THE λ -FUNCTION IN OPERATOR ALGEBRAS

GERT K. PEDERSEN

John Bunce in memoriam

1. INTRODUCTION

Let $\mathfrak A$ be a normed space with closed unit ball $\mathfrak B$, and denote by $\mathfrak E$ the set of extreme points of the convex set $\mathfrak B$. In [2] Aron and Lohman investigate the λ -function, defined on elements T of $\mathfrak B$ to be the supremum, $\lambda(T)$, of numbers λ in [0,1] for which there exists a pair V,B in $\mathfrak E \times \mathfrak B$, such that

$$T = \lambda V + (1 - \lambda)B.$$

Among other things they show that when $\mathfrak A$ has the λ -property $(\lambda(T) > 0 \ \forall T \in \mathfrak B)$, then every closed face of $\mathfrak B$ contains extreme points, so that any convex function on $\mathfrak B$ that attains its maximum must do so on $\mathfrak E$. Moreover, if $\mathfrak A$ has the uniform λ -property $(\lambda(T) \geqslant \varepsilon > 0 \ \forall T \in \mathfrak B)$, then $\mathfrak A$ has the Krein-Milman-like property that

$$(\operatorname{conv}(\mathfrak{E}\cap\mathfrak{F}))^{=}=\mathfrak{F},$$

for every closed face \mathfrak{F} of \mathfrak{B} . Further results on the λ -function for various classes of normed spaces were obtained in [3], [16], [17], and [18].

Aron and Lohman ask in [2, Question 4.1]: "what spaces of operators have the λ -property, and what does the λ -function look like for these spaces?" This paper is written in an attempt to answer their question, in the case where $\mathfrak A$ is a normalised *-algebra of operators on some Hilbert space $\mathfrak H$, i.e. when $\mathfrak A$ is a C^* -algebra. It turns out, namely, that a similar problem — originating in the classical Russo-Dye theorem — has received considerable interest lately in operator algebra theory, see [7], [9], [10], [13], [21], [24], [25], [28], and [31]. Thus we now have quite detailed knowledge

of the geometry of unit balls in C^* -algebras. Indeed, we have — in principle — a complete characterization of the facial structure of such balls [1]. In order to make this information available to non-specialists (i.e. mathematicians who specialize in other areas), the author has chosen a somewhat expansive style, repeating now and then a wellknown definition, and indicating the proofs of wellknown results. Honi soit qui mal y pense.

It is a pleasure to thank Richard Aron for bringing the λ -function and its literature to my attention, when both of us were attending the X Escuela Latinoamericano Matematica in the hills of Cordoba last year. Thanks also (less pleasure, more embarrasment) to Larry Brown for some last-minute corrections.

2. NOTATIONS AND PRELIMINARIES

Throughtout this article $\mathfrak A$ will denote a *-invariant algebra of bounded operators on some Hilbert space $\mathfrak H$, closed in the norm topology on $\mathcal B(\mathfrak H)$. Abstractly this means that $\mathfrak A$ is a C^* -algebra, i.e. a Banach algebra with an involution that satisfies the condition $||T^*T|| = ||T||^2$ for every T in $\mathfrak A$, cf. [14] or [22]. Sometimes we will further assume that $\mathfrak A$ is closed in the weak operator topology on $\mathcal B(\mathfrak H)$, in which case $\mathfrak A$ is von Neumann algebra. Abstractly this means that $\mathfrak A$ is a dual space. In a von Neumann algebra the unit ball is (weakly) compact, so that the Krein-Milman theorem applies. Also $\mathfrak A$ is generated by its projections (in the strong sense that the spectral resolution of every normal operator in $\mathfrak A$ belongs to $\mathfrak A$), and the set of projections in $\mathfrak A$ forms a complete lattice (a sublattice of the set of closed subspaces of $\mathfrak H$). Since this fact is being used crucially a number of times, it is only fair to point out that a larger class of C^* -algebras (Kaplansky's AW-algebras) have the same property. (But now the lattice of projections is not necessarily a sublattice of subspaces of any Hilbert space).

The closed unit ball of our C^* -algebra $\mathfrak A$ will always be denoted by $\mathfrak B$, and the set of extreme points of $\mathfrak B$ is denoted by $\mathfrak E$. We shall assume throughout that $\mathfrak A$ is unital, i.e. $I \in \mathfrak A$, for the simple reason that otherwise $\mathfrak E = \emptyset$. For a unital C^* -algebra the elements in $\mathfrak E$ were characterized by Kadison in 1951 as follows ([12] or [22, 1.4.7]):

$$\mathfrak{E} = \{V \in \mathfrak{B} | (I - VV^*)\mathfrak{A}(I - V^*V) = 0\}.$$

Thus $V \in \mathfrak{E}$ if it is a partial isometry such that the two projections $I - V^*V$ and $I - VV^*$ (on the kernels of V and V^* , respectively) are centrally orthogonal (so that even the two-sided ideals they generate are orthogonal). If therefore \mathfrak{A} is a prime C^* -algebra (like $\mathcal{B}(\mathfrak{H})$), or, even better, simple (no non-trivial closed ideals), then elements V in \mathfrak{E} are either isometries ($V^*V = I$) or co-isometries ($VV^* = I$).

An important class of extreme points is the set $\mathfrak U$ of unitary elements in $\mathfrak A$ (elements U such that $U^*U=UU^*=I$, i.e. $U^*=U^{-1}$). In contrast to general elements in $\mathfrak E$, the elements in $\mathfrak U$ are normal operators. Moreover, they form a group under multiplication, a subgroup of the group $\mathfrak A^{-1}$ of invertible elements in $\mathfrak A$. For these reasons there has been a natural tendency in operator algebra theory to concentrate attention on $\mathfrak U$, in favour of the much more elusive elements in $\mathfrak E \setminus \mathfrak U$.

Under quite general circumstances we can deduce that $\mathfrak{E} = \mathfrak{U}$, thus avoiding the problem above. We say that the C^* -algebra is finite, if $T^*T = I$ implies $TT^* = I$ for all T in \mathfrak{A} , i.e. if every isometry is unitary. In case \mathfrak{A} is a von Neumann algebra (and this is where the definition was first coined by Murray and von Neumann), this implies that $\mathfrak{E} = \mathfrak{U}$. For if $V \in \mathfrak{E}$, there is a central projection Z in \mathfrak{A} such that ZV is an isometry in $Z\mathfrak{A}$, and (I-Z)V is a co-isometry in $(I-Z)\mathfrak{A}$ (see the proof of Theorem 4.2); and the finiteness of \mathfrak{A} now implies that $ZV + (I-Z)V^*$ is unitary, whence also $V \in \mathfrak{U}$. The same argument will work if \mathfrak{A} is a finite AW^* -algebra. For a general finite C^* -algebra \mathfrak{A} we need not have $\mathfrak{E} = \mathfrak{U}$ (see Proposition 9.4), but in the important case where \mathfrak{A} is simple (or just prime), so that elements in \mathfrak{E} are isometries or co-isometries, finiteness will, of course, imply $\mathfrak{E} = \mathfrak{U}$.

Rieffel introduced and studied the notion of topological stable rank for C^* -algebras [29], later identified with Bass' stable rank from ring theory [11]. The lowest rank, one, is the more tractable, and $\operatorname{sr}(\mathfrak{A}) = 1$ simply means that \mathfrak{A}^{-1} is dense in \mathfrak{A} . Also in this case we can conclude that $\mathfrak{E} = \mathfrak{U}$ (and thus \mathfrak{A} is finite, as well, see Corollary 3.3).

Even when non-unitary extreme points exists, the group $\mathfrak U$ is rich enough to ensure that conv $\mathfrak U$ is dense in $\mathfrak B$. This fact is the Russo-Dye theorem [7], [32]. We now have much more precise information. As a crowning achievement, building on earlier results from [13] and [21], Rørdam proved in [31, 3.3] the following theorem.

THEOREM 2.1. If T is a non-invertible element in \mathfrak{B} , such that $\alpha(T) = \operatorname{dist}(T, \mathfrak{A}^{-1}) < 1$, there is for every $\beta > 2(1 - \alpha(T))^{-1}$ unitaries U_1, U_2, \ldots, U_n in \mathfrak{U} , where $n-1 < \beta \leq n$, such that

$$T = \beta^{-1}(U_1 + U_2 + \cdots + U_{n-1}) + \beta^{-1}(\beta + 1 - n)U_n.$$

When $\mathfrak{E} = \mathfrak{U}$, this allows us to determine the λ -function, see Theorem 5.1.

3. POLAR DECOMPOSITIONS

As von Neumann showed, every operator T in $\mathcal{B}(\mathfrak{H})$ has a polar decomposition T = V|T|, where $|T| = (T^*T)^{\frac{1}{2}}$ and V is a (unique) partial isometry such that

 $\ker V = \ker T$. The construction

$$V = \lim T \left(\frac{1}{n} I + |T|^{-1} \right),$$

where the limit is taken in the strong operator topology, see e.g. [22, 2.2.9], shows immediately that if $\mathfrak A$ is a von Neumann algebra and $T \in \mathfrak A$, then $|T| \in \mathfrak A$ and $V \in \mathfrak A$. If $\mathfrak A$ is only a C^* -algebra, we can not be certain that $V \in \mathfrak A$ (although, of course, $|T| \in \mathfrak A$; and since $V|T| \in \mathfrak A$, it follows from (Stone-)Weierstrass' theorem that $Vf(|T|) \in \mathfrak A$ if f is continuous and f(0) = 0). Rather, V belongs to the von Neumann algebra generated by $\mathfrak A$ —equal to the double commutant $\mathfrak A''$ of $\mathfrak A$. But if $T \in \mathfrak A^{-1}$, then T = U|T| for the unitary $U = T|T|^{-1}$ in $\mathfrak A$. Also in other cases it is possible to write elements in $\mathfrak A$ with a unitary "sign". The strongest known result in this direction follows. It uses the spectral resolution of |T| in $\mathfrak A''$. Thus for each $\delta > 0$ we denote by E_{δ} the spectral projection of |T| corresponding to the open interval $|\delta,\infty[$.

THEOREM 3.1. If T is an element in a C^* -algebra $\mathfrak A$ with polar decomposition V[T], then for each $\delta > \operatorname{dist}(T, \mathfrak A^{-1})$ there is a unitary U in $\mathfrak A$, such that $UE_{\delta} = VE_{\delta}$. For $\delta < \operatorname{dist}(T, \mathfrak A^{-1})$ there is no unitary extension of VE_{δ} in $\mathfrak A$.

.

COROLLARY 3.2. Each element of the form Vf(|T|), where f is a continuous function on $\operatorname{sp}|T|$ such that f(t) = 0 for $t \leq \delta$, and where $\delta > \operatorname{dist}(T, \mathfrak{A}^{-1})$, has a unitary polar decomposition Uf(|T|) = Vf(|T|) in \mathfrak{A} .

PROPOSITION 3.3. If V is an extreme point in \mathfrak{B} with $\operatorname{dist}(V,\mathfrak{A}^{-1}) < 1$, then $V \in \mathfrak{U}$.

Proof. Let $P = V^*V$ and $Q = VV^*$ be the projections on the support and the range of V, respectively. Then V = VP is the polar decomposition of V, so that, in the notation above, $P = E_{\delta}$ for any δ in the interval]0,1[. By Theorem 3.1 there is a unitary U in \mathfrak{U} , such that UP = VP = V. Consequently, $Q = VV^* = UPU^*$.

By assumption, I - Q and I - P are centrally orthogonal, so

$$0 = (I - Q)U(I - P) = U(I - P)U^*U(I - P) = U(I - P).$$

It follows that U = UP = V, so $V \in \mathfrak{U}$.

COROLLARY 3.4. If \mathfrak{A}^{-1} is dense in \mathfrak{A} then $\mathfrak{E} = \mathfrak{U}$.

Theorem 3.1 also gives a neat proof of the formula relating the distances of an element from \mathfrak{A}^{-1} and from \mathfrak{U} . This formula was established by Olsen when \mathfrak{A} is a von Neumann algebra [20, Theorem 3.8], and by Rørdam in the general case.

PROPOSITION 3.5. If $T \notin \mathfrak{A}^{-1}$ then

$$\operatorname{dist}(T,\mathfrak{U}) = \max\{||T|| - 1, \operatorname{dist}(T,\mathfrak{U}^{-1}) + 1\}.$$

Proof. [24, Theorem 10] or [31, Theorem 2.7].

The next result is known to most experts in von Neumann algebra theory, but the author has been unable to locate a precise reference.

PROPOSITION 3.6. If $\mathfrak A$ is a von Neumann algebra and $T \in \mathfrak A$, there is an extreme point W in $\mathfrak E$ such that T = W|T|.

Proof. The set

$$\mathfrak{C} = \{ W \in \mathfrak{B} \mid T = W|T| \}$$

is a non-empty, convex, weakly closed subset of the weakly compact unit ball in $\mathcal{B}(\mathfrak{H})$. By Krein-Milman's theorem we can therefore find an extreme point W in \mathfrak{C} . Since ||W|| = 1 we have $W^*W|T| = |T|$, because

$$|T|(I-W^*W)|T| = T^*T - T^*T = 0.$$

Since W|W| and W(2-|W|) both belongs to \mathfrak{B} , and

$$T = W|W||T| = W(2 - |W|)|T|,$$

$$W = \frac{1}{2}(W|W| + W(2 - |W|)),$$

we conclude from the extremality of W that W = W|W|, i.e., |W| is a projection and W is a partial isometry. If now

$$A \in (I - WW^*)\mathfrak{B}(I - W^*W),$$

then A|T|=0, so $T=(W\pm A)|T|$. Since $||W\pm A||\leqslant 1$ it follows, again from the extremality of W, that A=0. This holds for all such A, whence $W\in \mathfrak{E}$.

