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1. INTRODUCTION

In recent years, coordinate representations for operator algebras have played an
important role in their analysis. When they are used, it is often useful to know
whether they are essential for the problem at hand or whether their intervention is
an artifact of poorly conceived proofs. The purpose of this paper is to prove two
theorems that will help assist in this determination.

The first theorem asserts that if B is a C*-algebra admitting a diagonal D in
the sense of Kumjian [6], then B is nuclear if and only if the so-called T-groupoid
associated with B (i.e. the coordinate representation of B) is measurewise amenable
in the sense of Renault [16]. This assertion is analogous to the well known fact from
the theory of group C‘-algebi'as that a group is amenable if and only if its group
C*-algebra is nuclear. One direction of the implication is contained, essentially, in
[16], and the other will be seen to be a corollary of the famous theorem of Connes,
Feldman and Weiss [2]. It clears up, in the case of r-discrete principal groupoids,
some questions raised in Section II.3 of [16].

The second theorem is a generalization to T-groupoids of the so-called Spectral
Theorem for Bimodules proved in [9]. This theorem asserts that if 9 is a norm-
-closed subspace of B that is a bimodule over D in the sense that d -9t and I - d
are contained in M for all d in D, then <M may be parametrized in terms of the same
coordinates that represent B provided they are measurewise amenable. Thus, taken
together, the two theorems assure us that when we wish to study (not necessarily
self-adjoint) subalgebras of B containing D, the coordinates used to describe B work
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equally well to describe the subalgebra, assuming that B is nuclear. As will be shown
elsewhere (see {10] and [8]), this leads to a number of theorems that may be stated
in a coordinate free fashion but whose proofs seem to require coordinates in essential

ways.

2. PRELIMINARIES

In order to avoid any confusion in the sequel, we want to emphasize here that
unless specified to the contrary, all of our C*-algebras and Hilbert spaces are assumed
to be separable and all of our topological spaces are assumed to be Hausdorff and
second countable. We follow the notation and terminology of Renault [16,17] and
Kumjian [6], but with some minor modifications which we now set forth.

First of all, we recall that to say that a unital C*-algebra B has a diagonal D
in the sense of Kumjian means that D is an abelian subalgebra of B containing the
unit of B and that there is a faithful expectation P from B onto D with the property
that the kernel of P is the (closed) span of the so-called free normalizers of D in B. A
normalizer of D in B is an element ¢ such that both aDa* and a* Da are contained in
D. These are denoted N(D). A normalizer of D in B is called free if its square is zero.
These are denoted N;(D). The example one should keep in mind is the setting where
B is the algebra of n x » matrices over C, and D is the algebra of diagonal matrices.
Then P is the map that replaces all the off-diagonal entries of a matrix with zeros,
typical elements of N(D) are (scalar multiples of) matrix units, and typical elements
of Ny (D) are (scalar multiples of) rmatrix units that arc not in D.

If B is not unital and D is an abelian subalgebra of B, then D will be called a
diagonal in B if after a unit is adjoined to B and 1D, D (with the unit) is a diagonal
in B (with the unit) in the sense just defined. In this paper, units play no special
role, and we will not assume that they exist.

We note in passing that in Proposition 1.4 of [6], it is shown that a diagonal in
a C”-algebra is maximal abelian.

We let X denote the maximal ideal space of D. By theorem 3.1 of [6), there is
an r-discrete principal groupoid ¢ with the unit space G{®) homeomorphic to X and
a T-groupoid E over G such that B is isomorphic to C7 ,(G; E) with D being sent
to C’g(G(o)). To describe these notions in a bit greater detail, we recall that to say
that G is an r-discrete principal groupoid with unit space X is to say that G may
be viewed as an equivalence relation contained in X x X with the property that the
equivalence class (or orbit) of each point in X is countable. Furthermore, G carries
its own, locally compact Hausdorff topology, which may be different from the relative
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topology inherited from X x X, making G a topological groupoid in the sense of [16]
and such that the map r: G — X, defined by r(z,y) = z, is open. It follows from this
assumption that counting measure, A%, on each of the sets G*: = r~1(z),z € X, is a
Haar system, {A"};ex, in the sense of [16]. To say that E is a T-groupoid over G may
be described in a number of equivalent ways. Perhaps the most congenial is to say
that E is a locally compact groupoid with unit space (homeomorphic to) X having the
structure of a principal T-bundle over G such that for ¢; and 3 in T and v; and 72 in
E, with (11,72) € E®), (t171,t272) also lies in E®) with (t171)(t272) = (t1t2)(1172)
and such that every 7, with (y) = s(y) = u € E®(~ X), can be written as ¢ - u for
some t in T. That is, the isotropy group bundle of E is naturally isomorphic to T x X
and G is the principal groupoid associated with E. We write j for the quotient map
from E onto G, i.e., j(v) = (r(7),s(7)). It will often be convenient to abbreviate j(v)
by 7. '

Let C¢(G; E) be the space of compactly supported continuous functions f on E
with the property that f(ty) = tf(y) for all ¥ in E. Then with the inductive limit
topology and operations defined by the formulae

fro(a) = / F(B)9(B ) AX(@)(g)

and

) =16,
Cc(G; E) becomes a topological *-algebra. By a representation of Cc(G; E) we
mean a non-degenerate *-homomorphism from C¢(G; E) into the algebra L(H) of
all bounded linear operators on the (complex) Hilbert space H that is continuous

when L(M) is given the weak operator topology. It is proved in [17] that the quantity
|| £]] defined by the formula

17t = sup{||=(f)|| | * — a representation}

is finite and defines a C*-norm on C¢(G; E). The completion of C¢(G; E) in this
norm, then, is a C*-algebra denoted C*(G; E).

