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John Bunce in memoriam

1. INTRODUCTION

Let 2 be a normed space with closed unit ball 8, and denote by & the set of
extreme points of the convex set 8. In [2] Aron and Lohman investigate the A-
-function, defined on elements T of B to be the supremum, A(T), of numbers A in
(0,1] for which there exists a pair V, B in € x B, such that

T:AV+(1-—A)B.

Among other things they show that when 2 has the A-property (A(T) > 0 VT € B),
then every closed face of B contains extreme points, so that any convex function
on ‘B that attains its maximum must do so on €. Moreover, if A has the uniform
A-property (A(T) > € > 0 VT € B), then 2 has the Krein-Milman-like property that

(conv(€NF))= =7,

for every closed face § of B. Further results on the A-function for various classes of
normed spaces were obtained in [3], [16], [17], and [18].

Aron and Lohman ask in [2, Question 4.1]: “what spaces of operators have the
A-property, and what does the A-function look like for these spaces?” This paper is
written in an attempt to answer their question, in the case where ¥ is a normclosed
*-algebra of operators on some Hilbert space §), i.e. when 2 is a C*-algebra. It turns
out, namely, that a similar problem — originating in the classical Russo-Dye theorem
—— has received considerable interest lately in operator algebra theory, see [7], [9],
(10}, [13], [21], [24], [25], [28], and [31]). Thus we now have quite detailed knowledge
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of the geometry of unit balls in (C*-algebras. Indeed, we have — in principle -— a
complete characterization of the facial structure of such balls [1]. In order to make
this information available to non-specialists (i.e. mathematicians who specialize in
other arcas), the author has chosen a somewhat expansive style, repeating now and
then a wcllknown definition, and indicating the proofs of wellknown results. Honi soit
qui mal y pense.

It is a pleasure to thank Richard Aron for bringing the A-function and its litera-
ture to my attention, when both of us were attending the X Escuela Latinoamericano
Matematica in the hills of Cordoba last year. Thanks also (less pleasure, more em-

barrasment) to Larry Brown for some last-minute corrections.

2. NOTATIONS AND PRELIMINARIES

Throughtout this article % will denote a #-invariant algebra of bounded operators
on some Hilbert space ), closed in the norm topology on B($)). Abstractly this means
that 2 is a C*-algebra, i.e. a Banach algebra with an involution that satisfies the
condition ||T*T'|| = ||T)|? for every T in 2, cf. [14] or [22]. Sometimes we will further
assume that 2 is closed in the weak operator topology on B($)), in which case U is von
Neumann algebra. Abstractly this means that 2 is a dual space. In a von Neumann
algebra the unit ball is (weakly) compact, so that the Krein-Milman theorem applies.
Also 2 is generated by its projections (in the strong sense that the spectral resolution
of every normal operator in 2 belongs to %), and the set of projections in % forms
a complete lattice (a sublattice of the set of closed subspaces of $). Since this fact
is being used crucially a number of times, it is only fair to point out that a larger
class of (*-algebras (Kaplansky’s AW-algebras) have the same property. (But now
the lattice of projections is not necessarily a sublattice of subspaces of any Hilbert
space).

The closed unit ball of our C*-algebra 2 will always be denoted by B, and the set
of exireme points of B is denoted by €. We shall assume throughout that 2 is unital,
i.e. I € %, for the simple rcason that otherwise € =@. For a unital C*-algebra the
elements in € were characterized by Kadison in 1951 as follows ([12] or [22, 1.4.7)):

¢ ={Ve&B(I-VVIUI-V*V) =0}

Thus V' ¢ € if it is a partial isometry such that the two projections I — V*V and
I - VV* {on the kernels of V and V*, respectively) are centrally orthogonal (so that
even the two-sided ideals they generate are orthogonal). If therefore 2 is a prime
C*-algebra (like B($)), or, even better, simple (no non-trivial closed ideals), then
elements V in € are either isometries (V*V = I) or co-isometries (VV* = I).
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An important class of extreme points is the set i of unitary elements in A (ele-
ments U such that U*U = UU* = I, i.e. U* = U~!). In contrast to general elements
in &, the elements in 4l are normal operators. Moreover, they form a group under
multiplication, a subgroup of the group A~! of invertible elements in . For these
reasons there has been a natural tendency in operator algebra theory to concentrate
attention on i, in favour of the much more elusive elements in &\ 4l.