A more sophisticated proof is obtained by considering the classical polar decomposition T = V|T|, and then note that the set

$$\mathfrak{D} = V + (I - VV^*)\mathfrak{B}(I - V^*V),$$

is a weakly closed face of \mathfrak{B} . In fact, as shown by C. M. Edwards and G. T. Rüttimann, every weakly closed face in \mathfrak{B} has this form, see [1, Theorem 4.4]. An extreme point W of \mathfrak{D} therefore belongs to \mathfrak{E} , and writing

$$W = V + (I - VV^*)B(I - V^*V)$$

it follows that

$$|W|T| = V|T| = T.$$

4. VON NEUMANN ALGEBRAS

For an operator T in $\mathcal{B}(\mathfrak{H})$ we define

$$m(T) = \inf\{||Tx|| \mid x \in \mathfrak{H}, ||x|| = 1\}.$$

With $|T| = (T^*T)^{\frac{1}{2}}$ we know that ||Tx|| = |||T|x|| for every x in \mathfrak{H} , and it follows easily that

$$m(T) = m(|T|) = \min\{\varepsilon > 0 \mid \varepsilon \in \operatorname{sp}(|T|)\} =$$
$$= \max\{\varepsilon \geqslant 0 \mid \varepsilon I \leqslant |T|\} = \||T|^{-1}\|^{-1}$$

(with a suitable interpretation if $|T| \notin \mathfrak{A}^{-1}$). By the open mapping theorem the condition m(T) > 0 is equivalent to T being injective with closed range. So in this case T = U|T| for a unique isometry $U = T|T|^{-1}$.

Now consider T as an element of some von Neumann algebra in $\mathcal{B}(\mathfrak{H})$ with center $\mathfrak{J} (= \mathfrak{A} \cap \mathfrak{A}')$, and denote by \mathfrak{J}_p the set of projections in \mathfrak{J} . To obtain a common lower bound for T and T^* and their central splittings, define

(*)
$$m_{q}(T) = \sup\{m(ZT + (I - Z)T^{*})|Z \in \mathfrak{Z}_{p}\}.$$

Note that if we decompose T = H + iK in real and imaginary parts, then

$$(**) m_{q}(T) = \sup\{m(H + iSK)|S \in \mathfrak{Z}_{s}\},$$

where $\mathfrak{Z}_{\mathfrak{p}}$ denotes the set of symmetries S in \mathfrak{Z} (of the form S=2Z-I for some Z in $\mathfrak{Z}_{\mathfrak{p}}$). Of course, $m_{\mathfrak{q}}(T)$ depends on the algebra \mathfrak{A} (as well as on T), and if $\mathfrak{Z}_{\mathfrak{p}}$ is small, the definition of $m_{\mathfrak{q}}(T)$ is easier. Thus, taking $\mathfrak{A}=\mathcal{B}(\mathfrak{H})$, we simply get

$$(***)$$
 $m_q(T) = m(T) \vee m(T^*).$

LEMMA 4.1. If $\mathfrak A$ is a von Neumann algebra and $T \in \mathfrak A$, there is a central projection Z in $\mathfrak A$ such that

$$m_{\mathbf{q}}(T) = m(ZT + (I - Z)T^*).$$

Proof. If Y and Z both belong to \mathfrak{Z}_p , and

$$\varepsilon I \leq Y|T| + (I-Y)|T^*|, \quad \varepsilon I \leq Z|T| + (I-Z)|T^*|,$$

then by spectral theory

$$\varepsilon X \leqslant X|T|$$
 and $\varepsilon (I-X) \leqslant (I-X)|T^*|$

for $X = Y \vee Z$ and also for $X = Y \wedge Z$, because these statements only involve the three commuting elements Y, Z and |T|, respectively Y, Z and $|T^*|$. Since

$$m(ZT + (I - Z)T^*) = \max\{\varepsilon \mid \varepsilon I \leqslant |ZT + (I - Z)T^*|\} =$$

$$= \max\{\varepsilon \, | \, \varepsilon I \leqslant Z|T| + (I-Z)|T^*|\},\,$$

this means that if (Z_n) is a sequence in \mathfrak{Z}_p such that the sequence (ε_n) of numbers $\varepsilon_n = m(Z_nT + (I - Z_n)T^*)$ increases to $m_q(T)$, then with $Y_k = \bigvee_{n \geq k} Z_n$ we have

$$\varepsilon_m \leqslant m(Y_kT + (I - Y_k)T^*)$$

for every k. Arguing in the same way on the decreasing sequence (Y_k) in \mathfrak{Z}_p , we see that if $Z = \bigwedge Y_k$, then

$$\varepsilon_k \leqslant m(ZT + (I - Z)T^*)$$

for every k; whence

$$m_{\mathsf{q}}(T) = m(ZT + (I - Z)T^*).$$

Recalling the definition of the λ -function from the introduction:

$$\lambda(T) = \sup\{\lambda \in [0,1] \mid T = \lambda V + (1-\lambda)B, \ V \in \mathfrak{E}, \ B \in \mathfrak{B}\},\$$

we are ready for our first result.

THEOREM 4.2. If $\mathfrak A$ is a von Neumann algebra with unit ball $\mathfrak B$, and $T \in \mathfrak B$, then

$$\lambda(T) = \frac{1}{2}(1 + m_{\mathsf{q}}(T)).$$

Moreover, if $\frac{1}{2} \leqslant \lambda \leqslant \lambda(T)$, there are extreme points V and W in B, such that

$$T = \lambda V + (1 - \lambda)W.$$

Proof. If $T = \lambda V + (1 - \lambda)B$ for some V in \mathfrak{E} and B in \mathfrak{B} , put $P = V^*V$ and $Q = VV^*$. We can find a central projection Z in \mathfrak{Z}_p such that

$$(*) I - Q \leqslant Z \leqslant P.$$

To see this, note that I-P and I-Q are centrally orthogonal (since $V \in \mathfrak{E}$), so for every unitary U in $\mathfrak U$

$$I - Q \perp U(I - P)U^* = I - UPU^*,$$

i.e., $I - Q \leq UPU^*$. Take $Z = \bigwedge UPU^*$, the infinum being taken over all U in \mathfrak{U} . Evidently $UZU^* = Z$ for every U in \mathfrak{U} , i.e. $UZ = ZU^*$; and since $\mathfrak{U} = \operatorname{span}(\mathfrak{U})$ (in fact, every element is a linear combination of 4 (even 3) unitaries), it follows that $Z \in \mathfrak{Z}_p$. By (*) we have $Z \leq P$ and $1 - Z \leq Q$, so

$$(ZV)^*(ZV) = ZP = Z;$$

 $(I - Z)V((I - Z)V^*) = (I - Z)Q = I - Z.$

It follows that $W = ZV + (I - Z)V^*$ is an isometry in \mathfrak{A} . With the notations $T_0 = ZT + (I - Z)T^*$ and $B_0 = ZB + (I - Z)B^*$ we can rewrite the equation $T = \lambda V + (1 - \lambda)B$ as $T_0 = \lambda W + (1 - \lambda)B_0$. Since $B_0 \in \mathfrak{B}$ we compute

$$m_{q}(T) \geqslant m(T_{0}) = m(\lambda W + (1 - \lambda)B_{0}) =$$

$$= \inf\{\|(\lambda W + (1 - \lambda)B_{0}x\|\|\|x\| = 1\} \geqslant$$

$$\geqslant \inf\{\lambda\|Wx\| - (1 - \lambda)\|B_{0}\|\|\|x\| = 1\} \geqslant 2\lambda - 1$$

This inequality holds for any decomposition $T = \lambda V + (1 - \lambda)B$, and we conclude that

$$(**) m_{\mathfrak{q}}(T) \geqslant 2\lambda(T) - 1.$$

To prove the reverse inequality we take by Lemma 4.1 a projection Z in \mathfrak{Z}_p , such that with $\varepsilon = m_q(T)$ we have

$$m(ZT + (1-Z)T^*) = \varepsilon.$$

Setting

$$A = |ZT + (I - Z)T^*| = Z|T| + (I - Z)|T^*|,$$

this means that $\varepsilon I \leq A$. As shown in [13, Lemma 6] this implies that for any λ in the interval $\left[\frac{1}{2}, \frac{1}{2}(1+\varepsilon)\right]$ we can find unitaries U_1, U_2 in \mathfrak{U} , such that $A = \lambda U_1 + (1-\lambda)U_2$. This fact is easily verified by writing $U_1 = B + \mathrm{i}(1-\lambda)D$ and $U_2 = C - \mathrm{i}\lambda D$, where B, C and D are the self-adjoint elements in $\mathfrak A$ given by

$$B = \frac{1}{2}\lambda^{-1}(A + (2\lambda - 1)A^{-1}),$$

$$C = \frac{1}{2}(1 - \lambda)^{-1}(A - (2\lambda - 1)A^{-1}),$$

$$D = (1 - \lambda)^{-1}(I - B^2)^{\frac{1}{2}} = \lambda^{-1}(I - C^2)^{\frac{1}{2}}.$$

Here $(2\lambda-1)A^{-1}$ should be interpreted as 0 when $\lambda=\frac{1}{2}$ (if $m_{\rm q}(T)=0$ this may be the only choice), and if $\lambda=1$ (so that A=I) the formulae for C and D should be interpreted as 0. Thus for $\frac{1}{2\leqslant\lambda\leqslant\frac{1}{2}(1+m_{\rm q}(T))}$ we have

$$(***) Z|T| + (1-Z)|T^*| = \lambda U_1 + (1-\lambda)U_2.$$

By proposition 3.6 we can choose extreme points W_1 and W_2 in \mathfrak{E} such that $T = W_1|T|$ and $T^* = W_2|T^*|$. But then by (***)

$$T = ZT + ((1-Z)T^*)^* = W_1Z|T| + (I-Z)|T^*|W_2^* =$$

$$= W_1Z(\lambda U_1 + (1-\lambda)U_2) + (I-Z)(\lambda U_1 + (1-\lambda)U_2)W_2^* =$$

$$= \lambda(ZW_1U_1 + (I-Z)U_1W_2^*) + (1-\lambda)(ZW_1U_2 + (I-Z)U_2W_2^*).$$

Evidently the elements

$$V = ZW_1U_1 + (I - Z)U_1W_2^*, \quad W = ZW_1U_2 + (I - Z)U_2W_2^*$$

are extreme points, and we have $T = \lambda V + (1 - \lambda)W$, as desired. Choosing $\lambda = \frac{1}{2}(1 + m_q(T))$, we get $\lambda(T) \ge \frac{1}{2}(1 + m_q(T))$, which in conjunction with (**) implies equality, and the proof is complete.

5. C^* -ALGEBRAS AND THE λ_u -FUNCTION

As mentioned before, the non-unitary extreme points in the unit ball \mathfrak{B} of a C^* -algebra \mathfrak{A} are somewhat elusive. Our first result overcome this problem in a time-honoured fashion — by changing the definition. For each T in \mathfrak{B} we define

$$\lambda_{\mathbf{u}}(T) = \sup\{\lambda \in [0,1] \mid T = \lambda U + (1-\lambda)B, \ U \in \mathfrak{U}, \ B \in \mathfrak{B}\}.$$

Clearly $\lambda_{\mathrm{u}}(T) \leqslant \lambda(T)$ and, more importantly, the two functions agree whenever $\mathfrak{E} = \mathfrak{U}$.

If $T \in \mathfrak{A}$ and \mathfrak{A}^{-1} denotes the group of invertible elements in \mathfrak{A} , we set

$$\alpha(T) = \operatorname{dist}(T, \mathfrak{A}^{-1}).$$

THEOREM 5.1. If $\mathfrak A$ is a C^* -algebra with unit ball $\mathfrak B$, and T is a non-invertible element of $\mathfrak B$, then

$$\lambda_{\mathrm{u}}(T) = \frac{1}{2}(1 - \alpha(T)).$$

If T is invertible, then

$$\lambda_{\mathrm{u}}(T) = \frac{1}{2}(1 + ||T^{-1}||^{-1}).$$

Proof. Consider first the case where $T \notin \mathfrak{A}^{-1}$. If

$$T + \lambda U + (1 - \lambda)B$$
, $U \in \mathfrak{U}$, $B \in \mathfrak{B}$,

then $\lambda \leqslant \frac{1}{2}$, since otherwise

$$T = \lambda U(I + \lambda^{-1}(1 - \lambda)U^*B) \in \mathfrak{A}^{-1},$$

because $||\lambda^{-1}(1-\lambda)U^*B|| < 1$. Now,

$$||T - \lambda(U + B)|| = ||(1 - 2\lambda)B|| \le 1 - 2\lambda.$$

Since $U + sB = U(I + sU^*B) \in \mathfrak{A}^{-1}$ for every s < 1, we see that $U + B \in (\mathfrak{A}^{-1})^{=}$, whence $\alpha(T) \leq 1 - 2\lambda$. Since this holds for all decompositions, we conclude that

$$\alpha(T) \leq 1 - 2\lambda_{\rm u}(T)$$
.

An argument, using Proposition 3.5, estimating

$$||T - U|| = ||(1 - \lambda)B - (1 - \lambda)U|| \le 2(1 - \lambda),$$

is also available (and gives the same result!).

When $\alpha(T) = 1$ the result above shows that $\lambda_{\rm u}(T) = 0$, so in order to prove the reverse inequality we may assume that $\alpha(T) < 1$. But then, by Theorem 2.1, there is for every $\beta > 2(1 - \alpha(T))^{-1}$ a convex combination

$$T = \beta^{-1}(U_1 + \dots + U_{n-1}) + \beta^{-1}(\beta + 1 - n)U_n,$$

with the U_k 's in \mathfrak{U} and $n-1<\beta\leqslant n$. Taking

$$B = (\beta - 1)^{-1}(U_2 + \cdots + U_{n-1} + (\beta + 1 - n)U_n),$$

this reads: $T = \beta^{-1}U_1 + (1 - \beta^{-1})B$, with B in \mathfrak{B} , so that $\lambda_{\rm u}(T) \geqslant \beta^{-1}$. It follows that

$$\lambda_{\mathrm{u}}(T)\geqslant \frac{1}{2}(1-\alpha(T)),$$

giving the desired equation.