Whenever it is convenient, we will identify X with G(®), which is the diagonal
A C X x X, or with E(®, so that Co(X) sits inside C*(G; E) in a natural way
which, however, is not as Co(E(?)). Recall that each v in j7(G(®) can be written
uniquely as ¢ - u for some u € E(®. So given f € Cy(X) we identify f with the
function f € Co(j~1(G®)) given by the formula f(t - u) = ¢ - f(u), where in the
right hand product, of course, the product is the product of the numbers ¢ and f(u)
and we are thinking of u as an element of X. Extending f to be zero off the clopen
set j"l(G(o)) yields a function, also denoted f, on E that represents an element in



316 PAUL S. MUHLY, CHAOXIN QIU and BARUCH SOLEL

C*(G; E). Actually, the fact that f represents an element in C* (G} E) requires a brief
check. If f € C¢(X), then f € C¢(G; E) and from Renault’s Disintegration Theorem,
it follows that the C*-norm of f is the sup-norm of f. Since any f in Co(X) is the
sup-norm limit of functions in C'¢(X), our assertions follows.

In general, the C*-algebra 8 is not isomorphic to C*(G; E), but only to a quo-
tient, C},,(G; E), of C*(G; E) determined by the common kernel of all the represen-
tations {Inde;}sex, where Inde, will be defined in a moment. This is Kumjian’s
representation theorem, Theorem 3.1 of [6]. We will show as a consequence of Theo-
rem I that if B is nuclear then, in fact, C}4(G; F) = C*(G; E).

It will be helpfull to have at our disposal some facts about representations of
groupoids and groupoid C*-algebras. The key theorem is Renault’s Disintegration
Theorem [17, Théoréme 4.1] which asserts that every representation of C¢(G; E) can
be written as the integrated form of a representation of {G, E). To explain this, we
follow the notation of [16,17] specialized to our special setting. We let X * denote a

)
(Borel) Hilbert bundle over X and we let / ‘H(z)dp(z) denote the direct integral, or
cross sectional L2-space of X *H associate:i\’ with a measure g o; X. (Throughout, our
measures will always be Radon measures.) Thus elements of / H(z) dp(z) are Borel
cross sections £: X — X x N such that the function z — H{()z()un(x) is in L?(p) and
]
the norm of £ in /'H(:c) dp(z) is the L?-norm of & — ||()||#(z). The isomorphism

X
groupoid of X »H, Iso (X *H), is the collection
{Uz.y: H(y) = H(2) | Us,y is a Hilbert space isomorphism}

endowed with its natural Borel structure. A representation of (G, E) on X xH consists
of a pair (g, L) where p is a quasi-invariant measure on X in the sense of Renault [16]
and where /, is a Borel homomorphism from E into Iso{X * H) such that

(1) L(7):H(s(v)) = H(r()), for all v in E;

(2) Lz} = Iy, for all 2 in X = EY;

(3) L(ty) =1t -L(y), forall 7 in ¥ and ¢ in T.
(Thanks to Theorem 3.2 in [15], one does not need to use the weaker definition given
in [16,17], where certain null sets intrude.) Given a representation (g, L) of (G, E),
form v = [ A% dp(z), let v~! be the image of » under the map ¥ — y~! on G, and

let A = dv/dv=1!, chosen to be a homomorphism from G into R*. This may be done

by the assumption that p is quasi-invariant and Ramsay’s theorem just cited. Then
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D
for fin Cc(G;E)and €, p € /H(z) dyu(z), the formula
X

(2.) (&) = [ FDEMEGD,n(r() da(3),
G

where vo: = A~Y/2y, defines a representation, , of C¢(G; E) on /'H(z) du(z). We

call 7 the integrated form of (i, L). (Note that the transformati)gn properties of f
and L imply that the integrated in equation (2.1) is invariant under the action of T
and so is, really, a function on G.) Renault’s Disintegration Thorem, Théoréme 4.1
of [17] says, conversely, that every representation of Cc(G; E) is the integrand form
of some representation of (G; E).

It is evident from Renault’s Disintegration Theorem that a representation n of
Cc¢(G; FE) may be extended to the space, B¢(G; E), consisting of all bounded Borel
functions f with compact support on E such that f(ty) =tf(y) foralltin T and v
in E. It is easy to see that B¢(G; E) is a *-algebra under the same operations used to
define Cc(G; E) and that the extension of 7 is a *-homomorphism that is continuous
with respect to the weak operator topology on the image of 7 and the "topology “ on
B¢ (G; E) defined by declaring that a sequence (fa)neN in Be(G; E) converges to f
in B¢ (G; E) if and only if f, — f pointwise boundedly and the supports of f and all
of the f,, are contained in some fixed compact set in E. Of course the weak closure
of #(Cc(G; E)) coincides with the weak closure of 7(B¢(G; E)).

The reason for bringing B¢ (G; F) into the discussion is that it is isomorphic
in an explicit useful way to the algebra B¢ (G, o) of bounded Borel functions with
compact support on G twisted by a 2-cocycle a. To develop this isomorphism, recall
that because our groupoids are locally compact and second countable, they are o-
-compact. Consequently, while there may not be a continuous cross section to the
quotient map j: E — G, there always exists a Borel cross section A with the property
that  maps compact sets in G to pre-compact sets in E. In fact, as is shown in [13],
one can arrange for A(z) = z for z in X and for A(y~1) = A(y)~1. We say that
such a cross section is normalized. It follows that the map ¢: T x G — E defined by
o(t,v) = tA(¥) is a Borel isomorphism between E and T x G when T x G is endowed
with the product (t3,%1) - (t2,92) = (t1t2 - ¢(¥1%2), ¥172) where o is the (necessarily
Borel) functlon on G defined by the formula