Under quite general circumstances we can deduce that € = i, thus avoiding the
problem above. We say that the C*-algebra is finite, if T*T = I implies TT* = I
for all T in 2, i.e. if every isometry is unitary. In case U is a von Neumann algebra
(and this is where the definition was first coined by Murray and von Neumann), this
implies that & = {. For if V € €, there is a central projection Z in 2 such that ZV
is an isometry in Z2, and (I — Z)V is a co-isometry in (I — Z) (see the proof of
Theorem 4.2); and the finiteness of 2 now implies that ZV + (I — Z)V* is unitary,
whence also V' € 4. The same argument will work if 2 is a finite AW*-algebra. For a
general finite C*-algebra 2 we need not have € = {{ (see Proposition 9.4), but in the
important case where 2 is simple (or just prime), so that elements in ¢ are isometries
or co-isometries, finiteness will, of course, imply € = {.

Rieffel introduced and studied the notion of topological stable rank for C*-
algebras [29), later identified with Bass’ stable rank from ring theory [11]. The lowest
rank, one, is the more tractable, and sr() = 1 simply means that 2~ is dense in
2A. Also in this case we can conclude that @ = U (and thus 2 is finite, as well, see
Corollary 3.3).

Even when non-unitary extreme points exists, the group il is rich enough to
ensure that convil is dense in B. This fact is the Russo-Dye theorem [7], [32]. We
now have much more precise information. As a crowning achievement, building on
earlier results from [13] and [21], Rgrdam proved in [31, 3.3] the following theorem.

THEOREM 2.1. If T is a non-invertible element in B, such that o(T) =
= dist(T,U™) < 1, there is for every f > 2(1 — «(T))~! unitaries Uy, Uy, ..., U,
in 4, where n — 1 < 8 < n, such that

T=8"YUr+Us+ -+ Up1) + 8B+ 1=-n)U,.

When € = i, this allows us to determine the A-function, see Theorem 5.1.

3. POLAR DECOMPOSITIONS

As von Neumann showed, every operator T" in B($)) has a polar decomposition
T = V|T|, where |T| = (T*T)% and V is a (unique) partial isometry such that
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ker V = ker T". The construction
V =limT (%I + |T|-1) ,

where the limit is taken in the strong operator topology, see e.g. [22, 2.2.9], shows
immediately that if 2 is a von Neumann algebra and T € o, then |T] € U and
V € U If Ais only a C*-algebra, we can not be certain that V' € U (although, of
course, |T| € U; and since V|7 € U, it follows from (Stone-)Weierstrass’ theorem
that Vf{(|T|) € A if f is continuous and f{0) = 0). Rather, V belongs to the von
Neumann algebra generated by U — equal to the double commutant U” of . But if
T € A1, then T' = U|T| for the unitary U = TYT|~* in . Also in other cases it is
possible to write elements in 2 with a unitary “sign”. The strongest known result in
this direction follows. It uses the spectral resolution of [T in U”. Thus for each § > 0

we denote by Es the spectral projection of |T'| corresponding to the open interval
16, 00f.

THrEOREM 3.1. If T is an clement in a C*-algebra 2 with polar decomposition
VT, then for each § > dist{T,%~') there is a unitary U in U, such that UEs = V Es.
For & < dist(T, A1) there is no unitary extension of VEs in .

Proof. See [24, Theorem 5] or {31, Theorem 2.2]. a2

CoroLLARY 3.2. Each element of the form V f(|T|), where f is a continuous
function on sp|T'| such that f(t) = 0 for t < §, and where § > dist(T,%™1), has a
unitary polar decomposition U f{|T'}) = Vf({T|) in A.

PROPOSITION 3.3. If V is an extreme point in B with dist(V,2~1) < 1, then
Vell

Proof. Let P = V*V and Q = VV* be the projections on the support and the
range of V| respectively. Then V == V P is the polar decomposition of V, so that, in
the notation above, P = Ej for any 6 in the interval ]0,1]. By Theorem 3.1 there is
a unitary U in U, such that UP = VP = V. Consequently, @ = VV* = UPU*.

By assumption, I — @@ and I - P are centrally orthogonal, so

0=(I-QUUI~P)=U(I-P)U'U(I-P)=U(I-P).
It follows that U = UP =V, s0 V € . ]
COROLLARY 3.4. If UA~! is dense in U then € = .