If $T \in \mathfrak{A}^{-1}$ we have T = U|T| with U in \mathfrak{U} . Thus $T^{-1} = |T|^{-1}U^*$ and $||T^{-1}|| = ||T|^{-1}||$. With m(T) as in section 4 we see that

$$(*) m(T) = ||T^{-1}||^{-1}.$$

Since $|T| \ge m(T)I$ we can use [13, Lemma 6] as in the proof of Theorem 4.2 to find unitaries U_1, U_2 in \mathfrak{U} , such that with $\lambda_0 = \frac{1}{2}(1 + m(T))$ we have

$$|T|=\lambda_0 U_1+(1-\lambda_0)U_2.$$

Multiplying this equation with U we see that

(**)
$$\lambda_{u}(T) \ge \lambda_{0} = \frac{1}{2}(1 + m(T)).$$

Conversely, if $T = \lambda U + (1 - \lambda)B$ with U in $\mathfrak U$ and B in $\mathfrak B$ we get (as in the proof of Theorem 4.2)

$$m(T) = \inf\{||\lambda Ux + (1-\lambda)Bx|| \mid ||x|| = 1\} \geqslant 2\lambda - 1.$$

This holds for any decomposition, so

$$m(T) \geqslant 2\lambda_{\rm u}(T) - 1.$$

Combined with (**) (and inserting (*)) we get the desired equation.

REMARK 5.2. It is amusing to note, that when T is invertible the number m(T) (= $||T^{-1}||^{-1}$) in formulas serves as a measure of the "negative distance" from T to \mathfrak{A}^{-1} . (It is the distance to the boundary of \mathfrak{A}^{-1} .) This happens in Theorem 5.1 but also in Proposition 3.5. For if $T \in \mathfrak{A}^{-1}$, so that T = U|T| with U in \mathfrak{A} , then U is an approximant to T in \mathfrak{A} , and

$$dist(T, \mathfrak{U}) = ||T - U|| = |||T| - I|| =$$
$$= \max\{||T|| - 1, \ 1 - m(T)\},\$$

cf. [19, Proposition 3.5].

It is also worthwhile to realize that when T is invertible the two functions λ and λ_u agree on T.

PROPOSITION 5.3. If T is an invertible element in the unit ball of a C^* -algebra \mathfrak{A} , then

$$\lambda_{\rm u}(T)=\lambda(T).$$

Proof. We have $\lambda_{\mathbf{u}}(T) = \frac{1}{2}(1 + ||T^{-1}||^{-1}) > \frac{1}{2}$. If we had $\lambda_{\mathbf{u}}(T) < \lambda(T)$, there would be a pair V, B in $\mathfrak{C} \times \mathfrak{B}$ such that

$$T = \lambda V + (1 - \lambda)B, \quad \lambda > \lambda_{\mathrm{u}}(T) > \frac{1}{2}.$$

With $A = \lambda^{-1}T$ we then have $A \in \mathfrak{A}^{-1}$ and

$$||V - A|| = ||(\lambda^{-1} - 1)B|| \le \lambda^{-1} - 1 < 1.$$

But them $V \in \mathfrak{U}$ by proposition 3.3, so $\lambda \leqslant \lambda_{u}(T)$, a contradiction. Consequently $\lambda(T) \leqslant \lambda_{u}(T)$, whence $\lambda(T) = \lambda_{u}(T)$.

THEOREM 5.4 For a C*-algebra 21 the following conditions are equivalent:

(i) For every T in \mathfrak{B} and $0 < \varepsilon < \frac{1}{2}$ there are unitaries U_1, U_2, U_3 such that

$$T=\frac{1}{2}(1-\varepsilon)U_1+\frac{1}{2}(1-\varepsilon)U_2+\varepsilon U_3.$$

- (ii) $\lambda_{\mathbf{u}}(T) \geqslant \frac{1}{2}$ for every T in \mathfrak{B} .
- (iii) \mathfrak{A} has the uniform $\lambda_{\mathbf{u}}$ -property $(\lambda_{\mathbf{u}}(T) \geqslant \varepsilon > 0 \ \forall T \in \mathfrak{B})$.
- (iv) A has the λ_{u} -property ($\lambda_{u}(T) > 0 \ \forall T \in \mathfrak{B}$).
- (v) dist $(T, \mathfrak{A}^{-1}) < 1$ for every T in \mathfrak{B} .
- (vi) $sr(\mathfrak{A}) = 1$ (i.e. \mathfrak{A}^{-1} is dense in \mathfrak{A}).

Proof. The implications (i) \Rightarrow (ii) \Rightarrow (iii) \Rightarrow (iv) are trivial; and (iv) \Rightarrow (v), because if $T = \lambda U + (1 - \lambda)B$ with $\lambda > 0$, then $\lambda U \in \mathfrak{A}^{-1}$ so

$$\operatorname{dist}(T,\mathfrak{A}^{-1}) \leqslant ||T - \lambda U|| \leqslant 1 - \lambda < 1.$$

The implications (v) \Rightarrow (vi) and (vi) \Rightarrow (i) are due to Rørdam, [31, Theorem 2.6 and Corollary 3.6]. The first is proved by negation: if $T \in \mathfrak{B}$ such that $\alpha = \operatorname{dist}(T, \mathfrak{A}^{-1}) > 0$, define S = Vf|T|, where T = V|T| is the polar decomposition of T (in $\mathcal{B}(\mathfrak{H})$) and $f(t) = 1 \wedge \alpha^{-1}t$. Since f(0) = 0 and f is continuous it follows that $S \in \mathfrak{A}$ (so $S \in \mathfrak{B}$). But if $\operatorname{dist}(S, \mathfrak{A}^{-1}) < 1$, then with E_{δ} as the spectral projection of |S| corresponding to the interval $|\delta, \infty[$ there is by Theorem 3.1 a unitary U in \mathfrak{U} , such that $VE_{\delta} = UE_{\delta}$ for some $\delta < 1$. Now, since S = Vf(|T|) and T = V|T|, it follows that E_{δ} is also a spectral projection of |T|, but corresponding to the interval $|\alpha\delta, \infty[$. Since $\alpha\delta < \alpha$, this contradicts Theorem 3.1 applied to T. Thus $\operatorname{dist}(S, \mathfrak{A}^{-1}) = 1$, as desired. The other implication (vi) \Rightarrow (i) is an immediate corollary to Theorem 2.1.

CORGILARY 5.5. A function algebra C(X), where X is a compact Hausdorff space, has the λ -property if and only if the (covering) dimension of X is at most one, in which case C(X) has the uniform λ -property for $\lambda = \frac{1}{2}$.

Proof. Since we are explicitly dealing with algebras over the complex numbers, the invertible functions on X are dense in C(X) iff $\dim(X) \leq 1$. See [29, §1] for a general discussion.

Replacing stable rank with real rank we have a partial generalisation of Theorem 5.4 to infinite C^* -algebras, see Theorem 10.4.

6. ATTAINING THE λ -VALUES

The definition of the λ -function and of the λ_u -function involves a supremum, and it is natural to ask when this supremum is attained. Thus, if $\lambda(T) > 0$ we ask for the existence of a pair V, B in $\mathfrak{E} \times \mathfrak{B}$ such that

$$T = \lambda(T)V + (1 - \lambda(T))B.$$

For spaces of the form $C(X, \mathfrak{M})$, X compact Hausdorff and \mathfrak{M} an infinite dimensional, strictly convex normed space, Aron and Lohman find this to be the case if the element (function) does not attain the value 0 [12, Theorems 1.6 and 1.9]. In our case the spaces involved are never strictly convex, but the same phenomenon persists.

PROPOSITION 6.1. If T is an invertible element in the unit ball of a C^* -algebra \mathfrak{A} , then

$$T = \lambda(T)V + (1 - \lambda(T))W$$

for some V, W in $\mathfrak{U} \times \mathfrak{U}$.

Proof. In the proof of Theorem 5.1, see (**), we constructed a decomposition

$$T = \lambda_0 U U_1 + (1 - \lambda_0) U U_2,$$

with U, U_1, U_2 in \mathfrak{U} and $\lambda_0 = \frac{1}{2}(1+m(T))$. We further showed that $\lambda_0 = \lambda_{\mathbf{u}}(T)$, when $T \in \mathfrak{A}^{-1}$ with T = U|T|. Since $\lambda_{\mathbf{u}}(T) = \lambda(T)$ by Proposition 5.3, we are done.

When the elements are non-invertible, the λ -function values are only attained in the presense of severe conditions. Thus, for example, we see from Theorem 4.2 that if $\mathfrak A$ is a von Neumann algebra, then the λ -values are attained. Less will do, but only by resorting to highly non-separable spaces. We illustrate the problems in the commutative case.

PROPOSITION 6.2 If X is a compact, metric space, such that for every f in C(X) the number $\lambda(f)$ is attained in a decomposition for f, then X is finite.

Proof. If X is infinite there is a convergent sequence (x_n) in X with $x_n \neq x_m$ for $n \neq m$. Passing if necessary to a subsequence we may assume that $\operatorname{dist}(x_n, x_0) < (2(n\pi)^{-1})$ for all n, where $x_0 = \lim x_n$ and dist denotes the metric on X. Put $Y = \{x_n | n \geq 0\}$ and define h in C(Y) by $h(x_0) = 0$, $h(x_n) = 2(n\pi)^{-1}$, $1 \leq n$. By

Tietze's extension theorem h extends to an element in C(X) (again denoted by h) with $0 \le h \le 1$. We may assume that h(x) > 0 for all $x \ne x_0$, replacing otherwise h with the expression

$$(h(x) \vee \operatorname{dist}(x, x_0)) \wedge 1$$
,

which does not change h on Y. Now define f in C(X) by

$$f(x) = h(x)\exp(\mathrm{i}h(x)^{-1}), \quad x \in X \setminus \{x\},$$

and $f(x_0) = 0$. By construction, $f(x_n) = 2(n\pi)^{-1}i^n$ for all n (with $i = \sqrt{-1}$). We claim that f can be approximated by invertible functions. Indeed, with

$$f_n(x) = h(x) \exp(\mathrm{i}(h(x)^{-1} \wedge n))$$

we clearly have elements in C(X) with distance zero to the set of invertible elements, because f_n is a product of a positive and an invertible function. But $f_n(x) = f(x)$ if $h(x) \ge n^{-1}$, and

$$|f_n(x) - f(x)| \leqslant 2h(x) \leqslant 2n^{-1}$$

otherwise. It follows from Theorem 5.1 that $\lambda(f) = \frac{1}{2}$.

If we had a decomposition

$$f=\frac{1}{2}(u+b)$$

with u unitary (i.e. a circle-valued function) and b of norm ≤ 1 in C(X), then

$$2\operatorname{Re} u^*f = \operatorname{Re}(1 + u^*b) \geqslant 0.$$

Consequently Re $\overline{u}(x_n)i^n \ge 0$ for all n, which is impossible since $(u(x_n))$ converges to $u(x_0)$.

For the characterization of function algebras in which the λ -values are attained, we need the concept of a *sub-Stonean* space, meaning a (locally) compact Hausdorff space X such that any two disjoint, open, σ -compact subsets of X have disjoint closures. These spaces have amused (general) topologists since 1956, when they appeared in works by L. Gillman, M. Henriksen and M. Jerison under the name of F-spaces. They were rediscovered by G. Choquet, who coined the term sub-Stonean spaces. Some of their properties are discussed in [8].

If Y is an open subset of a compact Hausdorff space X, there is a continuous map $\Phi: \beta(Y) \to \overline{Y}$ from the Stone-Čech compactification $\beta(Y)$ of Y onto the closure if Y in X, extending the embedding map of Y into X.

LEMMA 6.3. The map $\Phi: \beta(Y) \to \overline{Y}$ mentioned above is a homeomorphism for every open, σ -compact subset Y of X if and only if X is a sub-Stonean space.

Proof. If X is a sub-Stonean, then each of the maps Φ is a homeomorphism by [8, Theorem 1.10]. Conversely, if all the Φ 's are homeomorphisms, take open, σ -compact, disjoint sets Y and Z in X. Then $\beta(Y \cup Z) = \beta(Y) \oplus \beta(Z)$ (topological direct sum), and since

$$\Phi: \beta(Y) \oplus \beta(Z) \longrightarrow \overline{Y} \cup \overline{Z}$$

is a homeomorphism, it follows that \overline{Y} and \overline{Z} are disjoint. Therefore X is sub-Stonean, as claimed.

PROPOSITION 6.4. [30] If X is a compact Hausdorff space, the following conditions are equivalent:

- (i) X is sub-Stonean and $\dim(X) \leq 1$.
- (ii) Every element f in C(X) has a unitary polar decomposition f = u|f|, with u in $\mathfrak{U}(C(X))$.
- (iii) $\mathfrak{B}(C(X)) = \frac{1}{2}(\mathfrak{U}(C(X)) + \mathfrak{U}(C(X))).$

Proof. (i) \Rightarrow (ii). Given f in C(X), let

$$Y = \{x \in X \mid f(x) \neq 0\},\$$

and define w on Y by $w(x) = f(x)|f(x)|^{-1}$. Since Y is open and σ -compact, \overline{Y} is homeomorphic to $\beta(Y)$ (cf. Lemma 6.3), and as $w \in C_b(Y) = C(\beta(Y))$, it extends by continuity to a unitary function on \overline{Y} (again denoted by w). Because $\dim(X) \leq 1$, every unitary function w on a closed subset extends to an element u in $\mathfrak{U}(C(X))$, and evidently f = u|f|.

