an element z in B with ||z]] < 1. Clearly, P(2) contains the open unit
ball in A (with respect to the C*-seminorm) and is contained in the closed unit ball.
If A is a C*-algebra, then P(2) coincides with the closed unit ball in 2. In general,
one has P(A) = P(2A)* and P(2) - P(A) C P(%).

6.2 LEMMA. Let 2 be an analytic algebra. Then every element of % which is a
convex combination of unitaries in the augmented algebra 2 is in P(). If 2 is unital,
then P(2A) contains the set of all convex combinations of unitaries in .

Proof. Let m : B — 2 be a surjective *-homomorphism between analytic alge-
bras and # : B — 2 the canonical extension to the augmented algebras. It suffices
to show that any unitary u in 9 can be lifted to an element z with ||z]] < 1 in
B. The unitary w = u @ u* in My(2) is homotopic to 1, and can therefore, by a
standard argument using holomorphic functional calculus, be written as a product
of finitely many exponentials e'®*, k = 1,...,m, z; selfadjoint in Mg(il) (note that
the spectrum of any element in M2(§1) is equal to the spectrum with respect to the
C*-seminorm). If yj are selfadjoint lifts for z) in M2(B), and p = 1 & 0 in M,(B),
then z = pel¥1el¥a .. .ei¥mp € B satisfies #(z) = u and ||z|| = 1. The second assertion
follows from the fact that every unitary in a unital algebra 2 is a convex combination
of two unitaries in 2. [ ]

6.3 PROPOSITION. Let 2 be a C*-normed algebra which is a Banach algebra
with respect to a derived algebra norm a of order < k. Then for each sequence {z,}
which takes values in a finite subset F of P(2) and for alle > 0

Z a(z1z;. . .z,)s"(“‘) < 00

L]

Proof. Let a be the quotient norm for the total norm of a differential seminorm
T on B under a surjective map B — 2. Let F be a set of elements of || || < 1 that
lifts F and {&,} the corresponding lift for {z,}. The assertion follows from the fact
that li;n(Ttot(z”:l .. .:i:,)s"(""'ﬁ)) =0foreach § with0 < 6 < ¢. ]

Let now 2 be a C"-normed algebra which is also a Banach algebra with respect
to an algebra norm a. Note that, if % is C*-normed (not just C*-seminormed), then «
is necessarily closable. Let F be a finite subset of the closed unit ball (with respect to
the C*-norm) of A. If « is analytic and {z,} is a sequence in F, then Z AsT1Z2...2,

3
converges absolutely, with respect to «, for each sequence {A,} of complex numbers
for which the radius of convergence of Z As2° is > 1. This means that 2 is stable

8
under functional calculus for certain power series in finitely many non-commuting
variables.
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If & is a derived norm of order < k and F is contained in P(2), then
z/\u.a:lx;; ... %, converges absolutely, with respect to a, for each sequence {A,} in

8
C for which z [As]s¥+¢ < 00 for some ¢ > 0. This can, in particular, be applied

&
to the casc where the {A,} are the Fourier coefficients of a continuous function on
the n-torus T®. For simplicity, we treat only the case n = 1 explicitly. Let C*(S?)
denote the algebra of functions on ) that are k-times continuously differentiable and

CF+(S?) the algebra of continnous functions f on S* satisfying E 1£(s)]|s¥] < oc.
se€x
Let || file == [Lf®))] be the ordinary k-norm on C*(S) and || fil(k4ey+ = Z if(s)]|s|*t
s€l
the natural norm on C(*+)+(S1), Then

CH(S?) D C¥a*(S) 5 cHH(SY)

and {flle € 1fllg+e)+ < Cliflle41 for £ € CE+1(SY) and 0< € < % In fact, f(F)(2) =

= Z(is)kf(s)ei” implies ||fiix < {If]|z+, while, on the other hand
sel

Il = D 1R s+ = 3 1F(s)(is) 1517 < Clif(lk4

scl s€l

) ) . 1
by Canchy-Schwartz, where C is the £2-norm of {|s|*=1},ez in £2(Z) for 0 < e < 3
In the following, we think of functions on S* as periodic functions on R and identify

spaces such as CF(S1), C¥+(ST) with spaces of functions on the interval [, ].