o(71,72) - A(F172) = A(1)A(Y2)-

The function o depends on the choice of A clearly, and is a Borel 2-cocycle in the
sense defined in [16]. (See [13] for a proof of the fact that & is a 2-cocycle.) The
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normalization condition implies that a(¥,4~!) = 1 for all ¥ € G. We fix A once and
for all. The space B¢(G, o) of compactly supported bounded Borel functions on G

becomes a *-algebra under the operations
£ra@) = [ Ha)aaoti, e dr0a),

=167,

where f and g are in B¢(G,0). (Note that the factor of o(7,7-1) that the normally
appears in the definition of f* is missing because of our normalization assumptions.)
The map 9: B¢(G; E) — B¢(G, o) defined by the formula ¢(f)(%) = f(A($)),7 €
€ G, is easily seen to be an algebra #-isomorphism with inverse given by the formula
S~ (v) = t(7) - F(§), where ¥ is in E and t(y) = v - A(3)~1, viewed as an element
of T.

Given a measure g on X, we can form a representation, which we denote by
o-Ind i, of B¢ (G, o) on the Hilbert space L?(G,v~*) by the formula

oI u(fE() = [ SGAEEo38, 67 ANEa),

f € B¢(G,0),€ € L3(G,v™1). It is an easy matter to check that the weak closure of
the image of B¢ (G; o) under o-Ind p is the von Neumann algebra M (G, o) of Felman
and Moore {3,4] when p is quasi-invariant. This follows essentialy from Proposition
11.1.10 of [16}. The map & extends to a Hilbert space isomorphism U: L*(G, E,v~1) —
— L3(G,v™?) such that

Ulnd p(f)U " = o-Ind p(9(f)),

for all f in Bc(G; E). Since the weak closure of Ind u(B¢(G; E)), coincides with the
weak closure of Ind u(Bc(G; E)), we may conclude that the following proposition has

been proved.

ProprosITION 2.1. With the notation just established, if p is a quasi-invariant
measure on X then the Hilbert space isomorphism U: L*(G, E,v~') — L%(G,v~1)
effects a spatial isomorphism between the weak closure of Ind u(C*(G; E)) and the
Feldman-Moore von Neumann algebra M(G, o) determined by p.

It will be useful to note that the analysis that went into the proof of Proposition
2.1 applies more generally than simply to induced representations.

DEFINITION 2.2. Let G and o be as above. A o-representation of G is a pair
(s, L) where s is a quasi-invariant measure on X and where L is a Borel map from G
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to Iso (X * H) for a suitable Hilbert bundle X * M such that L(y) is a Hilbert space
isomorphism from H(s(v)) onto H(r(y)) for all v in G, satisfying L(z) = In(s) for
z € X, and such that

L(a)L(B) = o(, B) - L(aB), (aB) € G

We note in pasing that the formulas in Definition 2.2 look slightly different from
those in [16], first because o is conjugated, and second because no null sets appear.
However, one should keep in mind that 7 is just as much a 2-cocycle as is ¢ and the
conjugate appears in our analysis as an artifact of the way we defined C¢(G; E), as can
be seen by reflecting on Proposition 11.1.22 in [16]. Note, too, that it is not necessary
to specify the condition L(y)~! = a(y71,9)- L(y™?!), as is done in [16] because of our
normalization assumption on A. The null sets disappear for o-representations for the
same reason, essentially, they disappear for representations; namely, Theorem 3.2 of
[15]). This will be clear in a moment.

Given a representation L of (G, E) on the Hilbert bundle X x H, define L:G—
— Iso (X * H) by the formula L(§) = L(A(7)). Then it is an easy calculation to
see that L is a o-representation of G and conversely, given a o-representation L
of G, setting L(7) = t(7) - L(A(%)), where t(y) is the unique element T such that
v = t(7)-A(%), yields a representation of (G, E). Moreover, if 7 is the integrated form
of L and if 7 is the integrated form of L, then 7(f) = #(8(f)), for f € B¢(G; E), as
the following calculation indicates

1N = [ 1L w3 =

= [ AL dvols) =
= [1OGNLAG) dnh) =

= [ (@B dn(h) =
= #((f).

This will prove useful in the next section.

3. NUCLEARITY vs. AMENABILTY

Of the many equivalent definitions of “nuclearity” (see [7}), the following is the
one that will be of use here: A C*-algebra A is nuclear if and only if 7(A)” is an
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injective von Neumann algebra for every representation 7 of A. There are essentialy
two different notions of amenability for an r-discrete principal groupoid G that we will
want to compare, measurewise amenability in the sense of Renault [16) and amenabi-
lity in the sense of Zimmer [19]. We will show that the two notions are equivalent
and that are equivalent to the assertion that C*(G;E) is nuclear. It follows that
C*(G; E) = Cred(G; E) if either algebra is nuclear. Thus expectations based on what
happens in the context of discrete groups are borne out. However, in the context of
groupoids, whether the equality of C*(G; E) and Cied(G; E) implies amenability of

G remains unsolved.

DEFINITION 3.1. 1) We say that a quasi-invariant measure s on G(°) is amenable
in the sense of Renault in case there is a sequence of functions in B¢ (G), {fn}nen,
such that

(i) the functions £ — / |£o]2dA® converge to 1 in the weak -topology on

L®(GO, ), and
(ii) the functions y — / Fn(v8) fa(B) d/\’('Y)(ﬂ) converge to 1 in the weak *-to-

logy on L®(G,v), where v = [ A% dp(z). If every quasi-invariant measure on GO
is amenable in the sense of Renault, we say that G is measurewise amenable in the
sense of Renault.