(ii) \Rightarrow (iii). If $f \in C(X)$, with $||f|| \leq 1$, we have f = u|f| for some u in $\mathfrak{U}(C(X))$. Define

$$v = |f| + i(1 - |f|^2)^{\frac{1}{2}}.$$

Then v is unitary and

$$\frac{1}{2}(uv+uv^*)=u|f|=f.$$

(iii) \Rightarrow (i). If $f = \frac{1}{2}(u + v)$, u and v unitaries, then

$$g = \frac{1}{2}(1+\varepsilon)u + \frac{1}{2}(1-\varepsilon)v$$

is invertible for every $\varepsilon > 0$, and $||f - g|| \le \varepsilon$. It follows that the invertible elements are dense in C(X), whence $\dim(X) \le 1$.

Now let Y and Z be the disjoint open, σ -compact subsets of X, and choose positive functions f and g in C(X) of norm less than 1, with Y and Z as their co-zero sets. By assumption we have unitary functions u and v, such that

$$f - \mathrm{i}g = \frac{1}{2}(u + v).$$

If x is a point on the boundary of Z, it follows from plane geometry that u(x) (and v(x)) equals ± 1 . Similarly, if x is on boundary of Y we get $u(x) \in \{\pm i\}$. Consequently $\overline{Y} \cap \overline{Z} = \emptyset$, so that X is sub-Stonean.

We say that a compact Hausdorff space X is 2-sub-Stonean if for each open, σ -compact subset Y of X the map $\Phi: \beta(Y) \to \overline{Y}$, mentioned above, is at most of order 2 at any point. This means that a point x on the boundary of Y can be reached as a limit of at most two distinct universal nets in Y.

LEMMA 6.5. A compact Hausdorff space X is 2-sub-Stonean if and only if given any pairwise disjoint, open, σ -compact subsets Y_1, Y_2, Y_3 of X we have

$$\overline{Y}_1 \cap \overline{Y}_2 \cap \overline{Y}_3 = \emptyset.$$

Proof. If $x \in \overline{Y}_1 \cap \overline{Y}_2 \cap \overline{Y}_3$ for some disjoint, open, σ -compact subsets of X, put $Y = Y_1 \cup Y_2 \cup Y_3$. Then the map $\Phi : \beta(Y) \to \overline{Y}$ will have order 3 at the point x (i.e. $\Phi^{-1}(x)$ consist at least 3 points), because

$$\beta(Y) = \beta(Y_1) \oplus \beta(Y_2) \oplus \beta(Y_3).$$

Conversely, assume that X is not 2-sub-Stonean. Thus for some open, σ -compact subset Y of X we have distinct points $\gamma_1, \gamma_2, \gamma_3$ in $\beta(Y)$, such that $\Phi(\gamma_i) = x$ for some x in \overline{Y} and i = 1, 2, 3. Choose f in $C_b(Y)$ such that $f(\gamma_i)$, i = 1, 2, 3, are three distinct points in \mathbb{C} , and let A_i , i = 1, 2, 3, be the pairwise disjoint, open neighbourhoods of the $f(\gamma_i)$'s. Put $Y_i = f^{-1}(A_i)$ (as subsets of Y) to obtain pairwise disjoint, open, σ -compact subsets of X. Since $\beta(Y_i)$ is the closure of Y_i in $\beta(Y)$, it follows that $\gamma_i \in \beta(Y_i)$, whence $x \in \Phi(\beta(Y_i)) = \overline{Y_i}$ for all i.

THEOREM 6.6. If $\mathfrak{A} = C(X)$ is a comutative C^* -algebra with the unit ball \mathfrak{B} and unitary group \mathfrak{U} , then

$$\mathfrak{B} = \frac{1}{2}(\mathfrak{U} + \mathfrak{B})$$

if X is a sub-Stonean space with $\dim(X) \leq 1$. Conversely, if (*) is satisfied then X must be 2-sub-Stonean with $\dim(X) \leq 1$.

Proof. The first statement is contained in Proposition 6.4. To prove the second, note first that if $u \in \mathcal{U}$ and $b \in \mathfrak{B}$, then

$$(1+\varepsilon)u+(1-\varepsilon)b$$

is invertible for every $\varepsilon > 0$ and close to u + b. As in the proof of Proposition 6.4 it follows that (*) implies that $\dim(X) \leq 1$.

To prove that X is 2-sub-Stonean, let Y_1, Y_2, Y_3 be pairwise disjoint, open, σ -compact subsets of X, and choose positive functions f_1, f_2, f_3 in C(X) of norm less than 2 with co-zero sets Y_1, Y_2, Y_3 , respectively. Let $\theta = \exp\left(\frac{2}{3}\pi i\right)$, and define

$$f = \theta f_1 + \theta^2 f_2 + f_3.$$

If (*) is satisfied we have f = u + b for some u in $\mathfrak U$ and b in $\mathfrak B$. For any x in Y_3 we have

$$u(x)+b(x)=f_3(x)>0,$$

and it follows from plane geometry that $\operatorname{Re} u(x) \geqslant \frac{1}{2} f_3(x)$. If therefore x belongs to the boundary of Y_3 we see from the continuity of u that

$$\operatorname{Re} u(x) \geqslant 0.$$

Similar arguments show that if x belongs to the boundary of Y_2 or Y_1 , then

$$\operatorname{Re} \theta u(x) \geqslant 0$$
 and $\operatorname{Re} \theta^2 u(x) \geqslant 0$,

respectively. If now $x \in \overline{Y}_1 \cap \overline{Y}_2 \cap \overline{Y}_3$, then u(x) should belong to 3 half-spaces in C, whose intersections is $\{0\}$. But |u(x)| = 1, and we have reached a contradiction. Thus X is 2-sub-Stonean, as claimed.

PROPOSITION 6.7. There exists a compact Hausdorff space X, which is not sub-Stonean (but only 2-sub-Stonean), such that C(X) satisfies the condition (*) in Theorem 6.6.

Proof. Take $X_1 = \beta(\mathbf{R}_+) \setminus \mathbf{R}_+$. Combining Theorem 3.2, Proposition 3.5 and Theorem 3.6 in [8] we see that X_1 is a connected, sub-Stonean space of dimension 1. Choose any non-trivial open, σ -compact subset Y of X_1 , and let x_0 be a point in $\overline{Y} \setminus Y$. (If none existed, Y would be closed as well as open, contradicting the fact that X_1 is connected.) Let X_2 be another copy of X_1 , and define X to be the topological union of X_1 and X_2 , glued together at x_0 . Thus X is a compact, connected Hausdorff space of dimension 1; but it is not sub-Stonean, because the two copies of Y (in X_1 and X_2) are disjoint open, σ -compact subsets of X with a common boundary point, viz. x_0 .

We wish to prove that the λ -values are attained for any element in the unit ball of C(X) (which is slightly more than promised by (*)). To do this, note that

$$C(X) = \{(f_1, f_2) \in C(X_1) \times C(X_2) \mid f_1(x_0) = f_2(x_0)\},\$$

and take $f = (f_1, f_2)$ in the unit ball of C(X). If f is invertible, its λ -value is attained by Proposition 6.1. We may therefore assume that f is not invertible, whence

 $\lambda(f) \leqslant \frac{1}{2}$. However, since dim(X) = 1, we know from Corollary 5.5 that $\lambda(f) \geqslant \frac{1}{2}$ for every f; so in our case $\lambda(f) = \frac{1}{2}$.

If $f(x_0) \neq 0$ we choose by Proposition 6.4 unitaries u_1, u_2 in $\mathfrak{U}(C(X_1))$ and $\mathfrak{U}(C(X_2))$, respectively, such that $f_i = u_i | f_i|$, i = 1, 2. Then

$$u_1(x_0) = f_1(x_0)|f_1(x_0)|^{-1} = f_2(x_0)|f_2(x_0)|^{-1} = u_2(x_0),$$

so that $u = (u_1, u_2)$ is a unitary in C(X) with f = u[f]. With $v = |f| + i(1 - |f|^2)^{\frac{1}{2}}$ this, as on previous occasions, gives

$$f=\frac{1}{2}(uv+uv^*).$$

We are left with the case where $f(x_0) = 0$. To simplify matters, use Proposition 6.4 to find w_1 in $\mathfrak{U}(C(X_1))$ such that $f_1 = w_1|f_1|$, and extend it from the closed subset X_1 to a continuous, circle-valued function w on the one-dimensional space X. Replacing f with w^*f we see that it suffices to consider the case where $f = (f_1, f_2)$, $f_1(x_0) = f_2(x_0) = 0$ and $f_1 \geq 0$. Working in the sub-Stonean space X_2 , we use Proposition 6.4 to find elements v_1, v_2 in $\mathfrak{U}(C(X_2))$, such that $f_2 = \frac{1}{2}(v_1 + v_2)$. The remaining task is to find suitable continuous extensions of these functions on X_1 . We may assume, without loss of generality, that $\operatorname{Re}(v_1(x_0)) \geq 0$. (Otherwise we consider v_2 ; and since $v_1(x_0) + v_2(x_0) = 0$, one of them will work.) Furthermore we may assume that $\operatorname{Im}(v_1(x_0)) \geq 0$, since the argument for $\operatorname{Im}(v_1(x_0)) \leq 0$ is quite symmetric. Let

$$Z = \{x \in X_1 | f_1(x) \leq \operatorname{Re} v_1(x_0) \}.$$

This is a closed subset of X_1 containing x_0 . For each x in Z we define

$$v(x) = v_1(x_0), \quad b(x) = 2f_1(x) - v_1(x_0).$$

It is easy to check that $|b(x)| \leq 1$, and clearly $f_1 = \frac{1}{2}(v+b)$ on Z. Moreover, v and b are continuous extensions of v_1 and v_2 from X_2 to $X_2 \bigcup_{x_2} Z$, because

$$b(x_0) = -v_1(x_0) = v_2(x_0).$$

For each x in $X_1 \setminus Z$ we define

$$v(x) = f_1(x) + i(1 - |f_1(x)|^2)^{\frac{1}{2}},$$

$$b(x) = f_1(x) - i(1 - |f_1(x)|^2)^{\frac{1}{2}}.$$

Again it is clear that these functions are unitary and continuous on $X_1 \setminus Z$, with $f_1 = \frac{1}{2}(v + b)$. To see that v and b are, in fact, continuous on X, consider any point

x on the boundary of Z. By definition of Z we must then have $f_1(x) = \text{Re}(v_1(x_0))$, which implies that

$$v(x) = v_1(x_0) = f_1(x) + i(1 - |f_1(x)|^2)^{\frac{1}{2}}.$$

Moreover,

$$b(x) = 2f_1(x) - v_1(x_0) = f_1(x) - i(1 - |f_1(x)|^2)^{\frac{1}{2}}.$$

We see that v and b on the boundary of Z agree with the definitions of v and b given on $X_1 \setminus Z$, and thus v and b are continuous on all of X_1 . Put $w = (v, v_1)$ and $c = (b, v_2)$. Then w and c belong to C(X), w is unitary and $||c|| \leq 1$; and, most importantly,

 $f=\frac{1}{2}(w+c).$

Theorem 6.6 is not quite satisfactory, since we do not obtain a classification of those compact Hausdorff spaces X for which the λ -values are attained for all elements in C(X). Moreover, the concept of 2-sub-Stonean spaces is somewhat artificial; and the author has been unable to produce examples of such spaces except, as in Proposition 6.7, by glueing together sub-Stonean spaces at a finite number of points. The author fears that the problem does not admit a clean solution.

Extending the results above to the general, non-comutative case seems nontrivial. For C^* -algebras that are σ -finite (in the sense that any family of non-zero, pairwise orthogonal elements is countable) Haagerup and Rørdam in [10] showed that the condition

$$\mathfrak{B}=\frac{1}{2}(\mathfrak{U}+\mathfrak{U})$$

implies that $\mathfrak U$ is a finite AW^* -algebra. It was known from [25, Proposition 2.7] that the condition implies that $\mathfrak B=\mathfrak U\mathfrak B_{\operatorname{sa}}$, so the aim of their ingeneous argument was to provide a unitary polar decomposition T=U|T| for every self-adjoint T in $\mathfrak B$. Replacing one copy of $\mathfrak U$ with $\mathfrak B$ as in Theorem 6.6, we no longer have $\mathfrak B=\mathfrak U\mathfrak B_{\operatorname{sa}}$ for free, so the Haagerup-Rørdam argument is not directly applicable.

Looking for sufficient conditions that will give unitary polar decompositions we meet the SAW^* -algebras. A C^* -algebra $\mathfrak A$ is an SAW^* -algebra (sub- AW^*) if for any two elements S,T in $\mathfrak A$ with ST=0, there is an E in $\mathfrak A$, with $0\leqslant E\leqslant I$, such that

$$SE = 0 = (I - E)T.$$

As shown in [23] a commutative C^* -algebra $\mathfrak{A} = C(X)$ is an SAW^* -algebra if and only if X is a sub-Stonean space. Pertinent to our discussion is the fact from [25, Theorem 3.5], that if every element in a C^* -algebra $\mathfrak A$ has a unitary polar decomposition (in

symbols: $\mathfrak{A} = \mathfrak{UA}_+$), then \mathfrak{A} is an SAW^* -algebra with \mathfrak{A}^{-1} dense in \mathfrak{A} . The converse holds under the additional hypothesis (which may be vacuously true) that also $\mathcal{M}_2(\mathfrak{A})$ is an SAW^* -algebra.

Thus from the Haagerup-Rørdam result, Proposition 6.4 and Theorem 6.6 we can make an educated guess of a general result.