6.4 ProrosITION. Let U be a unital C*-normed algebra which is complete with
respect to a derived norm « of order £ k.

(a) Let » = z* € Y. Then g(z) € U for each C¥**-function g on R. If (without
restriction of generality) [|z{] < =, then g(z) € U for each g € C*+IH(SY), ¢ > 0,
and the map from C:+)+(S?) to 2, sending g to g(x) is continuous with respect to
ex.

(b) Let 21,...,z, be a family of pairwise commuting selfadjoint clements in 2.
Then the elosed subalgebra of U generated by x4, . .., 2, contains all restrictions of CP-
functions on i€" to the joint spectrum of 2y, . .., z, for sufficiently large p (depending
on n). In particular, A is closed under functional calculus by C*®-functions for normal

olements.

Proof. (2} Assume that {[z]] < . Then g(z) = Zg’(s)ei’s and, for e > 0,
s€l

o{g(2)) € Y 1i()e(e™) < €Y 1A + Is1) == Cllgliceaeys

s€Z sel
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for some constant C > 0 depending on the one-point set F = {e*}.
(b) The argument is the same asin (a) using the finite set F = {ei®1,ei%3,, .. ei®}.
]

6.5 REMARK. (a) Results on invariance under functional calculus similar to those
of this section, but for special differential seminorms, appear already in [10], §3.

(b) If K C Ris compact and C®(R) denotes the C*-functions with support in K,
then the argument in 6.4 (a) shows that any derived norm of order < k on C(R) is
dominated on C (R) by C|| ||(x+¢)+ for sufficiently large C > 0 (take for z a function
with compact support such that z(¢) = ¢, for t € K).

(c) If under the hypotheses of 6.4, 2 is stable under functional calculus by the
square root function, then « is equivalent to the C*-norm, [6]. In particular, any
derived norm of order 0 on a unital C*-normed algebra is equivalent to the C*-norm
(also [9], Theorem 34.3). On non-unital algebras the situation is quite different. Take,
for instance, the Schatten ideal £P(H) of p-summable operators on the Hilbert space
H. On LP(H), Ti(z) = ||z||p defines a differential seminorm of logarithmic order
0. This suggests that the relevant notion of order is the order of an extension of a
differential seminorm to the augmented algebra.

6.6 DEFINITION. A smooth C*-normed algebra is a C*-normed algebra which is
a complete locally convex *-algebra with the topology given by the family of all its
closable derived norms.

If A is a C*-normed algebra, then its smooth envelope A is the projective limit
invlim®, taken over all closable derived norms o with arbitrary order (recall that
the cferived norms form a directed set by 5.3), where 2, denotes the completion of 2
with respect to a.

Every smooth algebra 2 is naturally a dense subalgebra of a C*-algebra A. Ev-
ery completion of a C*-normed algebra with respect to a countable family of closable
derived seminorms is a smooth algebra (by the open mapping theorem, every clos-
able seminorm on this completion is continuous). If 2 has finitely many generators
zy,...,Zk, then the topology on A% is determined by a countable family of semi-
norms. In fact, we obtain such a countable family if, for each n,m, we take the
quotient norms, under the natural map F — 2, for the total norm of the sup of all
differential seminorms T of order n on the free *-algebra F on k generators z1, ...,z
such that Tiy(z;) < m, i =1,...,k, j =1,...,k. Thus, A is a Fréchet algebra in
this case.

It is an immediate consequence of Proposition 6.4 that smooth algebras are closed
under functional calculus by C*°-functions for normal elements and for finitely gener-
ated abelian *-subalgebras.
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6.7 ProrosITION. Let U be C*-normed. There are natural C*-norms on the
unitification 2 and the algebra of matrices M, (). If J is a closed x-ideal in the C*-
-completion A of 2, then there are natural C*-norms on J N and A/(J NA). With
these norms one has

(2) o

AMUZAU AMp(A) = M (AY)

In particular, A and M, (DY) are smooth algebras.
(b) If 2 is a smooth algebra, then JN2 is a dense subalgebra of J and /(J NA)
is a smooth algebra. If 2 is metrizable then J N is a smooth algebra.

Proof. (a) All derived norms on 2 extend to derived norms (of higher order) on
2 and on M,,(2) by 3.4. These norms are closable if the original norms are, since the
completion of 2 with respect to such a norm is C*-normed (not just seminormed) if
and only if the norm is closable.