2) We say that a quasi-invariant measure p on G(®) is amenable in the sense of
Zimmer in case there is a positive, unital, linear map M: L®(G,v) — L®(G©), p),
called an invariant mean on L°°(G, v), such that

(i) M(h-p) = h- M(p), for p € L®(G,v) and h € Bc(G(®), where h - p(y) =
= h(r(7))¢(7), and °
(it) M(f - @) = - M(p), for ¢ € L=(G, i) and f € Bc(G), where

£-0) = [ FO)p(8 M)A E(p),
and where, for ¥ € L=(G(®, u),
£-9@) = [ 106 - ¥ (0.
If every quasi-invariant measure on G{9 is amenable in the sense of Zimmer, we say

that (7 is measurewise amenable in the sense of Zimmer.

Several remarks need to be made here. First, in [16], Renault restricts his at-
tention to functions in C¢(G) in the definition of amenability. However, this is not
a material restriction since every function in B¢ (G) is the bounded pointwise limit
on its support of a sequence in C¢:(G) with supports contained in a suitable pre-
scribed compact set containing the support of the limit function. Second, since our
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groupoids are second countable, we may use sequences in the definitions instead of
nets, as used by Renault. Third, as Renault points out in Remark 11.3.5. of [16], if
a quasi-invariant measure is amenable in the sense of Renault, then it is amenable in

the sense of Zimmer and he asks about the reverse implication.

PROPOSITION 3.2. If i is a quasi-invariant measure on G(®) that is amenable in
the sense of Zimmer, then p is amenable in the sense of Renault.

Proof. Since G is second countable, so is X = G(%). Hence in the Borel category,
X is a standard Borel space and G is a Borel equivalence relation in X x X with
countable equivalence classes, which, together with g becomes a measured equivalence
relation in the sense of Feldman and Moore [3,4]. Our hypothesis on u together with
the famous theorem of Connes, Feldman and Weiss [9] implies that there is a standard
Borel measure space (X, jt) carrying a non-singular measurable transformation 7 such
that G is Borel isomorphic to the orbit equivalence relation R determined by 7. A
bit more precisely, there is a co-null Borel set F in X for 1 and a Borel isomorphism
¢: F — X carrying p to ji such that ¢(2) mapping F x F to X x X carries Glr:=
= GNF xF to R, where ¥(z,y) = (p(z),(y)). But as is well known, we
may assume that X actually is locally compact and second countable and that = is a
homeomorphism. (This assertion is quite old and “lost in antiquity”. Ramsay’s paper
[15] contains it in the discussion of universal G spaces on page 321. However, in the
setting of a single non-singular measurable transformation 7, all one needs to do is
to choose a separable T-invariant C*-subalgebra of L*(ji) which separates the points
of X. Then one can replace X by the maximal ideal space of this subalgebra and
one can replace 7 by the induced homeomorphism.) Thus R is an r-discrete principle
groupoid of the type we are discussing. Since fi is easily seen to be amenable in the
sense of Renault, either directly or by Proposition I1.3.9 in [16], it follows that so is
I ]

By virtue of Proposition 3.2, we will drop the qualifying phrases “in the sense of
Renault” and “in the sense of Zimmer” when referring to amenable quasi-invariant
measures and measurewise amenable groupoids.

THEOREM 3.3. Suppose that E is a T-groupoid over an r-discrete principal
groupoid G. Then the following assertions are equivalent,.

1) C*(G; E) is nuclear;

2) C.4(G; E) is nuclear; and

3) G is measurewise amenable.

Proof. Suppose G is measurewise amenable. To show that C*(G; E) is nuclear,
we need to show that if 7 is a representation of C*(G;E), then wn(C*(G;E))" is
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an injective von Neumann algebra. However, the analysis that follows Definition
2.2 shows that if 7 is the integrated form of the representation L of (G, H), then
7(C*(G; E))" = #(Bc(G, o))’ where 7 is the integrated form of the o-representation
I associzted with L. By Proposition 11.3.5 of (16}, #(Bc(G,a))" is injective. Thus,
as it is well known (see [7]), C*(G; E) is nuclear. (We note in passing that Renault
uses continuous 2-cocycles and works in the context of C¢(G, 7), but inspection of the
proof of Proposition II.3.5 in [16] reveals that this assumption is not at all necessary
and the argument works in the more general context under consideration.)

Since C} 4(G; E) is a quotient of C*(G; E), the nuclearity of C*(G; E) implies
that for C}4(G; E). So to complete the proof, we need to show that if C%4(G; E) is
nuclear and if g is a quasi-invariant meaure on X, thelzb 4t is amenable. It is easy to

see that Ind u is the direct integral of Indez, Indp = / Inde, dp(z). Consequently,

X
Ind 4(C*(G; E))" = Indp(Cr4(G; E))”. By Proposition 2.1, this is the Feldman-
Moore von Neumann algebra, M((F, o) associated with y. Since C},4(G; E) is assumed
to be nuclear, M(G, ) is injective and is therefore the range of projection of norm

one on L(L3(G,v~1)). By Proposition 7 of [2], # is amenable. a

The following proposition is proved as Theorem 3.6 in [18] in much greater gen-
erality. Our restricted setting allows for a simpler proof, which we present.

ProPOSITION 3.4. Let L be a representation of (G, E) and let 4 be an amenable
quasi-invariant measure on G(9. If = is the integrated form of L determined by p,
then m is weakly contained in Ind p.

Proof. One can imitate the proof of Proposition 11.3.2 of [16], or one can tap
into that proof by noting that n(B¢(G; E)) = #(Bc¢(G, o)), where 7 is the inte-
grated form of the o-representation L associated with L as in the discussion after
Definition 2.2. The argument in [[6] shows that any vector state on #(Bc(G,0)) is
the weak limit of vector states on ¢-Indu(Bc(G, ¢))” which is unitarily equivalent to
Ind p(Ce(G; E))' by Proposition 2.1. This shows that any vector state on
m(C*(G; E)) is the weak limit of vector states on Ind u(Cc(G; E))”, because any
vector state on 7(C*(G; E)) extends to a vector state on m(B¢c(G; F)) since 7 can be

expressed in integrated form. Thus 7 is weakly contained in Ind y. a
The following corollary is now immmediate.