Conjecture 6.8. For a unital C^* -algebra $\mathfrak A$ the following conditions are equivalent:

- (i) $\mathfrak{B} = \frac{1}{2}(\mathfrak{U} + \mathfrak{U}).$
- (ii) $\mathfrak{A} = \mathfrak{U}\mathfrak{A}_+$.
- (iii) $\mathfrak A$ is an SAW^* -algebra with $sr(\mathfrak A) = 1$ (i.e. $\mathfrak A^{-1}$ is dense in $\mathfrak A$).

Moreover, if $\mathfrak{A} \subset \mathcal{B}(\mathfrak{H})$, with \mathfrak{H} separable, then already the condition

(iv)
$$\mathfrak{B} = \frac{1}{2}(\mathfrak{U} + \mathfrak{B})$$

will imply that 21 is a von Neumann algebra.

7. LEFT INVERTIBLE ELEMENTS

The relative ease with which the λ_u -function can be calculated for elements in a C^* -algebra $\mathfrak A$ is partly due to the easily established series of inclusions:

$$\mathfrak{B}^{-1} \subset \mathfrak{UB}_{+} \subset \frac{1}{2}(\mathfrak{U} + \mathfrak{U}) \subset \frac{1}{2}(\mathfrak{U} + \mathfrak{B}) \subset (\mathfrak{B}^{-1})^{=};$$

where $\mathfrak{B}^{-1} = \mathfrak{B} \cap \mathfrak{A}^{-1}$ by definition. The distance, $\alpha(T)$, of an element T in \mathfrak{B} to (any of) the sets in (*) determines $\lambda_{\mathfrak{A}}(T)$ (if $T \notin \mathfrak{A}^{-1}$), cf. Theorem 5.1.

To determine the λ -function we shall need the multiplicative semigroup of left invertible elements

$$\mathfrak{A}_{\ell}^{-1} = \{ A \in \mathfrak{A} \, | \, \mathfrak{A}A = \mathfrak{A} \}.$$

Thus $A \in \mathfrak{A}_{\ell}^{-1}$ if BA = I for some B in \mathfrak{A} . It follows from the open mapping theorem that $A \in \mathfrak{A}_{\ell}^{-1}$ if and only if A is injective with closed range, so that

$$\mathfrak{A}_{\ell}^{-1} = \{ A \in \mathfrak{A} \mid m(A) > 0 \},$$

with m(A) as in section 4. From this, or using the equation BA = I, so that

$$I = A^*B^*BA \le ||B||^2A^*A = ||B||^2|A|^2$$

we see that |A| is invertible. Moreover, $V = A|A|^{-1}$ is an isometry $(V^*V = I)$. Consequently, $A \in \mathfrak{A}_{\ell}^{-1}$ if and only if it has a polar decomposition A = V|A|, with V an isometry and |A| invertible. In symbols,

$$\mathfrak{A}_{\ell}^{-1}=\mathfrak{E}_{i}\mathfrak{A}_{+}^{-1},$$

where \mathfrak{E}_i denotes the set of isometries in \mathfrak{A} (so that $\mathfrak{E}_i \subset \mathfrak{E}$).

Setting $\mathfrak{B}_{\ell}^{-1} = \mathfrak{B} \cap \mathfrak{A}_{\ell}^{-1}$ we have a series of inclusions, corresponding to (*), given by

$$\mathfrak{B}_{\boldsymbol{\ell}}^{-1}\subset \mathfrak{E}_{i}\mathfrak{B}_{+}\subset \frac{1}{2}(\mathfrak{E}_{i}+\mathfrak{E}_{i})\subset \frac{1}{2}(\mathfrak{E}_{i}+\mathfrak{B})\subset (\mathfrak{B}_{\boldsymbol{\ell}}^{-1})^{=}.$$

The last of these from the observations that if $V \in \mathfrak{E}_i$ and $B \in \mathfrak{B}$, then for t < 1,

$$V + tB = (I + tBV^*)V \in \mathfrak{A}^{-1}V \subset \mathfrak{A}_{\ell}^{-1},$$

or, equally effective,

$$m(V + tB) \geqslant 1 - ||tB|| \geqslant 1 - t > 0.$$

In section 8 we will consider *-invariant conditions, so we shall need also the set \mathfrak{A}_r^{-1} of right invertible elements. Note that $\mathfrak{A}_r^{-1} = (\mathfrak{A}_\ell^{-1})^*$.

If $\mathfrak A$ is a finite C^* -algebra, then $\mathfrak A_\ell^{-1}=\mathfrak A^{-1}$. Indeed, if $A\in \mathfrak A_\ell^{-1}$, then A=U|A| with |A| in $\mathfrak A^{-1}$ and $U^*U=I$. By finiteness, $UU^*=I$, so U is unitary and $A\in \mathfrak A^{-1}$. On the other hand, if $\mathfrak A_\ell^{-1}$ is dense in $\mathfrak A$, then $\mathfrak A$ is finite. For if $A\in \mathfrak A_\ell^{-1}$ and BA=I, we can find C in $\mathfrak A_\ell^{-1}$ close to B such that ||I-CA||<1. But then $CA\in \mathfrak A^{-1}$, and if DC=I we have

$$A = DCA \in D\mathfrak{A}^{-1} \in \mathfrak{A}_r^{-1};$$

whence $A \in \mathfrak{A}_{r}^{-1} \cap \mathfrak{A}_{r}^{-1} = \mathfrak{A}^{-1}$, and Corollary 3.4 applies.

By contrast, consider $\mathfrak{A}=\mathbf{B}(\mathfrak{H})$, and let S be the unilateral shift on $\ell^2=\mathfrak{H}$, cf. section 9. Then, of course, $S\in\mathfrak{A}_{\ell}^{-1}$, since $S^*S=I$, but $||S-A||\geqslant 1$ for every A in \mathfrak{A}_r^{-1} . Yet $\mathfrak{A}_\ell^{-1}\cup\mathfrak{A}_r^{-1}$ is dense in \mathfrak{A} (for any factorial von Neumann algebra \mathfrak{A}) by Proposition 3.6.

For any element T in a C^* -algebra $\mathfrak A$ we define

$$\alpha_{\ell}(T) = \operatorname{dist}(T, \mathfrak{A}_{\ell}^{-1}).$$

Moreover, working on some Hilbert space \mathfrak{H} , we consider the polar decomposition T = V|T| in $\mathcal{B}(\mathfrak{H})$, and denote by E_{δ} the spectral projection of |T| corresponding to the interval $]\delta, \infty[$, cf. section 3.

THEOREM 7.1. For each $\delta > \alpha_{\ell}(T)$ there is an isometry U in \mathfrak{E}_{i} , such that $UE_{\delta} = VE_{\delta}$. For $\delta < \alpha_{\ell}(T)$ there is no isometric extension of VE_{δ} in \mathfrak{A} .

Proof. If $\delta > \alpha_{\ell}(T)$ there is an A in \mathfrak{A}_{ℓ}^{-1} such that $||T-A|| < \delta$. Write A = W|A|, where $W \in \mathfrak{E}_i$ and $|A| \in \mathfrak{A}^{-1}$. Then $||TW^* - AW^*|| < \delta$, and since $AW^* \in (\mathfrak{A}^{-1})^{-1}$ (because $W|A|W^* + \varepsilon I \in \mathfrak{A}^{-1}$ for every $\varepsilon > 0$) it follows that $\alpha(TW^*) < \delta$, with α as in section 5.

Note now that TW^* has the polar decomposition $VW^*(W|T|W^*)$. Moreover, if f is a polynomial without constant term, then $f(W|T|W^*) = Wf(|T|)W^*$. The relation therefore holds when f is a Borel function (with f(0) = 0), so if E_{δ} is the spectral projection for |T|, corresponding to the interval $]\delta, \infty[$, then $WE_{\delta}W^*$ is the corresponding spectral projection for $W|T|W^*$.

Applying Theorem 3.1 to TW^* we find a unitary U in $\mathfrak U$ such that

$$UWE_{\delta}W^* = VW^*(WE_{\delta}W^*) = VE_{\delta}W^*.$$

Therefore, $UW \in \mathfrak{E}_i$ and $UWE_{\delta} = VE_{\delta}$, as desired.

Conversely, if $U \in \mathfrak{E}_i$ such that $UE_{\delta} = VE_{\delta}$ for some $\delta > 0$, define $f(t) = (t - \delta) \vee 0$. Then $S = Vf(|T|) \in \mathfrak{A}$. In fact, since f(t) = 0 for $t \leq \delta$, we have

$$S = V f(|T|) E_{\delta} = U E_{\delta} f(|T|) = U f(|T|) \in (\mathfrak{A}_{\ell}^{-1})^{=},$$

because $f(|T|) + \varepsilon I \in \mathfrak{A}^{-1}$ for every $\varepsilon > 0$. Since

$$||T - S|| = |||T| - f(|T|)|| \le \delta,$$

it follows that $\alpha_{\ell}(T) \leq \delta$.

COROLLARY 7.2. Each element of the form Vf(|T|), where f is a continuous function on $\operatorname{sp}|T|$ such that f(t) = 0 for $t \leq \delta$, for some $\delta > \alpha_{\ell}(T)$, has a polar decomposition Uf(|T|) = Vf(|T|), where U is an isometry in \mathfrak{A} .

PROPOSITION 7.3. If a C^* -algebra $\mathfrak A$ contains an element T with $\alpha_{\ell}(T) > 0$, then there is an S in $\mathfrak B$ with $\alpha_{\ell}(S) = 1$. If, moreover, $\alpha_{\ell}(T^*) \geqslant \alpha_{\ell}(T)$ we may assume that also $\alpha_{\ell}(S^*) = 1$.

Proof. As in the proof of Theorem 5.4 we regard $\mathfrak A$ as a C^* -subalgebra of some $\mathcal B(\mathfrak H)$ and let T=V|T| be the polar decomposition of |T|. Assuming, as we may, that ||T||=1 we let S=Vf(|T|), where $f(t)=1 \wedge \alpha_{\ell}(T)^{-1}t$ for $0 \leq t \leq 1$.

If $\alpha_{\ell}(S) < 1$, then with E_{δ} as the spectral projection of |S| corresponding to the interval $]\delta, \infty[$, there is by Theorem 7.1 an isometry U in \mathfrak{E}_{i} such that $UE_{\delta} = VE_{\delta}$ for some $\delta < 1$. Since S = Vf(|T|) and T = V|T|, it follows that E_{δ} is also a spectral projection for |T|, but corresponding to the interval $]\delta\alpha_{\ell}(T), \infty[$. Since $\delta\alpha_{\ell}(T) < \alpha_{\ell}(T)$, this contradicts Theorem 7.1, applied to T. Thus $\alpha_{\ell}(S) = 1$.

If $\alpha_{\ell}(T^*) \ge \alpha_{\ell}(T)$ and $\alpha_{\ell}(S^*) < 1$, then, since $S^* = V^*(V|S|V^*)$, we can apply the previous argument to find an isometry U in \mathfrak{E}_i , such that

$$U(VE_{\delta}V^*) = V^*(VE_{\delta}V^*)$$

with $\delta > 1$. Since $VE_{\delta}V^*$ is the spectral projection of $|T^*|$ (= $V|T|V^*$) corresponding to the interval $]\delta\alpha_{\ell}(T), \infty[$, we conclude from Theorem 7.1, applied to T^* , that $\alpha_{\ell}(T^*) \leq \delta\alpha_{\ell}(T)$. But $\alpha_{\ell}(T^*) \geq \alpha_{\ell}(T)$ by assumption, and again we have reached a contradiction. Thus also $\alpha_{\ell}(S^*) = 1$.

LEMMA 7.4. (Cf. [20, Cor. 2.3]). For every T in a C^* -algebra $\mathfrak A$ and any isometry U in $\mathfrak E_i$ the spectrum of TU^* contains a disc about the origin with radius $\alpha_\ell(T)$.

Proof. If $\lambda \in \mathbb{C}$ with $|\lambda| < \alpha_{\ell}(T)$, but $\lambda \notin \operatorname{sp}(TU^*)$, then $TU^* - \lambda I = A \in \mathfrak{A}^{-1}$. But then

$$||T - AU|| = ||\lambda U|| = |\lambda| < \alpha_{\ell}(T),$$

a contradiction, since $AU \in \mathfrak{A}_{\ell}^{-1}$.

THEOREM 7.5. Let \mathfrak{E}_i be the set of isometries in a C^* -algebra \mathfrak{A} , and take T in \mathfrak{A} . If $T \notin \mathfrak{A}_I^{-1}$ then

$$\operatorname{dist}(T,\mathfrak{E}_{i}) = \max\{||T|| - 1, \, \alpha_{\ell}(T) + 1\}.$$

Otherwise we have an approximant V in & with

$$dist(T, \mathfrak{E}_i) = ||T - V|| = \max\{||T|| - 1, 1 - m(T)\}.$$

Proof. If $T \notin \mathfrak{A}_{t}^{-1}$ then for any U in \mathfrak{E}_{i}

$$||T - U|| \ge ||U^*T - I|| \ge r(U^*T - I) \ge 1 + \alpha_{\ell}(T),$$

because the spectral radius of U^*T-I must be at least $1+\alpha_\ell(T)$ by Lemma 7.4. Clearly we also have $||T-U|| \ge ||T||-1$, so we have established inequality in the formula above. To prove the reverse inequality, consider $\delta > \alpha_\ell(T)$. As in the proof of Theorem 7.1 there is an isometry W in \mathfrak{E}_i such that $\alpha(TW^*) < \delta$. By Proposition 3.5 there is for any $\varepsilon > 0$ a unitary U in \mathfrak{U} such that

$$||TW^*-U||<\max\{||TW^*||-1+\varepsilon,\,\delta+1\}.$$

But then $UW \in \mathfrak{E}_i$ with

$$||T - UW|| \le ||TW^* - U|| < \max\{||T|| - 1 + \varepsilon, \ \delta + 1\}.$$

Since ε and δ are arbitrary we get

$$\operatorname{dist}(T, \mathfrak{E}_{\mathrm{i}}) \leqslant (||T||-1) \vee (\alpha_{\ell}(T)+1),$$

and thus equality.