Theorem 3.1 also gives a neat proof of the formula relating the distances of an
element from 2U~! and from . ‘This formula was established by Olsen when 2 is a
von Neumann algebra [20, Theorem 3.8}, and by Rgrdam in the general case.
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PROPOSITION 3.5. If T @ U~ then

dist(7, 1) = max{||T|| - 1, dist(T, 24™!) + 1}.

Proof. {24, Theorem 10] or [31, Theorem 2.7]. |

The next result is known to most experts in von Neumann algebra theory, but
the author has been unable to locate a precise reference.

ProPosITION 3.6. If is a von Neumann algebra and T € 2, there is an extreme
point W in € such that T = W|T|.

Proof. The set
C={WeB|T=W|T|}

is a non-empty, convex, weakly closed subset of the weakly compact unit ball in B(§3).
By Krein-Milman’s theorem we can therefore find an extreme point W in €. Since

[IW]] = 1 we have W*W|T| = |T|, because
ITI(I - W*W)|T| =TT - T*T = 0.
Since W|W| and W (2 — |W|)>both belongs to B, and
T =WW||T|=W(2 - |W)IT|,

1
W= (WIWi+W(2 - W),
we conclude from the extremality of W that W = W|W|, i.e., |W] is a projection and
W is a partial isometry. If now

A€ (I-WW*)B(I - W*W),

then A|T| = 0, s0 T = (W % A)|T|. Since ||W % A|| < 1 it follows, again from the
extremality of W, that A = 0. This holds for all such A, whence W € €.

A more sophisticated proof is obtained by considering the classical polar decom-
position T = V|T|, and then note that the set

D=V4+I-VV)BUI-V'V),

is a weakly closed face of B. In fact, as shown by C. M. Edwards and G. T. Riittimann,
every weakly closed face in B has this form, see {1, Theorem 4.4]. An extreme point
W of D therefore belongs to &, and writing

W=V+(-VV)BI-V'V)
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it follows that
WIT|=V|T|=T. a

4. VON NEUMANN ALGEBRAS

For an operator T in B($)) we define
m(T) = inf{||Tz|| |z € 9, |l=]| = 1}.

With |T| = (T*T)% we know that ||Tz|| = |||T|z|| for every z in $, and it follows
easily that
m(T) = m(|T1) = min{e > 0| € sp(|T|)} =

=max{e 2 0el < [T} = (|77}~

(with a suitable interpretation if |[T| ¢ %~!). By the open mapping theorem the
condition m(T) > 0 is equivalent to T being injective with closed range. So in this
case T == U|T for a unique isometry U = T|T|~1.

Now consider T as an element of some von Neumann algebra in B($§) with center
3 (= UNY’), and denote by 3, the set of projections in 3. To obtain a common lower
bound for T' and T* and their central splittings, define

(+) mo(T) = sup{m(ZT + (I — Z2)T*)|Z € 3,}.
Note that if we decompose T'= H +iK in real and imaginary parts, then
(**) mq(T') = sup{m(H +1iSK)|S € 3¢},

where 3; denotes the set of symmetries S in 3 (of the form S = 2Z — I for some Z in
3p). Of course, mq(T) depends on the algebra A (as well as on T'), and if 3, is small,
the definition of mq(T') is easier. Thus, taking 2 = B($)), we simply get

(% * %) mq(T) = m(T) v m(T").

LEmMA 41, If U is a von Neumann algebra and T € %, there is a central
projection Z in U such that

mo(T) = m(ZT + (I - Z)T™).

Proof. If Y and Z both belong te 3, and

eISY|T|+T-Y)IT°|, el < 2T+ - 2)T°|,
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then by spectral theory
eX < X|T|] and e(I-X)<({-X)|T7

for X =Y V Z and also for X = Y A Z, because these statements only involve the
three commuting elements Y, Z and |T, respectively Y, Z and |T™|. Since

m(ZT + (I - Z)T*) = max{e | eI < |2T + (I - Z)T*|} =

= max{e | eI < Z|T|+ (I - Z)|T*|},

this means that if (Z,) is a sequence in 3, such that the sequence (&,) of numbers
€n = M(ZaT + (I — Z,)T") increases to mq(T), then with Y = \/,,5; Z, we have

Em < m(YkT-I- (I— Yk)T')

for every k. Arguing in the same way on the decreasing sequence (Y3) in 3, we see
that if Z = A Yz, then
exr Sm(ZT + (I - 2)T")

for every k; whence
mq(T) = m(ZT + (I — Z)T*). a

Recalling the definition of the A-function from the introduction:
AT)=sup{A€[0,1]|T=AV+(1-))B, V€€ Be B},

we are ready for our first result.