CoRroLLARY 3.5. If E is a T-groupoid over G such that C*(G; E) is nuclear,
C*(G; E) = C14(G; E).

One would expect a converse, as was first suggested by Renault [16], but still at
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this stage, nothing is known.

In concluding section, we remark that if G is amenable and if u is a quasi-invariant
measure on G(®) with induced measure v = / Adp(z) then it is possible to find an
increasing sequence Gy C G2 C G3 C ... of Borel groupoids on X such that when
viewed as an equivalence relation on X, each G, has only finitely many equivalence
classes and such that G = UG, a.e. v. It would be interesting to know if it is possible
to find such a sequence that is independent of v, so that there are no exceptional null
sets.

4. THE SPECTRAL THEOREM FOR BIMODULES

Our primary objective in this section is to prove the following theorem.

THEOREM 4.1 (The Spectral Theorem For Bimodules). Suppose that G is mea-
surewise amenable and that 9 is a norm closed linear subspace of C*(G; E) that is
a bimodule over Co(X). Then there is an open subset @ in G such that M = M(Q),
where (Q) is defined to be the closure of {f € Cc(G;E)|supp(f) C j~1(Q)} in
C*(G;E).

The proof follows the lines of the special case of the theorem proved in [9].
However, there are important technical differences. Many of the ingredients in [9],
such as the assumption that G has a cover by compact open G-sets, are not available
here. We will not assume that G is measurewise amenable until we have to. Thus we
maintain the distinction between C*(G; E) and C} 4(G; E).

Recall that a G-set is a subset U of G such that r and s are one-to-one on U.
Such a U, then, is a graph of a partially defined transformation whose domain is #(U)
and whose range is s(U). Conversely, such a graph is evidently a G-set. We write
2(G) for the collection of all open G-sets. It is shown in (6] that 2(G) covers G.
We write N¢ for the collection of f in C¢(G; E) such that the image of the support
of f under j is contained in some U in £2(G). Such an f evidently has the property
that f*d* f* and f* +d« f are contained in Co(X) for all d in Co(X). That is, N¢
consists of normalizers of the diagonal of Cy. (G; E) that are compactly supported.
These will be used repeatedly in the proof of Proposition 4.4 below, which is a key
ingredient for the proof of Theorem 4.1.

We want to show next that elements in C},,(G; F) may be viewed as Co-functions
on E. This is an extension of Proposition 11.4.2 in [16]. To this end, let J denote the
identity map from C¢(G; E) to Cc(G; E). Since

I llco S IIPCF* * IR < M1 fllreas
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it is clear that J may be extended to a contractive linear map from (Cly(G; E),
I llcea) to (Co(E), ]| - |lcc)- We need to show that J is one-to-one. To this end, given
z in X, consider Inde,. It acts on L%(G, E, k;) where, recall, {k*},¢x is the Haar
system for E and k, is the image of k* under inversion. It is easy to see that the
characteristic function of j~}(G*)(= T x X), @, is a unit cyclic and separating vec-
tor for the image of C}4(G; ¥) under Inde,. Consequently, the map J: C¢c(G; E) —
— L*G, E, k;) defined by J(f) == Inde.(f)po satisfies ||J(f)|lz < ||f]lrea- Further-
more, as functions, J(f) = J(f) a.e. (k;). Thus, J may be extended to a contractive
linear map from Cy(G; E) to L%(G, E, k.) such that J(f) = J(f) a.e. (k) for all f
in C},4(G; E). Consequently, if J(f) = 0, then J(f) = 0 as a vector in L*(G, E, k).
Since J(f) = Inde,(f)po and @y is cyclic and separating for Inde,(Cy(G; E)), we
conclude that Inde;(f) = 0. Since z is arbitrary, it follows that f is 0 in C}.4(G; E).

For the sake of reference, we summarize our discussion as

PROPOSITION 4.2. Each f in C},4(G; E) may be viewed as a function in Co(FE)
with ”f”cs < ”f“red

DEFINITION 4.3. If M is a norm closed subspace of C;e d(G; E) that is a bimodule
over Cp(X), then we let Q(M) be {¥ € G| f(v) # 0, for some f € M} and we call
Q(9M) the spectrum of M. Given an open subset Q of G, we set Mc(Q) = {f €
€ Cc(G; B)lsupp (f) € j7(Q)} and we set My(Q) = {f € Croq(G; E)lsupp(f) €
€3i7Y(Q)}. We call Mc(Q) the minimal spectral subspace determined by @ and we
call Mo(Q) the maximal spectral subspace determined by Q.

By definition and Proposition 4.2, spectral subsets are open. Also, given an
open Bubset @ of G, Mc(Q) C M(Q) and these spaces are non-zero bimodules over
Co(X). The use of the adjectives “minimal” and “maximal” is justified by

ProprosITION 4.4. If M is a norm closed linear subspace of C},4(G; E) that is a
bimodule over Co(X), then

Me(Q(M)) C M C Mo(Q(M)).