If $T \in \mathfrak{A}_{\ell}^{-1}$ we have a polar decomposition T = V|T| with V in \mathfrak{E}_{i} and |T| in \mathfrak{A}^{-1} . Thus, as in the proof of Theorem 5.1 (see (*)), we have $m(T) = || |T|^{-1} ||^{-1}$ and evidently

$$||T-V|| = |||T|-I|| = (||T||-1) \vee (1-m(T)).$$

Conversely, if $U \in \mathfrak{E}_i$ then, of course, $||T - U|| \ge ||T|| - 1$, and moreover

$$||U-T|| = \sup ||(U-T)x|| \geqslant$$

$$\geqslant \sup ||Ux|| - ||Tx|| = 1 - \inf ||Tx|| = 1 - m(T),$$

when x ranges over the set of unit vectors in \mathfrak{H} . Thus, in this case

$$\operatorname{dist}(T,\mathfrak{E}_{\mathrm{i}})\geqslant (||T||-1)\vee (1-m(T)),$$

which, in conjunction with the previous result, completes the proof.

8. PRIME C*-ALGEBRAS

Using the result from section 7 we can extend the λ -theory to a large class of infinite C^* -algebras.

For any element T in a C^* -algebra $\mathfrak A$ we define

$$\alpha_{\mathbf{q}}(T) = \operatorname{dist}(T, \mathfrak{A}_{\ell}^{-1} \cup \mathfrak{A}_{r}^{-1}) =$$
$$= \alpha_{\ell}(T) \wedge \alpha_{\ell}(T^{*}).$$

As with the definition of $m_q(T)$ from m(T) in section 4, we would have liked to define $\alpha_q(T)$ as an infinum of distances to \mathfrak{A}_t^{-1} of elements $ZT + (I-Z)T^*$; instead of just taking Z = 0 and Z = I, cf. (***) in section 4. The absense of spectral projections in C^* -algebra theory prevents this, but it also explains why our program will only work in C^* -algebras that are prime, i.e. where $S\mathfrak{A}T = 0$ implies S = 0 or T = 0 for any pair S, T in \mathfrak{A} . The λ -theory for general C^* -algebras, as well as the theory for extremal extensions, approximations and convex decompositions, will be carried out in [34]. In a prime C^* -algebra \mathfrak{A} , the extreme points are either isometries or co-isometries, so that

$$\mathfrak{E} = \mathfrak{E}_i \cup \mathfrak{E}_i^*$$
;

and we see why $\alpha_{\mathbf{q}}(T)$ can be used in this context. Alternatively, we could define a special λ -function on general C^* -algebras, related to $\mathfrak{E}_i \cup \mathfrak{E}_i^*$ in analogy with the $\lambda_{\mathbf{u}}$ -function in section 5. But this time we will play fair.

THEOREM 8.1. If $\mathfrak A$ is prime C^* -algebra and $T \in \mathfrak B$, then

$$\lambda(T) = \frac{1}{2}(1 - \alpha_{\mathsf{q}}(T))$$

if $T \notin \mathfrak{A}_r^{-1} \cup \mathfrak{A}_r^{-1}$. Otherwise

$$\lambda(T) = \frac{1}{2}(1 + m_{\mathsf{q}}(T)),$$

where $m_q(T) = m(T) \vee m(T^*)$.

Proof. If $\alpha > \alpha_{\mathbf{q}}(T)$ there is an element A in $\mathfrak{A}_{t}^{-1} \cup \mathfrak{A}_{r}^{-1}$ with $||T - A|| < \alpha$. We may assume that A = V|A| with V in \mathfrak{E}_{i} and |A| in \mathfrak{A}^{-1} , passing otherwise to T^{*} . Consequently

$$\alpha(TV^*) = \operatorname{dist}(TV^*, \mathfrak{A}^{-1}) \leqslant ||TV^* - V|A|V^*|| < \alpha.$$

By Theorem 5.1 there is a pair U, B in $\mathfrak{U} \times \mathfrak{B}$ such that

$$TV^* = \frac{1}{2}(1-\alpha)U + \frac{1}{2}(1+\alpha)B.$$

Since $V^*V = I$ this means that

$$T = \frac{1}{2}(1-\alpha)UV + \frac{1}{2}(1+\alpha)BV;$$

and since $UV \in \mathfrak{E}$ and $\alpha > \alpha_q(T)$ was arbitrary we conclude that

$$\lambda(T) \geqslant \frac{1}{2}(1 - \alpha_{q}(T)).$$

Conversely, if

$$T = \lambda V + (1 - \lambda)B$$

for some V in \mathfrak{E} and B in \mathfrak{B} , we may assume that $V^*V = I$ (passing otherwise to T^*). Assume for the moment that $\lambda \leq \frac{1}{2}$ and ||B|| < 1. Then, as we pointed out in the beginning of section 7, cf (**),

$$V + B = (I + BV^*)V \in \mathfrak{A}_{\ell}^{-1},$$

because $I + BV^* \in \mathfrak{A}^{-1}$, so that

$$V^*(1+BV^*)^{-1}(V+B) = I.$$

Since in our case

$$T - \lambda(V + B) = (1 - 2\lambda)B,$$

we conclude that $\alpha_{\ell}(T) \leq 1 - 2\lambda$. The condition ||B|| < 1 can be removed by continuity, and the conclusion is that

$$\alpha_{\mathsf{q}}(T) \leqslant 1 - 2\lambda(T)$$

provided that $\lambda(T) \leqslant \frac{1}{2}$. But if $\lambda > \frac{1}{2}$, the same arguments shows that

$$T = \lambda(V + \lambda^{-1}(1 - \lambda)B) \in \mathfrak{A}_{\ell}^{-1}.$$

Thus if $T \notin \mathfrak{A}_{r}^{-1} \cup \mathfrak{A}_{r}^{-1}$ it follows from (*) and (**) that

$$\lambda(T) = \frac{1}{2}(1 - \alpha_q(T)).$$

If $T \in \mathfrak{A}_{\ell}^{-1}$ we have T = V[T] with V in \mathfrak{E}_i and |T| in \mathfrak{A}^{-1} . Thus

$$m(T) = \| |T|^{-1} \|^{-1}.$$

As in the proof of Theorem 5.1 this implies that

$$|T| = \lambda_0 U_1 + (1 - \lambda_0) U_2,$$

where $\lambda_0 = \frac{1}{2}(1+m(T))$ and $U_1, U_2 \in \mathfrak{U}$. It follows that

$$(***) T = \lambda_0 V U_1 + (1 - \lambda_0) V U_2,$$

so that $\lambda(T) \ge \lambda_0$. Conversely, if $T = \lambda V + (1 - \lambda)B$ with V in \mathfrak{E}_i and B in \mathfrak{B} then

$$m(T) = \inf\{||Tx|| \mid ||x|| = 1\} \geqslant 2\lambda - 1,$$

so that $m(T) \ge 2\lambda(T) - 1$. Applying the same arguments to T^* we finally conclude that if T is left or right invertible, then

$$\lambda(T) = \frac{1}{2}(1 + m_{\mathbf{q}}(T)).$$

COROLLARY 8.2. If T is a left or right invertible element of a prime C^* -algebra \mathfrak{A} , then

$$T = \lambda(T)V + (1 - \lambda(T))W$$

for some V, W in E.

Proof. See (***) in the proof of Theorem 8.1.

THEOREM 8.3. A prime C^* -algebra $\mathfrak A$ has the λ -property if and only if

$$(\mathfrak{A}_{\ell}^{-1}\cup\mathfrak{A}_{r}^{-1})^{=}=\mathfrak{A},$$

in which case it has the uniform λ -property for $\lambda = \frac{1}{2}$.

Proof. By Theorem 8.1 we have $\lambda(T) \geqslant \frac{1}{2}$ if and only if $\alpha_q(T) = 0$ for all T in \mathfrak{B} , i.e. if and only if $\mathfrak{A}_{\ell}^{-1} \cup \mathfrak{A}_{r}^{-1}$ is dense in \mathfrak{A} . Moreover, \mathfrak{A} has the λ -property if and only if $\alpha_q(S) < 1$ for every S in \mathfrak{B} . But if $\alpha_q(T) > 0$ for some T in \mathfrak{B} , we may assume that $\alpha_{\ell}(T^*) \geqslant \alpha_{\ell}(T) > 0$, whence $\alpha_q(S) = 1$ for some S in \mathfrak{B} by Proposition 7.3.

9. EXAMPLES OF INFINITE C*-ALGEBRAS

For general (infinite, non-prime) C^* -algebras we have no explicit formula for the λ -function. Some interesting examples can, however, be computed. For this we need a few results from classical index theory, found in any number of textbooks, e.g. [26, 3.3]. We also wish to mention some results from C^* -algebraic K-theory (non-classical index theory), and refer the reader to [4], [19] or [33], in decreasing order of complexity.

On the separable Hilbert space \mathfrak{H} (= ℓ^2) we let \mathfrak{K} denote the algebra of compact operators, and we denote by \mathfrak{F} the set of Fredholm operators in $\mathbf{B}(\mathfrak{H})$ — the operators whose images in the Calkin algebra $\mathbf{B}(\mathfrak{H})/\mathfrak{K}$ are invertible.

THEOREM 9.1. Let $\mathfrak A$ be a C^* -subalgebra of $B(\mathfrak H)$ containing $\mathfrak K$, such that $\mathfrak F \cap \mathfrak A$ is dense in $\mathfrak A$. Then $\lambda(T) \geqslant \frac{1}{2}$ for every T in $\mathfrak B$.

Proof. Since A is a minimal ideal, A is prime, so by Theorem 8.3 it suffices to show that the left or right invertible elements in A are dense.

Given T in \mathfrak{B} and $\varepsilon > 0$ we can by assumption find F in $\mathfrak{F} \cap \mathfrak{A}$ such that $||T - F|| < \varepsilon$. Since $\lambda(T) = \lambda(T^*)$ we may assume, without loss of generality, that the index n of F is ≤ 0 , considering otherwise T^* and F^* . Since $\mathfrak{K} \subset \mathfrak{A}$ we can choose a partial isometry A of finite rank from ker F into ker F^* . As ker $F^* = F(\mathfrak{H})^{\perp}$, the operator F + A is an injection of \mathfrak{H} onto a closed subspace $(= F(\mathfrak{K}) \oplus A(\mathfrak{H}))$ of co-dimension -n. By the open mapping theorem $(F + A)^*(F + A)$ is invertible, so that

$$F + A = V|F + A|$$

for some isometry $V = (F + A)|F + A|^{-1}$ in \mathfrak{A} . Since $F^*A = FA^* = 0$, it follows that F = V|F|. Likewise, $F + \varepsilon A = V|F + \varepsilon A|$, where $|F + \varepsilon A| \in \mathfrak{A}^{-1}$. Thus $F + \varepsilon A \in \mathfrak{A}_L^{-1}$, and

$$||T - (F + \varepsilon A)|| < 2\varepsilon.$$

Since ε is arbitrary it follows that $\alpha_q(T) = 0$, whence $\lambda(T) \ge \frac{1}{2}$ by Theorem 8.3.

Let S denote the unilateral shift on ℓ^2 , i.e.

$$S(\alpha_1,\alpha_2,\ldots)=(0,\alpha_1,\alpha_2,\ldots).$$

Thus S is an isometry in $\mathfrak F$ with index -1. Since $S^n(1-SS^*)$ is the rank one operator that takes the first basis vector to the n'th, it is not hard to see that the C^* -algebra $\mathfrak F$ generated by S—the Toeplitz algebra—contains the algebra $\mathfrak F$ of compact operators. Since the image of S in the Calkin algebra is a unitary with full spectrum, we have a short exact sequence

$$0 \longrightarrow \mathfrak{K} \xrightarrow{i} \mathfrak{T} \xrightarrow{q} C(\mathsf{T}) \longrightarrow 0.$$

We choose the identification of $\mathfrak{T}/\mathfrak{K}$ with $C(\mathsf{T})$ such that $q(T_f) = f$ for every f in $C(\mathsf{T})$. Here T_f is the Toeplitz operator on the Hardy space H^2 (identified with ℓ^2); so $T_f = PM_fP$, where P is the projection of $L^2(\mathsf{T})$ onto H^2 , and M_f is the ordinary multiplication operator on $L^2(\mathsf{T})$.

COROLLARY 9.2. The Toeplitz algebra \mathfrak{T} has the uniform λ -property for $\lambda = \frac{1}{2}$.

Proof. Since $\mathfrak{K} \subset \mathfrak{T}$ and the invertible elements are dense in $\mathfrak{T}/\mathfrak{K}$ (= $C(\mathsf{T})$), the conditions in Theorem 9.1 are met.

Our final example is a curious non-prime C^* -algebra, which is finite in the Murray-von Neumann sense, but which nevertheless contains non-unitary extreme points. For this we shall need the *-automorphism θ of C(T) of order two, given by

$$\theta f(t) = f(t^{-1}), \quad t \in \mathsf{T}.$$

PROPOSITION 9.3. If $\mathfrak A$ is the C^* -algebra of operators on $\mathfrak H=\ell^2\oplus\ell^2$, generated by $T=S\oplus S^*$, then $\mathfrak A$ consists of those elements in $\mathbf B(\mathfrak H)$ of the form $B\oplus C$, where $B\in\mathfrak T$, $C\in\mathfrak T$ and $q(B)=\theta q(C)$.