THEOREM 4.2. If 2 is a von Neumann algebra with unit ball B, and T € B,
then

NT) = (14 mo(T)).

Moreover, if % £ A < AX(T), there are extreme points V and W in B, such that

CT=AV+(1-N)W

Proof. If T = AV + (1 — A)B for some V in € and B in B, put P = V*V and
Q = VV”*. We can find a central projection Z in 3, such that

(+) I-Q<ZLP
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To see this, note that I — P and 7 — Q are centrally orthogonal (since V € €), so for
every unitary U in

I-QLlLU(I-PWU*=I-UPU",

ie, I - Q < UPU*. Take Z = AUPU", the infinum being taken over all U in .
Evidently UZU* = Z for every U in U, i.e. UZ = ZU*; and since A = span({l) (in
fact, every element is a linear combination of 4 (even 3) unitaries), it follows that
Z €3, By (*) wehave Z{ Pand 1-Z2 < Q, so
(Zv)y(zvy=2prP =172,

I-Z2yWw({(I--2)Ww)=(1-2)Q@=1-2.
It follows that W = ZV + (I - Z)V* is an isometry in 2. With the notations
To == ZT'+ (I — Z2)T* and By == ZB + (I — Z)B* we can rewrite the equation
T=AV+(1-))B asTp =AW + (1 — A\)By. Since By € B we compute

mq(T) 2 m(To) = m(AW + (1 = A)Bo) =

= inf{Jl{(AW + (1 — A)Bozl|| | Jlz]l = 1} >
2 inf{A||Wzil - (1 - M)\ Bof} | iz]| = 1} > 22 - 1

This inegunality holds for any decomposition T' = AV + (1 — A)B, and we conclude
that

(+*) me(T) 2 2XT) - 1.

To prove the reverse inequality we take by Lemma 4.1 a projection Z in 3p, such
that with € = mq(T") we have

m(ZT + (1 - Z)T*) =¢.

Setting
A=|ZT+(I-2)T*|=Z|T|+ (I - 2)|T"*|,

this means that eI < A. As shown in [13, Lemma 6] this implies that for any
A in the interval [%,%(l-i-e)] we can find unitaries Uy, Us in i, such that A =
= AUy + (1 — A)U,. This fact is easily verified by writing Uy = B +i(1 - A)D and
Us = C ~iAD, where B,C and D are the self-adjoint elements in 2 given by
B= %,\'I(A+ (2x - 1)A™Y),
C= %(1 —A)"NA - (2) - 1)A™Y),
D= (1-X)"YI-B?3=x"1(I-C?s.
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Here (2X — 1)A~! should be interpreted as 0 when A = 1 (if mq(T) = 0 this may be
the only choice), and if A = 1 (so that A = I) the formulae for C and D should be
: 1
interpreted as 0. Thus for Pevre rerrmwou il have
(% * %) ZIT|+ (1= 2)|T*| = AU + (1 = A)Us.

By proposition 3.6 we can choose extreme points W; and W5 in @ such that
T = Wh|T| and T* = W,|T*|. But then by (* * %)

T=ZT+((1-2)T") =W Z|T|+ (I - 2)|T*"|W; =
=WiZ(AWU1+ (1 - NU2)+ (I - 2)(AU1 + (1 = N)U)W5 =
= MZ2WhUL + (I = ZYhW3) + (1 = D ZWh U, + (I — Z)UW35).

Evidently the elements

V=2ZWiU+(-2YWW;, W=2ZWU,+ (- 2)U;W;

are extreme points, and we have T' = AV + (1 — A)W, as desired. Choosing A =
= (14 mq(T)), we get A(T) > 1(1+ mo(T)), which in conjunction with (x+) implies
equality, and the proof is complete. |

5. C*-ALGEBRAS AND THE Ay-FUNCTION

As mentioned before, the non-unitary extreme points in the unit ball B of a
C*-algebra 2 are somewhat elusive. Qur first result overcome this problem in a
time-honoured fashion — by changing the definition. For each T in B we define

MA(T)=sup{A€[0,1]|T=AU+(1-A)B, U €, Be B}

Cleatly Ay(T) < A(T) and, more importantly, the two functions agree whenever
¢ =4l
If T € % and A~! denotes the group of invertible elements in 2, we set

o(T) = dist(T,2™1).