Proof. The right inclusion is a consequence of the definitions. What needs proof
is the left hand inclusion. To this end, given an element g of N¢, define a map
¥y:Cra(G; E) — Ciy(G; E) by the formula ¥,(f) = P(f * g*)g. A calculation
shows that ¥, is continuous with norm |jg||? and that ¥, maps C%,(G; E) into N¢.
Given g in N¢ and f € C¢(G,; E), the proof of Lemma 2.10 in [6] shows that there is
an n-tuple d = {dy,...,dn} in Cy(X) (depending on f and g) such that zd,?d; <1
and W,(f) = Ed: * f *(g* *d; * g). Let us use this sum to define a map, denoted
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¥ 44, so that for the particular f in question, ¥ (f) = ¥4,(f). Since ¥4,(f) may be
viewed as the 1,1-entry of the matrix product

d; dy ... d f 0 ... 0 g*dig 0 ... 0
0 0 ... 0 0 f ... 0 g*dag 0 ... 0
0 0 ... 0 0 0 ... fJ.Llg*dsg 0 ... O

it is clear that the norm of ¥4, is less or equal to |g||?.

For any n-tuple d and any g in N¢, it is evident that ¥4, maps 9 into M
because M is a Co(X) bimodule. But this is enough to show that ¥, maps M into
M for any g in N¢. Indeed, with g in N¢ fixed (and nonzero of course), choose f in
9M and choose h in Cc(G; E) with ||f — k|| < €/(2||g]l)?, where ¢ is any prescribed
positive number. Then choose an n-tuple d as above so that W,(h) = Wae(h). We
have

%o (F) — ag(NI<NT(F) = (Rl + ]| (R) — Tag(H)Il =
= | ¥y(£) — To(R)I + || ¥ag(h) = Pag(f)ll <€
Since ¥ 44(f) lies in 9 for all d and g, so does ¥4(f). This shows that MNM(Q(IM))

is non-empty.

Next we prove that every f in Mc(Q(M)) is a finite sum f = Eg.-, with g;
in N¢ NMe(Q(IM)). Since 2(G) covers G and since j(supp (f)) is compact, there is
a finite collection Vi,...,V;, in £2(G) that covers j(supp (f)). Choose hy,...,h, in
Cc(G) so that {hy,..., h,} forms a partition of unity subordinate to {V4,...,Va};
i.e., s0 that E hi(¥) = 1 for all v in supp (f) and so that supp (h;) C Vi. If gi(y) is
defined to be f(7) - hi(¥), then g; is in N¢ NIMo(Q(IM)) and f = Zg;.

Thus, to complete the proof, we need only show that every g in No N9,(Q(M))
lies in M. So fix g in Ne N Mo(Q(M)). Given any f in C}y(G; E), it is easy to
expand f * g* and to see that

¥o(£)(7) =P(f xg")(r(M)e(v) = FM)a()I*.

For each v such that g(y) # 0, there is an f in 9 such that f(y) # 0 (because
9(7) # 0 implies that j(y) € Q(9M)). By premultiplying f by a suitable d in Cp(X)
we may assume that f(y) > 0. Now the interior of the support of g (i.e., {y €
€ E'|g(v) # 0}) is mapped by r onto an open subset W in X. Since W is a second
countable, locally compact Hausdorff space, W is paracompact. Thus we can find a
locally finite open cover {U;} of W, a partition of unity {k;} subordinate to {U;}, and
elements f; in 9 such that P(f; * g*)(r(7)) is bounded away from zero on U;. If we
set hi(z) = ki(z)/P(fi * ¢*)(z), for z € U;, and set h;(z) = 0 when z ¢ U;, then the
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h;’s are compactly supported continuous functions on X and the series z hi - Wo(fi)
converges in M to g. |

To complete the proof of Theorem 4.1, we need only show that under the hypothe-
sis that G is measurewise amenable, the closure of Mc(Q) in C*(G; E) is Mp(Q),
for any open subset Q of G. ‘That is, we need to prove under the hypothesis of
measurewise amenability that every open subset of G is a set of “spectral synthesis”.
This, in turn, is to be expected on the basis of the analogy that exists between r-
-discrete principal groupoids and discrete groups.

The proof is really quite similar to the proof of Theorem 3.10 in [9]. Alternatively,
one can appeal to that proof using the same technique used to prove Proposition 3.4
on the basis of Proposition 11.3.2 of [16]. However, since the details are somewhat
involved, we outline them for the sake of completeness.

We begin by supposing that the closure of M(Q) in C*(G; E) is different from
My(Q) and appealing to Lemma 3.9 of [9] to assert that there is a representation =
of C*(G; E) on a Hilbert space H and vectors £ and p in H such that the functional
@ on C*(G; E) defined by the formula ¢(f) = (n(f)¢, p), f € C*(G; E), vanishes on
Mc(Q) but not on Mo(Q). We assume, too, as we may, that 7 is written in integrated
form as in equation (2.1). Let {f,}nen be a sequence of functions in B¢ (G) satisfying
the conditions of Definition 3.1.1 and set

hn(‘/)=/fﬂ(“m) Fa(@)dM(a),  neN;

that is, hy, = fn * f3. Then each h, lies in Bc(G). We define ¢, on C*(G; E) by the
formula

onlf) = / ha(3) - FEELMEG)), (1)) dvo(4),

f € C*(G; E), and note that by condition (ii) in Definition 3.1.1, ¢n(f) — ¢(f), for
every f € C*(G; E).

Observe that if g is a bounded Borel function with compact support contained
in @, then g is the pointwise bounded limit of a sequence of continuous functions, all
of whose supports are conatined in some prescribed compact subset of Q. It follows

that for such a g,
[ e, ntra) dma(i) = o.