Proof. The set \mathfrak{A}_0 of elements $B \oplus C$ in $\mathfrak{T} \oplus \mathfrak{T}$, such that $q(B) = \theta q(C)$ evidently constitutes a normclosed, *-subalgebra of $B(\mathfrak{H})$, i.e. a C^* -algebra. Since $q(S) = \mathrm{id}$ and $q(S^*) = \mathrm{id} = \mathrm{id}^{-1}$ (where $\mathrm{id}(t) = t$ on T), we see that $T = S \oplus S^* \in \mathfrak{A}_0$, whence $\mathfrak{A} \subset \mathfrak{A}_0$.

To prove the converse inclusion, note that

$$T^*T - TT^* = (I \oplus I - P_1) - (I - P_1 \oplus I) = P_1 \oplus -P_1$$

where P_1 denotes the rank one projection on the first basis vector. Thus $P_1 \oplus 0 \in \mathfrak{A}$ and $0 \oplus P_1 \in \mathfrak{A}$. Moreover, as $T^n(P_1 \oplus 0) = S^n P_1 \oplus 0$ we see, as before, that \mathfrak{A} contains the ideal $\mathfrak{K} \oplus 0$. Similarly $0 \oplus \mathfrak{K} \subset \mathfrak{A}$. The projection $Z = I \oplus 0$ in $B(\mathfrak{H})$ commutes with

 \mathfrak{A} (because it commutes with T), so the map $A \to AZ$ is a *-homomorphism of \mathfrak{A} . Since $TZ = S \oplus 0$ we see that $\mathfrak{A}Z = \mathfrak{T} \oplus 0$. Now take any element $B \oplus C$ in \mathfrak{A}_0 . There is an element A in \mathfrak{A} such that AZ = B. Since $\mathfrak{A} \subset \mathfrak{A}_0$ we know that $A = B \oplus D$, where $\theta q(D) = q(B)$. But also $\theta q(C) = q(B)$, so q(D) = q(C); i.e. $C - D = K \in \mathfrak{A}$. As $0 \oplus \mathfrak{A} \subset \mathfrak{A}$,

$$A + (0 \oplus K) = B \oplus (D + K) = B \oplus C \in \mathfrak{A}$$

whence $\mathfrak{A}_0 \subset \mathfrak{A}$.

PROPOSITION 9.4. With A as in 9.3, the set & of extreme points in the unit ball B is the disjoint union

$$\mathfrak{E} = \bigcup_{n \in \mathbb{Z}} \mathfrak{U} T^n \mathfrak{U},$$

where T^{-n} should be interpreted as T^{*n} and $T^0 = I$. In particular, \mathfrak{E} contains no non-unitary isometries, so $\mathfrak A$ is Murray-von Neumann finite.

Proof. If $V \in \mathfrak{E}$, then $V = U \oplus W$ for some partial isometries U and W in \mathfrak{T} . In fact, since we have $\mathfrak{A}Z = \mathfrak{T} \oplus 0$ and $\mathfrak{A}(I-Z) = 0 \oplus \mathfrak{T}$ (with $Z = I \oplus 0$ as in the proof of Proposition 9.3), both U and W must be extreme in \mathfrak{T} . They are therefore either isometries or co-isometries, and in particular they belong to \mathfrak{F} . Since the winding number of the function q(U) is - index U, and since θ reverses the direction of its path, we see that

$$index W = -index U$$
.

Assume now that index $U = n \ge 0$. Thus W is an isometry, U a co-isometry, and $S^n U$ and $S^n W$ are partial isometries of index zero. Choose partial isometries A and B of finite rank from $\ker S^n U$ to $\ker U^* S^{*n}$ and from $\ker S^{*n} W$ to $\ker W^* S^n$, respectively. Then

$$U_1 = S^n U + A \oplus S^{*n} W + B$$

is a unitary in A, because both summands are unitaries in T and

$$\theta q(S^n U + A) = \theta q(S^n)\theta q(U) =$$

$$= q(S^{*n})q(W) = q(S^{*n}W + B).$$

We have

$$T^{*n}U_1 = S^{*n}(S^nU + A) \oplus S^n(S^{*n}W + B) =$$

$$= (U + S^{*n}A) \oplus (S^nS^{*n}W + S^nB) = U \oplus S^n(S^{*n}W + B),$$

because

$$A(\ell^2) = \ker (U^*S^{*n}) = \ker S^{*n}.$$

Both W and $S^n(S^{*n}W+B)$ are isometries in $\mathfrak T$ with index -n, so

$$V_2 = W(W^*S^n + B^*)S^{*n} + C$$

is unitary in \mathfrak{T} for a partial isometry C of finite rank. Since

$$\ker C = S^n (S^{*n}W + B)\ell^2 = S^n \ell^2,$$

it follows that $CS^n = 0$, so

$$V_2 S^n (S^{*n} W + B) =$$

$$= (W(W^* S^n + B^*) S^{*n} + C) S^n (S^{*n} W + B) = W.$$

Finaly, $WW^* = I - Q$ and $S^nS^{*n} = I - P$ for some projections P and Q of rank n, so

$$V_2 = (I - Q)(I - P) + WB^*S^{*n} + C = I + K$$

where $K \in \mathfrak{K}$. Consequently, $U_2 = I \oplus V_2$ is unitary in \mathfrak{A} by Proposition 9.3, and

$$U_2T^{*n}U_1 = (I \oplus V_2)(U \oplus S^n(S^{*n}W + B)) = U \oplus W,$$

as desired.

The case where index U < 0 follows from the above by considering $V^* = U^* \oplus W^*$, and the proof is complete.

PROPOSITION 9.5. The C*-algebra $\mathfrak A$ from 9.3 and 9.4 has the uniform λ -property with $\lambda = \frac{1}{2}$.

Proof. From the Proposition 9.3 we see that there is a short exact sequence

$$(*), \qquad 0 \longrightarrow \mathfrak{K} \oplus \mathfrak{K} \xrightarrow{i} \mathfrak{A} \xrightarrow{p} C(\mathsf{T}) \longrightarrow 0$$

where we choose p such that $p(B \oplus C) = q(B)$ for every $B \oplus C$ in \mathfrak{A} and $q : \mathfrak{T} \to C(T)$ as above. We can therefore use almost the same arguments as in Theorem 9.1.

If $A = B \oplus C \in \mathfrak{A}$ and $\varepsilon > 0$ we can find $E = F \oplus G$ in \mathfrak{A} such that p(E) (= $q(F) = \theta q(G)$) is invertible in C(T), and such that

$$||B - F|| \lor ||C - G|| = ||(B - F) \oplus (C - G)|| = ||A - E|| < \varepsilon.$$

Regarding F and G as elements in $\mathfrak{T} \cap \mathfrak{F}$ we may assume that

$$index F = -index G = n \le 0$$

(considering otherwise A^* and E^*). As in the proof of Theorem 9.1 this implies that

$$F = V|F|, \quad G = W^*|G|,$$

where V and W are isometries in \mathfrak{T} . Since

$$\theta q(V) = \theta \left(q(F)q(F^*F)^{-\frac{1}{2}} \right) =$$

$$= q(G)q(G^*G)^{-\frac{1}{2}} = q(W^*),$$

it follows from the Proposition 9.3 that $V^* \oplus W$ and $V \oplus W^*$ are elements in $\mathfrak A$. For each element $X \oplus Y$ in $\mathfrak A$ define

$$\rho(X \oplus Y) = XV^* \oplus WY, \quad \sigma(X \oplus Y) = XV \oplus W^*Y.$$

Since

$$\theta q(XV^*) = q(Y)q(W) = q(W)q(Y) = q(WY),$$

and similarly $\theta q(XV) = q(W^*Y)$, it follows that ρ and σ are normdecreasing linear maps of $\mathfrak A$ into itself. Moreover, $\sigma \circ \rho$ =identity. Now

$$||\rho(A) - |F^*| \oplus |G||| = ||BV^* \oplus WC - FV^* \oplus WG|| =$$

$$= ||(B-F)V^* \oplus W(C-G)|| = ||\rho(A-E)|| < \varepsilon,$$

and since $q(|F^*|) = q(|F|)$ we see from Proposition 9.3 that $|F^*| \oplus |G| = \rho(E) \in \mathfrak{A}$. Evidently $|F^*| \oplus |G| \in (\mathfrak{A}^{-1})^=$, so

$$\operatorname{dist}(\rho(A),\mathfrak{A}^{-1})<\varepsilon.$$

By Theorem 5.1 this means that $\lambda_{\rm u}(\rho(A)) > \frac{1}{2}(1-\varepsilon)$, so

$$\rho(A) = \frac{1}{2}(1-\varepsilon)U + \frac{1}{2}(1+\varepsilon)D$$

for some U in \mathfrak{U} and D in \mathfrak{B} . Consequently

$$A = \sigma \rho(A) = \frac{1}{2}(1 - \varepsilon)\sigma(U) + \frac{1}{2}(1 + \varepsilon)\sigma(D).$$

Here $\sigma(U) \in \mathfrak{B}$, whereas, if $U = U_1 \oplus U_2$, we have

$$\sigma(U) = U_1 V \oplus W^* U_2 \in \mathfrak{E}.$$

It follows that $\lambda(A) \geqslant \frac{1}{2}(1-\varepsilon)$, and since ε is arbitrary $\lambda(A) \geqslant \frac{1}{2}$.

REMARK 9.6. Using the six term exact sequence in K-theory arising from the short exact sequence (*) in the previous proof, we find that $K_1(\mathfrak{A}) = 0$ whereas

 $K_0(\mathfrak{A}) = \mathbf{Z} \oplus \mathbf{Z}$, one copy of \mathbf{Z} for the finite projections and one copy for the co-finite projections. The interesting part of the diagram reads

where $\delta(n) = (n, n), e(n, m) = (n - m, 0)$ and f(n, m) = m.

10. PURELY INFINITE C*-ALGEBRAS

We now consider C^* -algebras that are infinite in the extreme. Recall from [5] that a C^* -algebra $\mathfrak A$ has real rank zero if for every pair S,T of elements in $\mathfrak A$ such that ST=0, and every $\varepsilon>0$, there is a projection P in $\mathfrak A$ such that SP=0 and $\|(I-P)T\|<\varepsilon$. This condition has a number of equivalent formulations. One is that $\mathfrak A^{-1}\cap \mathfrak A_{\operatorname{sa}}$ should be dense in $\mathfrak A_{\operatorname{sa}}$. Another, seemingly much stronger, is that the set of self-adjoint elements with finite spectra is dense in $\mathfrak A_{\operatorname{sa}}$.

Following Cuntz [6] a simple C^* -algebra $\mathfrak A$ is said to be purely infinite if it has real rank zero and every non-zero projections is infinite (i.e. Murray-von Neumann equivalent to a proper subprojection). This implies that for any pair P,Q of non-zero projections, there is a partial isometry V in $\mathfrak A$ such that $V^*V=P$ and $VV^*\leqslant Q$. A number of equivalent formulations are found in [15].

THEOREM 10.1. If $\mathfrak A$ is a purely infinite C^* -algebra, the set of elements T of the form T = V|T|, where V is an isometry or a co-isometry in $\mathfrak A$, is dense in $\mathfrak A$. Thus

$$(\mathfrak{E}\mathfrak{A}_+)^==\mathfrak{A}.$$

Proof. If $T \in \mathfrak{A}$ it has a polar decomposition T = V|T|, with V in \mathfrak{A}'' , cf. section 3. It follows from the (Stone-)Weierstrass theorem that $Vf(|T|) \in \mathfrak{A}$ whenever f is a continuous function on $\operatorname{sp}|T|$ vanishing at zero. We also note that $T^* = V^*|T^*|$ is the polar decomposition of T^* , with $|T^*| = V|T|V^*$.

If $|T| \in \mathfrak{A}^{-1}$ then $V = T|T|^{-1}$ is an isometry in \mathfrak{A} . Similarly, if $|T^*| \in \mathfrak{A}^{-1}$ then V^* is an isometry, so V is a co-isometry in \mathfrak{A} . If 0 is an isolated point both in $\operatorname{sp}|T|$ and in $\operatorname{sp}|T^*|$, let e(t)=1 if $t\in \operatorname{sp}|T|\setminus\{0\}$ and e(0)=0. Then P=e(|T|) and $Q=e(|T^*|)$ are projections in \mathfrak{A} and V=VP=QV. As I-P and I-Q are non-zero projections in \mathfrak{A} , and \mathfrak{A} is purely infinite, there is a partial isometry W in \mathfrak{A} with $W^*W=I-P$ and $WW^*\leqslant I-Q$. Then U=W+V is an isometry in \mathfrak{A} , and T=U|T|.

We are left with the case where 0 is an accumulation point both in $\operatorname{sp}|T|$ and in $\operatorname{sp}|T^*|$. Given $\varepsilon > 0$ we define

$$f_1(t) = (t - \varepsilon) \lor 0, \quad f_2(t) = (t - 2\varepsilon) \lor 0,$$
 $g_1(t) = (1 - \varepsilon^{-1}t) \lor 0, \quad g_2(t) = (1 - (2\varepsilon)^{-1}t) \lor 0,$

for $t \ge 0$. Assuming, as we may, that ||T|| = 1, we see that

$$f_1(|T^*|)g_1(|T^*|) = f_2(|T|)g_2(|T|) = 0,$$

because $f_i g_i = 0$, $1 \le i \le 2$. Since \mathfrak{A} has real rank zero we can therefore find projections P and Q in \mathfrak{A} such that

$$(I-P)g_2(|T|) = 0, \quad ||Pf_2(|T|)|| \le \varepsilon,$$

 $||(I-Q)g_1(|T^*|)|| \le \varepsilon, \quad Qf_1(|T^*|) = 0.$

Evidently P and Q are non-zero, since $g_1(0) = g_2(0) = 1$ and $0 \in \operatorname{sp}|T| \cap \operatorname{sp}|T^*|$. Since $\mathfrak A$ is purely infinite we can therefore find a partial isometry W in $\mathfrak A$ such that $W^*W = P$ and $WW^* \leq Q$. Now define $S = \varepsilon W + V f_1(|T|)$. Then $S \in \mathfrak A$ with

$$||T-S|| \leqslant \varepsilon + ||V(|T|-f_1(|T|))|| \leqslant \varepsilon + ||\mathrm{id}-f_1||_{\infty} = 2\varepsilon.$$

On the other hand

$$S^*S = \varepsilon^2 P + f_1^2(|T|) + 2\varepsilon \operatorname{Re} W^*V f_1(|T|) =$$

$$= \varepsilon^2 P + f_1^2(|T|) + 2\varepsilon \operatorname{Re} W^*Q f_1(|T^*|)V = \varepsilon^2 P + f_1^2(|T|) \geqslant$$

$$\geqslant \varepsilon^2 g_2(|T|) + f_1^2(|T|).$$

Since $\varepsilon^2 g_2(|t|) + f_1^2(|t|) > 0$ for $0 \le t \le 1$ (in fact $\varepsilon^2 g_2(t) + f_1^2(t) \ge \frac{7}{16}\varepsilon^2$) we see that |S| is invertible, whence S = U|S| for the isometry $U = S|S|^{-1}$ in \mathfrak{A} .