THEOREM 5.1. If U is a C*-algebra with unit ball 8, and T is a non-invertible
element of ‘B, then

1
M(T) = 5(1 - a(T)).
If T is invertible, then )
(@) = 21+ IT).
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Proof. Consider first the case where T ¢ %™, If
T+ +(1-XNB, Ue€l, BeB,
then A € %, since otherwise
T=AU(I+A11-2NU*B)eu™?,
becanse [|A~1(1 — A)U*B|| < 1. Now,
IT = MU + B = (1 - 2%)B]| < 1 - 22,

Since U + sB = U(I + sU*B) € %! for every s < 1, we see that U + B € (%~!)=,
whence a(T") < 1 — 2. Since this holds for all decompositions, we conclude that

a(T) € 1-2X0(T).
An argument, using Proposition 3.5, estimating
T —Ull=1i(1- 2B - (1-2)Ul <2(1-H),

is also available (and gives the same result!).
When a(T) =1 the result above shows that A,(T) = 0, so in order to prove the
reverse incquality we may assume that a(T) < 1. But then, by Theorem 2.1, there is

for every 3 > 2(1 — a(T))~! a convex combination
T=B Y+ +Us1)+ BB +1=n)U,,
with the U/y’s in i and n — 1 < 8 < n. Taking
B=B-1)" Y2+ -+ Unc1+ (B+1=n)U,),

this reads: T = ~1U; + (1 — #~1)B, with B in B, so that A,(T) > . It follows
that )
M) > 51— a(@),

giving the desired equation.
If 7' € A~ we have T = U{T| with U in 4. Thus T-! = |T|~*U* and ||T7}|| =
= JHT)~Y|. With m(T) as in secticn 4 we see that

(*) m(T) = [T~
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Since |T'| > m(T')I we can use [13, Lemma 6] as in the proof of Theorem 4.2 to find
unitaries Uy, Uz in Y, such that with Ao = 3(1+ m(T)) we have

ITI = MU + (1 - /\o)Uz.
Multiplying this equation with U we see that
1
(%) M(T) 2 do = 5(1 4 m(T)).

Conversely, if T == AU 4 (1 — A)B with U in i{ and B in B we get (as in the proof of
Theorem 4.2)

m{1') = inf{||AUz + (1 — X)Bzf] | |jzl] = 1} > 21 - 1.
This holds for any decomposition, so
m(T) 2 20,(T) - 1.

Combined with (#+) (and inserting (*)) we get, the desired equation. |

REMARK 5.2. It is amusing to note, that when T is invertible the number m(T') (=
= ||7Y{|~!) in formulas serves as a measure of the “negative distance” from T to 2~1.
(It is the distance to the boundary of 2~!.) This happens in Theorem 5.1 but also
in Proposition 3.5. For if T € 9~?, so that T = U|T| with U in 2, then U is an
approximant to T in il, and

dist(T,U) = ||[T-U|| = ||IT| - I|| =

= max{||T| - 1, 1 - m(T)},
cf. [19, Proposition 3.5].

1t is also worthwhile to realize that when T is invertible the two functions A and
Ay agree on T.

ProposITION 5.3. If T is an invertible element in the unit ball of a C*-algebra
A, then
Mu(T) = X(T).

Proof. We have Ay(T) = (1 +||T~||=!) > L. If we had M\u(T) < XT), there
would be a pair V, B in € x B such that

T =V +(1-XB, )\>z\u(T)>%.
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With A = A~17T we then have A € UA~! and
IV — A =10 = DB A 1< 1,

But then V' € U by proposition 3.3, so A € A.(T), a contradiction. Consequently
AT < Au(T), whence A(T) = X,(T). a

THEOREM 5.4 For a C*-algebra 2 the following conditions are equivalent:
(i) Forevery T in®B and 0 < ¢ < % there are unitaries Uy, Us, Us such that

1 1
T= ;Z(IL —-e)Ur + 5(1 — &)Uz +¢Us.

(i) A(T) > % forevery T in B.

(iii) % has the uniform A-property (A\y(T) 2 € > 0 VT € B).
(iv) U has the Ay-property (A;(T) > 0 VT € B).

(v) dist(T,U") < 1 for every 7' in B.

(vi) er(U) = 1 (i.e. A~? is dense in A).