But hy(¥) - f(¥) is such a function for any f in Mc(Q), and so we see that each ¢,
vanishes on Mc(Q). Since the ¢, converge pointwise to ¢, we conclude that for some

fo in Mo(Q) and some 7, pn(fo) # 0.
Following the proof of Proposition 11.3.2 in [16], we may write

en(f) = (Ind (M)(£)&n,m), (4.1)
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where f € C*(G; E),Ind(M) is the representation of C*(G; E) induced by the re-
striction of = to Cp(X), and £, and 5, lie in the Hilbert space of Ind (M). In greater
detail, which will be important for us, the Hilbert bundle for the disintegration of
Ind (M) is given by

K(z) = L*(G, E, k°) ® H(z) = L*(G, E, H(z), k%),

and the associated representation of (G, E), which we denote (u, i), is simply given

by left translation. That is, for £ € K(z), and v satisfying s(y) = z and r(y) = y,

L(7)¢(a) = é(y~'a), if r(e) = y. The vectors &, and 5, in (4.1) lie in the direct
D

integral / K(z)dn(z) and so may be viewed as functions of two variables, &,(z,7)

X
and 7,(x,7), each supported on {(z,7)|r(y) = z}, and given by the formulae:
én(,7) = 42(3) - Fa(3) - L(v (=),

and
ma(z,7) = AY2(3) - Fal(3) - LvHn(z),

where £ and 7 define . The calculation that leads to (4.1), now, may be read from
the proof of Proposition 11.3.2 of [16] in a straightforward fashion.
Since n will be fixed from now on, we drop it and write

¢(f) = (Ind (M)(f)¢,n).

Expanding this expression, we arrive at

/ F(aB) - (E(s(B), 1), n(5(a), @) dk* (B) dk. (o) du(z) =
G

= / FH(aB) - (E(5(8), B71), n(z, @) k= (B) dks () dp(z).
G

If we assume, as we may that dim((z)) is constant almost everywhere with value,
say, n, than we may assume that our original Hibert bundle is the constant bundle
with n-dimensional fiber Hy. Choose an orthonormal basis {e;} for o and expand
the inner products in the above integrals in terms of it, to obtain the representation

©(f) = Y ¥i(f), where

W) = / £(aB) - (€(s(8), 571), &) - (@), &) k= (B) k(o) dp(z).
G
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If we write &;(z, v) for (£(z, v), &) and ni(z, ) for ((z, v), &), we see that & and
7; are cross sections for the Hilbert bundle associated with Ind p. (See pages 51 and
52 of [9].) That is,

W) = [ F(aB) - €ls(6), 571) e @) 4k (8) dbs(e) d(e) = (d (1), )
G

i
Thus, in particular, we see that {[y;]] <||&|| - ||7:l] for every i. Since ||€]| = (2”5;”2) ’

and ||n}] == (Z“n;”z)a, it follows that the series Z]ilﬁ.” converges and, so, ¢ =

= Z ¥;, with the series converging in norm.

We assume, without loss of generality, that = is faithfull. This can be arranged
by adding a faithful direct summand, if necessary. It results that the closed support
of p is all of X. (Otherwise, the complement, which is open and invariant, gives rise
to an ideal in C*(G; E) which is killed by 7.) Consequently, we may assume that
Ind p is faithful, too.

By Proposition 2.1, the weak closure of Ind u(C*(G; E)) is (isomorphic to) the
Feldman-Moore von Neumann algebra, M (G, o), determined by u. The functionals
¥ may be viewed as vector functionals on M (G, ¢), and so are o-weakly continuous.
Since ¢ = Zl/),', with the series converging in norm, ¢ is a o-weakly continuous
functional on M(G, o). (Actually, since M(G,0) is in standard form, ¢ is itself a
vector functional.) It follows that the functional ¢ separates the o-weak closure of
M.(Q) from the o-weak closure of My(Q). But both of these o-weak closures are
bimodules over L°°(u) regarded as multiplication operators on the diagonal of G,
i.e., both of these are bimodules over the Cartan subalgebra of M(G,¢). On the
other hand, it is clear that the closure in L?(G,v~!) of the intersection of each of
these spaces with L2(G, v~1) coincides with L2(Q), the set of functions in L%(G,y~1)
supported on Q. Thus by Theorem 2.5 in [12], the two o-weak closures coincide. This
contradiction completes the proof. ]

We remark in passing that at first glance, one might be inclined to think that the
last part of the argument for the proof of Theorem 4.1 is an immediate consequence
of Proposition 3.4. But all that Proposition 3.4 shows is that ¢ is the weak limit of
vector functionals affiliated with Indg. It does not show that ¢ can be realized in
the Hilbert space of Indy, namely L2(G, E,v~!). That appears to require special
argument.

We conclude by briefly indicating extensions to T-groupoids of three key results
of [9]). Recall that an open set P in G is called a preorder (on X or in G) in case X C P
and P-P C, P, where P- P = {af|(a, 8) € (P x P)NG®}. A preorder P satisfying
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PN P! = X is called a partial order. A partial order P satisfying PUP-! =G is
called a total order. The term “total order” is a little imprecise, unless G = X x X.
But note that a total order in the sense we are using the term totally orders each
equivalence class. Given a preorder P on G, we write %A(P) for what we were just
writing as M(P). The change in notation is justified by the following result that
generalizes the Theorem 4.1 in [9].

THEOREM 4.5. Suppose G is measurewise amenable. For each preorder P in
G, U(P) is a norm closed subalgebra of C*(G; E) containing Co(X) Conversely, each
subalgebra 2 of C*(G; E) containing Co(X) is of the form %(P) for a unique preorder
P. The correspondence P — U(P) is an inclusion preserving bijection between
the collection of preorders in G and norm closed subalgebras of C*(G; E) containing
Co(X).

Proof. All that needs to be checked, really, is the assertion that A(P) is a
subalgebra of C*(G; E) if and only if P is a preorder. Since X C P if and only if
Co(X) C U(P), all that needs checking is the assertion that 2(P) - A(P) C A(P)
if and only if P .- P C P. For this it suffices to note first that for f and g in N¢,
J(supp(f * g)) = j(supp(f)) - i(supp(g)), an easy calculation, and second that in the
proof of Proposition 4.4 it is shown that every element in C¢(P) is the sum of elements
in N¢ supported in P. ]

The following proposition is a generalization of Lemma 4.3 of [MS1] and describes
ideals for %(P) in terms of subsets of G. Its proof is a straightforward application of
the key observations in the proof of Theorem 4.5 and so will be omitted.