(b) The quotient 2/(J NA) is a smooth algebra since every derived norm on 2
induces a derived norm on the quotient. Let us show that J N2 is dense in J. Let
z=2z"€ Jand e > 0. Choose y == y* € A with ||z — y|| < g and let f € CP(R)

with f(t) = 0 for [t| < % and [f(¥) —t]| < 2% for all t in the spectrum of y. Then

1f(y) —yll < 23—6, so ||[f(y) —z]| <€, and f(y) € Aby 6.4. If 7 : A — A/J is the

. €
quotient map, then [lr(y)]| = lIn(y — =) < lly = = < 5, 0 7(fW)) = Fx(x)) = O,
whence f(y) € J. Since every closable seminorm on J N2 is continuous by the closed
graph theorem, if 2 is metrizable, it follows that J N is a smooth algebra. a

Smooth algebras share many properties with C*-algebras.

6.8 PROPOSITION. Let ¢ : 2 — B be a *-homomorphism between smooth alge-
bras. Then

(a) ¥ is norm-decreasing for the C*-norm.

(b) For any closable derived seminorm p on B, poy is a closable derived seminorm
on 2.

(¢c) v is continuous for the smooth structure.

(d) If ¢ is injective, then ¢ is isometric for the C*-norm.

(e) (™) is a smooth algebra (if ¢ is not necessarily injective).

Proof. (a) This follows already from the fact that 2 and B are analytic.

(b) By 5.2, combined with (a), p o ¢ is a derived norm. Let us show that po ¢
is also closable. If (zn) is a p o p-Cauchy sequence, then (p(zn)) is a p-Cauchy
sequence. If ||¢o(zn)|| — 0, then p o p(z,) — 0, since p is closable. Thus ||z,|| — 0
implies p o p{x,) — 0, showing that p o ¢ is closable.
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(c) follows from (b).

(d) ¢ extends to a *-homomorphism @ : A — B between the C*-completions. If
J is the kernel of @, then, by 6.7 (b), J N2 is dense in J. Therefore, if ¢ is injective,
J = {0}. Thus @ is isometric for the C*-norm.

(e) follows from (a) and (d) together with 6.7 (b). ‘ |

6.9 EXAMPLE As an application, we prove two results on cyclic cocycles. The
existence of the map K;(A) — C in (a) is due to Connes.

(a) ([3, Theorem 2.7]) Let 7 be an n-trace (in the sense of (3]) on the C*-normed
algebra . Then 7 extends canonically to a continuous cyclic cocycle on A, and

defines a map K;(A) — C, where A is the C*-completion of 2% and i = n mod 2.

(b) Let 7 be a cyclic cocycle of dimension 2n on the smooth algebra 2, which
is positive in the sense that it is the 2n-dimensional character of a positive trace on
(qU)2" (cf. [5]). Then 7 is continuous for the smooth structure on 2.

Proof. (a) By definition, an n-trace 7 can be viewed as a closed trace on 2"
such that

|T((z1day)(z2daz) . .. (zndan))| < Cllzi|l - .- [|2nll, 21,.--,2n €U

for each fixed n-tuple a;,...,a, in A with a constant C depending on this n-tuple.
For a € 2 and ay, ..., a, fixed, let p(a) denote the smallest such constant for a; = a.
Then p is clearly the degree 1 part of a differential seminorm on 2. One easily checks
that it is closable. Thus 7 can be extended by continuity successively, for j < n, to
define 7((x1da1)(z2das) . .. (znda,)) with a1,...,a; in A. The map K;( %) — K;(A)
induced by the inclusion is an isomorphism.

(b) By [5, Th. 15] there exists a pair of morphisms =, # of 2 into a semifinite
von Neumann algebra N with a semifinite trace T such that gz = 7(z) — #(z) is in
the ideal L2*(N) N N of 2n-summable operators in N, for all z € 2 and such that
(20, %1,...,220) = T(72ogz1...qZ2,). Now, Ro(z) = ||z||, Ri(z) = |lgz|[2n is a
differential seminorm on . It is closable since, if £, — 0 in C*-norm and ¢z, — z in
L?™N, then z = 0. [ ]

Note, that in (a), we do not really need the closability of the differential semi-
norms associated with 7 in order to prove the existence of the map K;(A) — C. In
fact, if 2 denotes the completion of 2% with respect to all, not necessarily closable,
differential seminorms then K;(2) — K;(A) is an isomorphism, too.
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7. FLAT DERIVED NORMS