Proof. The implications (i) => (ii) = (iii) => (iv) are trivial; and (iv) = (v),
because if 7' = AU + (1 = A)B with A > 0, then AU € U~ so

dist(T, A" T -l -A< 1.

‘The implications (v) = (vi) and (vi) = (i) are due to Rgrdam, [31, Theorem 2.6 and
Corollary 3.6). ‘I'he first is proved by negation: if T' € B such that o = dist(7, %) >
> 0, define § = V f|T}, where T' = V{T| is the polar decomposition of T (in B($)) and
f(t) = 1A a~1t. Since f(0) = 0 and f is continuous it follows that S € 2 (so S € B).
But if dist(S,21) < 1, then with Ej as the spectral projection of |S} corresponding
to the interval 16, oo[ there is by Theorem 3.1 a unitary U in 4, such that VE; = UEs
for some § < 1. Now, since S = V f(|T|) and T = V[T, it follows that Ej is also a
spectral projection of |T}], but corresponding to the interval ]aé, cof. Since aé < a,
this contradicts Theorem 3.1 applied to T. Thus dist(S,%~!) = 1, as desired. The
other implication (vi) = (i) is an immediate corollary to Theorem 2.1. |

COROLLARY 5.5. A function algebra C(X), where X is a compact Hausdorff
space, has the A-property if and only if the (covering) dimension of X is at most one,
in which case C(X) has the uniform A-property for A = -}

Proof. Since we are explicitly dealing with algebras over the complex numbers,
the invertible functions on X are dense in C(X) iff dim(X) < 1. See [29, §1] for a
general discussion. n
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Replacing stable rank with real rank we have a partial generalisation of Theorem
5.4 to infinite C*-algebras, see Theorem 10.4.

6. ATTAINING THE A-VALUES

The definition of the A-function and of the A,-function involves a supremum, and
it is natural to ask when this supremum is attained. Thus, if \(T") > 0 we ask for the
existence of a pair V, B in € x B such that

T = XT)V + (1 - A(T))B.

For spaces of the form C(X, ), X compact Hausdorff and O an infinite dimensional,
strictly convex normed space, Aron and Lohman find this to be the case if the element
(function) does not attain the value 0 [12, Theorems 1.6 and 1.9]. In our case the

spaces involved are never strictly convex, but the same phenomenon persists.

ProrosITION 6.1. If T is an invertible element in the unit ball of a C*-algebra
U, then
T=XT)V+(1-xT)W

for some V, W in il x U.

Proof. In the proof of Theorem 5.1, see (#), we constructed a decomposition
T=XUU + (1 - /\o)UUz,

with U,U;,Usz in il and Ay = %(1+m(T)). We further showed that Ag = Ay(T), when
T € A~! with T = U|T). Since Ay(T) = A(T) by Proposition 5.3, we are done. ®

When the elements are non-invertible, the A-function values are only attained in
the presense of severe conditions. Thus, for example, we see from Theorem 4.2 that
if 2 is a von Neumann algebra, then the A-values are attained. Less will do, but
only by resorting to highly non-separable spaces. We illustrate the problems in the
commutative case.

PROPOSITION 6.2 If X is a compact, metric space, such that for every f in C(X)
the number A(f) is attained in a decomposition for f, then X is finite.

Proof. If X is infinite there is a convergent sequence (z,) in X with z, # zp,
for n # m. Passing if necessary to a subsequence we may assume that dist(z,, zo) <
< 2(nw)~! for all n, where zo = limz, and dist denotes the metric on X. Put
Y = {za|n > 0} and define h in C(Y) by h(zo) = 0, h(z,) = 2(n7)~1, 1 < n. By
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Tietze’s extension theorem h extends to an element in C{X) (again denoted by h)
with 0 € h < 1. We may assume that h(z) > 0 for all z # o, replacing otherwise h
with the expression

(h(z) Vv dist(=, z0)) A 1,

which does not change h on Y. Now define f in C(X) by
f(z) = h(z)exp(ih(z)™?), =z € X \{z},

and f(ze) == 0. By construction, f(z,) = 2(nm)~1i" for all n (with i = /=1). We
claim that f can be approximated by invertible functicns. Indeed, with

fa(2) = h(z)exp(i(h(z)~* A n))

we clearly have elements in C(X) with distance zero to the set of invertible elements,
because f, is a product of a positive and an invertible function. But f,(z) = f(z) if
h(z) = n~*, and

Ifa(2) — f(2)] < 2h(z) < 207"

otherwise. It follows from Theorem 5.1 that A(f) = 1.