ProprosiTION 4.6. Assume that G is measurewise amenable and that P is a
preorder in G. If Q is an open subset of P satisfying P-Q - P C Q, then M(Q) is a
(norm closed, two sided) ideal in A(P). The map Q@ — IM(Q), from the collection
of open sets @ satisfying P-Q - P C Q to such ideals for A(P), is an order preserving
bijection between the colllection of such sets and the collection of ideals.

Suppose that B is a C*-algebra and that D is simply an abelian C*-subalgebra.
A subalgebra T of B is called triangular (with respect to D or with diagonal D) in
case TN T* = D, where ' = {a*|a € T}. A triangular algebra T in B is called
maximal triangular in case it is not contained in any larger triangular algebra with
the same diagonal. If, in addition, T + T* is norm dense in B, then we say that
% is strongly maximal. Peters, Poon and Wagner first gave examples of maximal
triangular algebras that are not strongly maximal in {14]. Their finding was rather
surprising in view of work that had been done in the von Neumann algebra setting.
See [12] and [10].
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A notion that is related to triangularity is “subdiagonality”. In the von Neumann
algebra setting, the notion is due to Arveson [1}; in the C*-setting, it is due to
Kawamura and Tomiyama [5]. To define it, suppose that B is a C*-algebra and
suppose first that B is unital with identity 1. A closed subalgebra A of B is called
a (C*-)subdiagonal subalgebra of B (with diagonal AN A*) in case 1 € A, A+ A* is
norm dense in B, and there is a faithful conditional expectation, say @, from B onto
AN A* that is multiplicative on 4; i.e., #(ab) = ®(a) - H(b), for all a and b in A. If
B is not unital and A is a subalgebra of B that becomes a subdiagonal subalgebra
of B after a unit is adjoined to A and B, then we continue to say that A isa (C*-)
subdiagonal subalgebra of B. If A is a subdiagonal subalgebra of B with respect to
the conditional expectation @: B -— AN A* and if A is not contained in any larger
subalgebra of B with the same diagonal on which @ is multiplicative, then A is called a
maximal subdiagonal subalgebra of B (with respect to ¢). In [5] it is shown that every
subdiagonal subalgebra A of a C*-algebra B is contained in a maximal subdiagonal
subalgebra, namely, Ap,:= {a € B|b,c € A, withb € ker(®), #(bac) = &(cab) = 0}.
Note that in [5] it is assumed that B and A are unital, but this is not a necessary
restriction.

The following theorem, which generalizes Theorem 4.2 of [9], relates the notions of
strongly maximal triangular subalgebras and maximal subdiagonal subalgebras when
the containing C*-algebra is nuclear and has a diagonal in the sense of Kumjian (which
serves as a diagonal for the triangular or subdiagonal subalgebra). It exhibits very
nicely coordinate frec statements that seem to require coordinates for their proofs.

THEOREM 4.7. Let B be a nuclear C*-algebra with digaonal D and conditional
expectation P. Suppose T is a triangular subalgebra of B with diagonal D. Then
P is multipicative on T. Furthermore, ¥ is subdiagonal (with respect to D and P)
if and only if ¥ is strongly maximal triangular. In this case, ¥ is, in fact, maximal
subdiagonal. Finally, if B is realized as C*(G; E), with T realized as U(P) for a
suitable preorder P, then P is a partial order; P is a total order if and only if T is
strongly maximal triangular.

Proof. Realize B as C*(G; E) and T as U(P) for a suitable preorder P. By
Theorem 4.5, it is clear that TN T = (P N P~1) = A(GY), if the diagonal of T is
assumed to be ID. Thus it is clear that P must be a partial order if T is triangular.
As is shown in [5], P is given by the formula

f(), 7€ GO
P = { 1007 €T7HER,
0, otherwise
f € C*(G; E). Thus ker (P) N2AU(P) = M(P\G®). Since P\G® is an open subset of
P that clearly satisfies the conditions of Proposition 4.6, it follows that ker (P)N2(P)
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is an ideal in 2. Since P is idempotent, it follows that P is multiplicative on ¥. It is
now evident that ¥ is strongly maximal triangular if and only if ¥ is subdiagonal. It is
also evident that if PUP~! = G, then ¥ is strongly maximal (and hence subdiagonal).
But this condition clearly implies, too, that ¥ is maximal subdiagonal because if 3’
is any larger subdiagonal algebra with the same diagonal D, and if 3’ is written as
2(P') for an open partial order P’, then the conditions that P C P’ and PUP~1 =G
are easily seen to imply that P = P’. All that remains, then, is to show that if ¥
is strongly maximal triangular, then P U P-! = G. Suppose to the contrary that
there is a ¥ € G\(P U P~1) and choose a function f € C¢(G; E) such that f does
not vanish on j~1(¥). By assumption and Theorem 4.1, there are sequences {f,}
and {gn} in C%(G; E) N ¥ such that f, + g, — f in C*(G; E). By Proposition 4.2,
fa + 95 — f pointwise. However, f, is supported on j~!(P) and so vanishes on
i~Y(G\P). Likewise, g} vanishes on j~!((G\P)™!) = j~}(G\P~!). Consequently,
fa + g5, vanishes on j7H((G\P)N(G\(P~1))) = j~1(G\(P U P~1)). Therefore

0= fa(a) +gn(a) — fla) #£0,

for any a € j71(4). This contradiction shows that PU P~! = G and completes the
proof.
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