COROLLARY 10.2. Every purely infinite C^* -algebra has the uniform λ -property for $\lambda = \frac{1}{2}$.

Proof. Since $\mathfrak{A}_+ \subset (\mathfrak{A}^{-1})^=$ it follows from Theorem 10.1 that

$$\mathfrak{A}=(\mathfrak{C}\mathfrak{A}^{-1})^{=}=(\mathfrak{A}_{t}^{-1}\cup\mathfrak{A}_{r}^{-1})^{=}.$$

Thus $\alpha_q = 0$ for every T in \mathfrak{B} , whence $\lambda(T) \geqslant \frac{1}{2}$ by Theorem 8.3.

Again we may ask, as in section 6, whether the supremum in the λ -function is attained for the C^* -algebras considered in sections 8-10; and again the author is

inclined to bet that the answer is negative in general. Indeed, on the principle of not being hanged for a sheep, we offer the following companion to Conjecture 6.8.

CONJECTURE 10.3. For a unital C*-algebra 24 the following conditions are equivalent:

- (i) $\mathfrak{B} = \frac{1}{2} (\mathbf{E} + \mathbf{E})$.
- (ii) **2** = **€**21.
- (iii) A is an SAW*-algebra with (?).

Moreover, if $\mathfrak{A} \subset \mathsf{B}(\mathfrak{H})$, with \mathfrak{H} separable, then already the condition

(iv)
$$\mathfrak{B} = \frac{1}{2}(\mathfrak{C} + \mathfrak{B})$$

will imply that 21 is a von Neumann algebra.

Brief. Obviously (ii) \Rightarrow (i), so the job is to establish (i) \Rightarrow (ii). For condition (iii), note that any sort of weak polar decomposition will imply that $\mathfrak A$ is an SAW^* -algebra. Indeed, if ST=0 in $\mathfrak A$ we may assume that $S,T\in \mathfrak A_+$, replacing them otherwise with S^*S and TT^* . Now let R=S-T, and assume that we have a decomposition R=V|R| for some V in $\mathfrak A$ with $||V|| \leq 1$. (The norm estimate is crucial here.) Then

$$|R|(I-V^*V)|R| = |R|^2 - R^*R = 0,$$

whence $(I - V^*V)|R| = 0$ because $0 \le I - V^*V$.

In our situation |R| = S + T, so S - T = V(S + T), i.e.

$$(I-V)S = (I+V)T.$$

Squaring this equation we get

$$S(I + V^*V - V - V^*)S = T(I + V^*V + V + V^*)T,$$

which equals zero, since the two sides are orthogonal. Since $V^*VB = S$ and $V^*VT = T$ we derive the equations

$$(2-V-V^*)S=0=(2+V+V^*)T.$$

Let $E = \frac{1}{2}I - \frac{1}{4}(V + V^*)$. Then $0 \le E \le I$ and

$$ES=0=(I-E)T,$$

as desired.

We see that condition (ii) is much stronger than demanding that $\mathfrak A$ is an SAW^* -algebra. Therefore the enigmatic (?) in condition (iii) is needed for the (hopeful) implication (iii) \Rightarrow (ii). One necessary ingredient in (?), replacing Rieffels stable rank

one in Conjecture 6.6, can be given. Recall from [5] that a C^* -algebra $\mathfrak A$ has real rank n (in symbols $RR(\mathfrak A)=n$), if for any n+1-tuple A_1,\ldots,A_{n+1} of self-adjoint elements and $\varepsilon>0$ there is an n+1-tuple B_1,\ldots,B_{n+1} in $\mathfrak A_{\mathrm{sa}}$, with $||A_k-B_k||\leqslant \varepsilon$ for $1\leqslant k\leqslant n+1$, such that $\sum B_k^2\in\mathfrak A^{-1}$; and such that n is the smallest number for wich this condition is satisfied. If $\mathfrak A$ is commutative, i.e. $\mathfrak A=C(X)$, it follows from [5, Proposition 1.1] that $RR(\mathfrak A)=\dim X$. Moreover, by [5, Proposition 1.2] we always have $RR(\mathfrak A)\leqslant 2\mathrm{sr}(\mathfrak A)-1$. Thus if the stable rank of $\mathfrak A$ is 1 we know that the real rank of $\mathfrak A$ is 0 or 1. The converse is definitely false, since every von Neumann algebra has real rank zero, but infinite stable rank — unless it is finite.

THEOREM 10.4. If $\mathfrak A$ is a C^* -algebra satisfying the uniform λ -property for $\lambda = \frac{1}{2}$, then the real rank of $\mathfrak A$ is at most one.

Proof. Given A_1, A_2 in \mathfrak{A}_{sa} and $\varepsilon > 0$ we lat $T = A_1 + iA_2$. By scaling the elements we may assume that $||T|| \leq 1$. By assumption we can find V, B in $\mathfrak{E} \times \mathfrak{B}$ such that

$$T = \frac{1}{2} \left(1 - \frac{1}{2} \varepsilon \right) V + \frac{1}{2} \left(1 + \frac{1}{2} \varepsilon \right) B.$$

Let

$$T_0 = \frac{1}{2} \left(1 + \frac{1}{2} \varepsilon \right) V + \frac{1}{2} \left(1 - \frac{1}{2} \varepsilon \right) B.$$

Then $||T_0 - T|| = \left\| \frac{1}{2} \varepsilon (V - B) \right\| \le \varepsilon$, so if we write $T_0 = B_1 + iB_2$, with B_1, B_2 in \mathfrak{A}_{sa} , then $||B_k - A_k| \le \varepsilon$ for k = 1, 2. Moreover,

$$B_1^2 + B_2^2 = \frac{1}{2}(T_0^*T_0 + T_0T_0^*).$$

To show that the element above is invertible, consider the multiple S of T_0 given by

$$S = \left(\frac{1}{2}\left(1 + \frac{1}{2}\varepsilon\right)\right)^{-1}T_0 = V + tB,$$

where $t = (1 + \frac{1}{2}\varepsilon)^{-1} (1 - \frac{1}{2}\varepsilon) < 1$. Realizing $\mathfrak A$ as operators on some Hilbert space $\mathfrak H$, we let Z denote the projection on the closure of the subspace $\mathfrak A(I - V^*V)\mathfrak H$. Since

$$(I-VV^*)\mathfrak{A}(I-V^*V)=0,$$

it follows that Z belongs to the center of \mathfrak{A}'' (the von Neumann algebra generated by \mathfrak{A}), and that

$$(I - VV^*)Z = 0 = (I - V^*V)(I - Z).$$

Thus V(I-Z) is an isometry on $(I-Z)\mathfrak{H}$ and VZ is a co-isometry on $Z\mathfrak{H}$. Therefore

$$S^*S(I-Z) = (V^* + tB^*)(V + tB)(I-Z) =$$

$$= V^*(I + tVB^*)(I + tBV^*)V(I-Z) \geqslant$$

$$\geqslant V^*(1-t)^2V(I-Z) = (1-t)^2(I-Z).$$

Similarly,

$$SS^*Z = (V + tB)(V^* + tB)Z =$$

= $V(I + tV^*B)(I + tB^*V)V^*Z \ge$
 $\ge V(1 - t)^2V^*Z = (1 - t)^2Z.$

Consequently,

$$S^*S + SS^* \ge S^*S(I - Z) + SS^*Z \ge (1 - t)^2I$$

which proves that $B_1^2 + B_2^2$ is invertible.

REFERENCES

- 1. AKEMANN, C. A.; PEDERSEN, G. K., Facial structure in operator algebras, Proc. London Math. Soc., (3), 64(1992), 418-448.
- ARON, R. M.; LOHMAN, R. H., A geometric function determined by extreme points in the unit ball of a normed space, Pac. J. Math., 127(1987), 209-231.
- ARON, R. M.; LOHMAN, R. H.; SUAREZ, A., Rotundity, the C.S.R.P., and the λ-property
 in Banach spaces, Proc. Amer. Math. Soc., 111(1991), 151-155.
- 4. BLACKADAR, B., K-theory for operator algebras, MSRI Publ. 5, Springer Verlag, New York—Heidelberg.
- BROWN, L. G.; PEDERSEN, G. K, C*-algebras of real rank zero, J. Funct. Anal., 99(1991), 131-149.
- 6. CUNTZ, J., K-theory for certain C*-algebras, Annals of Math., 113(1981), 181-197.
- GARDNER, L. T., An elementary proof of the Russo-Dye theorem, Proc. Amer. Math. Soc., 90(1984), p. 181.
- 8. GROVE, K.; PEDERSEN, G. K., Sub-Stonean spaces and corona sets, J. Funct. Anal., 56(1984), 124-143.
- HAAGERUP, U., On convex combinations of unitary operators in C*-algebras, in Mappings of operator algebras, Editors Araki, H. and Kadison, R. V., 1-15, Progress in Mathematics 84, Birkhäuser, Basel, 1991.
- HAAGERUP, U.; RØRDAM, M., C*-algebras of unitary rank two. J. Operator Theory, to appear.
- HERMAN, R. H.; VASERSTEIN, L. V., The stable range of C*-algebras, Invent. Math 77(1984), 553-555.
- 12. KADISON, R. V., Isometries of operator algebras, Annals of Math., 54(1951), 325-338.
- KADISON, R. V.; PEDERSEN, G. K., Means and convex combinations of unitary operators, Math. Scand. 57(1985), 249-266.
- 14. KADISON, R. V.; RINGROSE, J. R., Fundamentals of the theory of operator algebras, I-II,
 Academic Press, London—New York, 1983 and 1986.
- LIN, H.; ZHANG, S., On infinite simple C*-algebras, J. Funct. Anal., 100(1991), 221-231.
- 16. LOHMAN, R. H, The λ-function in Banach spaces, Contemp. Math., 85(1989), 345-353.
- LOHMAN, R. H.; SHURA, T. J., Calculation of the λ-function for several classes of normed linear spaces, in *Nonlinear and convex analysis*, Editors Lin, B.-L. and Simons, S., 167-174. Marcel Dekker, New York, 1987.

- LOHMAN, R. H.; SHURA, T. J., The lambda-property for generalized direct sums of normed spaces, Bull. Austral. Math. Soc., 41 (1990), 441-450.
- MURPHY, G. J., C*-algebras and operator theory, Academic Press, London—New York, 1990.
- 20. OLSEN, C. L., Unitary approximation, J. Funct. Anal., 85(1989), 392-419.
- OLSEN, C. L.; PEDERSEN, G. K., Convex combinations of unitary operators in von Neumann algebras, J. Funct. Anal., 66(1986), 365-380.
- PEDERSEN, G. K., C*-algebras and their automorphism groups, LMS monographs 14, Academic Press, London—New York, 1979.
- PEDERSEN, G. K., SAW*-algebras and corona C*-algebras, contributions to non-commutative topology, J. Operator Theory, 15(1986), 15-32.
- PEDERSEN, G. K., Unitary extensions and polar decompositions in a C*-algebra, J. Operator Theory, 17(1987), 357-364.
- PEDERSEN, G. K., Three quavers on unitary elements in C*-algebras, Pacific J. Math., 137(1989), 169-180.
- PEDERSEN, G. K., Analysis Now, GTM 114, Springer Verlag, New York—Heidelberg, 1989.
- 27. PUTNAM, I. F., The invertibles are dense in the irrational rotation C*-algebras, J. Reine Angew. Math., 410(1990), 160-166.
- PUTNAM, I. F.; RØRDAM, M., The maximum unitary rank of some C*-algebras, Math. Scand., 63(1988), 297-304.
- RIEFFEL, M. A., Dimension and stable rank in the K-theory for C*-algebras, Proc. London Math. Soc., 46(1983), 301-333.
- ROBERTSON, A. G., Averages of extreme points in complex function spaces, J. London Math. Soc., (2) 19(1979), 345-347.
- RØRDAM, M., Advances in the theory of unitary rank and regular approximation, Annals of Math., 128(1988), 153-172.
- RUSSO, B.; DYE, H. A., A note on unitary operators in C*-algebras, Duke Math. J., 33(1966), 413-416.
- WEGGE-OLSEN, N. E., K-theory and C*-algebras. A friendly approach, Oxford Univ. Press, to appear in 1992.
- BROWN, L. G.; PEDERSEN, G. K., On the geometry of the unit ball of a C*-algebra, preprint, Univ. of Copenhagen 1992.

GERT K. PEDERSEN
Mathematics Institute,
University of Copenhagen,
Universitetsparken 5,
DK-2100 Copenhagen Ø,
Denmark

Received February 26, 1992; revised June 2, 1992.