If we had a decomposition 1
f= 5(“ +b)

with u unitary (i.e. a circle-valued function) and & of norm < 1 in C(X), then
2Reu’f = Re(1+u"b) 2 0.

Consequently Re(z,)i® > 0 for all n, which is impossible since (u(z,)) converges to
U(Zo). ]

For the characterization of function algebras in which the A-values are attained,
we need the concept of a sub-Stonean space, meaning a (locally) compact Hausdorff
space X such that any two disjoint, open, o-compact subsets of X have disjoint clo-
sures. These spaces have amused (general) topologists since 1956, when they appeared
in works by L. Gillman, M. Henriksen and M. Jerison under the name of F-spaces.
They were rediscovered by G. Choquet, who coined the term sub-Stonean spaces.
Some of their properties are discussed in [8].

If Y is an open subset of a compact Hausdorft space X, there is a continucus
map ¢ : B(¥) = Y from the Stone-Cech compactification 3(Y') of Y onto the closure
if Y in X, extending the embedding map of Y into X.

LrMMa 6.3. The map & : 3(Y) — Y mentioned above is a homeomorphism for

every open, o-compact subset Y of X if and only if X is a sub-Stonean space.
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Proof. If X is a sub-Stonean, then each of the maps & is a homeomorphism by [8,
Theorem 1.10]. Conversely, if all the @’s are homeomorphisms, take open, o-compact,
disjoint sets Y and Z in X. Then B(Y U Z) = B(Y) & B(Z) (topological direct sum),
and since

?:8(Y)08(Z) —YUZ

is a homeomorphism, it follows that ¥ and Z are disjoint. Therefore X is sub-Stonean,
as claimed. ]

PROPOSITION 6.4. [30] If X is a compact Hausdorff space, the following condi-
tions are equivalent:
(1) X is sub-Stonean and dim(X) < 1.
(it) Every element f in C(X) has a unitary polar decomposition f = u|f|, with
u in Y(C(X)).
(iii) B(C(X)) = FW(C(X)) + U(C(X)))-

Proof. (i) = (ii). Given f in C(X), let

Y ={z€X|f(z) # 0},

and define w on Y by w(z) = f(z)|f(z)|~!. Since Y is open and o-compact, Y is
homeomorphic to B(Y) (cf. Lemma 6.3), and as w € Cy(Y) = C(B(Y)), it extends
by continuity to a unitary function on Y (again denoted by w). Because dim(X) < 1,
every unitary function w on a closed subset extends to an element u in #(C(X)), and
evidently f = ulf|.
(ii) = (iii). If f € C(X), with ||f]| < 1, we have f = u|f| for some u in U(C(X)).

Define

v=Ifl+i1- 1A%
Then v is unitary and

-;—(uv + uv*) = ulf| = f.

(iii) = (i). If f = $(u +v), u and v unitaries, then

1 1
g=5(1+ejut5(1—ep

is invertible for every € > 0, and ||f — g]| < €. It follows that the invertible elements
are dense in C(X), whence dim(X) < 1.

Now let Y and Z be the disjoint open, o-compact subsets of X, and choose
positive functions f and g in C(X) of norm less than 1, with Y and Z as their co-zero
sets. By assumption we have unitary functions u and v, such that

f—ig:%(u+v).



360 GERT K. PEDERSEN

If z is a point on the boundary of Z, it follows from plane geometry that u(z) (and
v(z)) equals £1. Similarly, if z is on boundary of Y we get u(z) € {£i}. Consequently
Y N7 =0, so that X is sub-Stonean. ]

We say that a compact Hausdorff space X is 2-sub-Stonean if for each open,
o-compact subset Y of X the map @ : 8(Y) — Y, mentioned above, is at most of
order 2 at any point. This means that a point z on the boundary of Y can be reached
as a limit of at most two distinct universal nets in Y.

LEMMA 6.5. A compact Hauvsdorff space X is 2-sub-Stonean if and only if given
any pairwise disjoint, open, o-compact subsets Y1,Ys,Y3 of X we have

?g ﬂ?zﬂ?a: a.

Proof. f 2 € Y1 NY2NY3 for some disjoint, open, o-compact subsets of X, put
Y = Y1 UY, UY3. Then the map & : 3(Y) — Y wiil have order 3 at the point = (i.c.
@~1(z) consist at least 3 points), because

B(Y) = p(11) @ B(Y2) & B(Ys).