Let 2 be a C*-normed algebra and let D% be defined as in sections 2 and 4.
As above let also p; be the projection of D onto its degree k part D*?. A semi-
norm o on D is called C*-graded if a(pr(z)) < a(z) for all z and all k, and if its
restriction to D° 2 9 is bounded by C|| ||, for some C > 0. We make D into a
locally convex algebra, with topology defined by the family of all C*-graded algebra
seminorms. (Another natural choice for the topology of D, which may be better
suited in certain contexts, would be to take all algebra seminorms which are induced
by *-homomorphisms from D2 into some C*-algebra). Denote by D the completion
of D in this structure and by D<*9 the quotient of DU by the ideal of elements of
degree > k + 1 (note that D is still graded with continuous projections pi). The
homomorphism ¢ = e? : A — D$*Y is well defined.

Finally, we write 2y, for the closure of ¢(2) in DS*9. Thus, U is the completion
of % with respect to all flat (not necessarily closable) differential seminorms of order
k. A C*-graded algebra seminorm on D<*% induces a closable differential seminorm
on 2 if and only if the closure of () in DS*¥Y has trivial intersection with the
completion 3DS*YU of GDS*Y,

REMARK. Let 3 be a C*-graded algebra seminorm on D2, T the differential
sermninorm on 2 induced by £, and «(z) = f(e?(z)), z € U. Then « is equivalent to
Tior. In fact,

(%) Y. Bpi(2)) < a(z) < Y Alpi(2)) = Tho(e)

1<k 1<k
7.1 DEFINITION. We denote by C*2 the quotient /(A N IDSFYA). Thus CFA
is naturally a subalgebra of the C*-completion C°% of 2.

By 6.4, C*? is closed under functional calculus by C(¥+)*_functions for self-
-adjoint clements.

7.2 PrOPOSITION. Let 7 : 24 — B be a surjective morphism of C*-normed
algebras and o a C*-graded algebra seminorm on DU. Then the quotient seminorm
& defined on DB by the induced surjective map Dr : DU — DB is again C*-graded.

Proof. We have, for z € DB,
a(pr(z)) = inf{a(2)|Dn(2) = pr(z)} = inf{a(pr(2))|D7(z) = pr(z)} =

= inf{a(pr(2))|Dn(z) = z} € inf{a(2)|Dn(z) = z} = &(z). |
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7.3 ProprosITION. Let # : A — B be a surjective morphism of C*-normed
algebras. Then w induces a surjective map D : DA — DB and a continuous map

C*U — C*B for each k.

Proof. Every morphism of C*-normed algebras = extends to a continuous map
DU — DB since every C*-graded algebra seminorm p on DB induces a C*-graded
algebra seminorm p on D via p(z) = p(Dn(z)). If = is surjective, the map is
surjective by 7.2. Finally, D7 maps 2 into By and 8DS*9 into 8D<*B, whence the
proposition. |

7.4 PROPOSITION. Let § be a closable derivation of the C*-normed algebra .
Then, for each k, § extends to a continuous derivation C*+19 — C*%.

Proof. For each flat differential seminorm T of order k on 2, there is a flat
differential seminorm S of order k + 1 and a constant C' > 0, such that T;(6(z)) <
CSiti(z) for 0 < i < k. In fact, § induces a derivation, still denoted by 6, of
D2 that commutes with d. If T is induced by the algebra seminorm a on D%,
we may use the homomorphism D% — D% that sends dz to (d + §)(z) and take
Si(z) = a (1,1-,(4+ 5)‘(:)).

Thus, the map sending z +dz +d?z+---+d*+'z to bz +dbz+- - -+ d* 6z extends
to a continuous map (still denoted by §) x4y — Ax. If w € Wiy NODSEHY then
there is a sequence {2,} in U such that z, — 0 for the C*-norm of 2, while dz, — w!,
where w! is the degree 1 part of w. Now, 6z, converges in 2 to the degree 0 part of

8(w). On the other hand, if the original § is closable, then this limit has to be 0, so
that §(w) € DSFY. [ |

REMARK. We also have M, (C*2) = C*(M,,(2)). In fact, there is a natural map
DM, () — M, (D) sending d(m ® z) to m®@ dz, m € M,,, z € U. It extends by
continuity to a map DM, (%) — M. (DY) mapping C*(M,(2)) into M, (C*(). Since
the restriction of this map to C*% is an isomorphism, the assertion follows. We also
have C*9l = CF9 by a similar argument.
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