Conversely, assume that X is not 2-sub-Stonean. Thus for some open, g-compact
subset Y of X we have distinct points 43, 2, v3 in 8(Y'), such that @(y;) = z for some
zinY andi = 1,2,3. Choose f in C5(Y) such that f(v;), i = 1,2,3, are three distinct
points in C, and let A;, ¢ = 1,2, 3, be the pairwise disjoint, open neighbourhoods of
the f(v:)’s. Put ¥; = f~1(A;) (as subsets of Y) to obtain pairwise disjoint, open,
g-compact subsets of X. Since 8(¥;) is the closure of ¥; in B(Y), it follows that
7 € B(Y:), whence z € &(H(Y;)) == Y; for all ¢. [

TuponreMm 6.6. If A = C(X) is a comutative C"-algebra with the unit ball B
and unitary group U, then
1
(+) B= (6 B)
if X i¢ a sub-Stonean space with dim(X) < 1. Conversely, if () is satisfied then X
must be 2-sub-Stonean with dim(X) < 1.

Proof. The first statement is contained in Proposition 6.4. To prove the second,
note first that if @ € U and b € B, then

(14 e)u+(1-e)b

is invertible for every € > 0 and close to u + b. As in the proof of Proposition 6.4 it
follows that (%) implies that dim(X) < 1.
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To prove that X is 2-sub-Stonean, let Y;,Y5,Y3 be pairwise disjoint, open, o-
-compact subsets of X, and choose positive functions fy, fa, fs in C(X) of norm less
than 2 with co-zero sets Y1, Y, Ys, respectively. Let 8 = exp (-§1ri), and define

F=0fi+0f2+ f5.

If (+) is satisfied we have f = u + b for some u in 4 and b in B. For any z in Y3 we
have

u(2) +b(z) = fa(z) > 0,

and it follows from plane geometry that Reu(z) > fs(z). If therefore z belongs to
the boundary of Y3 we see from the continuity of u that

Reu(z) 2 0.
Similar arguments show that if z belongs to the boundary of Y2 or Yj, then
Refu(z) > 0 and Ref’u(z) >0,

respectively. If now z € Y 0‘72 NY3, then u(z) should belong to 3 half-spaces in
C, whose intersections is {0}. But |u(z)| = 1, and we have reached a contradiction.
Thus X is 2-sub-Stonean, as claimed. [ ]

PRroPOSITION 6.7. There exists a compact Hausdorff space X, which is not
sub-Stonean (but only 2-sub-Stonean), such that C(X) satisfies the condition (*) in
Theorem 6.6.

Proof. Take X; = B(R4) \ Ry. Combining Theorem 3.2, Proposition 3.5 and
Theorem 3.6 in [8] we see that X; is a connected, sub-Stonean space of dimension
1. Choose any non-trivial open, g-compact subset Y of X3, and let z¢ be a point in
Y \Y. (If none existed, Y would be closed as well as open, contradicting the fact that
X, is connected.) Let X; be another copy of X;, and define X to be the topological
union of X; and X, glued together at zo. Thus X is a compact, connected Hausdorff
space of dimension 1; but it is not sub-Stonean, because the two copies of Y (in X,
and X;) are disjoint open, o-compact subsets of X with a common boundary point,
viz. zo.

We wish to prove that the A-values are attained for any element in the unit ball
of C(X) (which' is slightly more than promised by (*)). To do this, note that

C(X) = {(f1, f2) € C(X1) x C(X3) | fi(zo) = fa(0)},

and take f = (f1, f2) in the unit ball of C(X). If f is invertible, its A-value is
attained by Proposition 6.1. We may therefore assume that f is not invertible, whence
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A(f) € 4. However, since dim(X) == 1, we know from Corollary 5.5 that A(f) > % for
every f; so in our case A(f) = %

If f{zo) # 0 we choose by Proposition 6.4 unitaries ui,up in Y{C(X1)) and
Y(C(X2)), respectively, such that f; = u;|fi[, i = 1,2. Then

w1(z0) = fu(zo)l (o)l = fo(o)ifo(zo)l ™! = ua(zo),

so that u = (uy, up) is a unitary in C(X) with f = uifl. With v = [f|+i(1 - |£]?)?
this, as on previous occasions, gives

_1 *
fgé(uv+uv )

We are left with the case where f(2g) = 0. To simplify matters, use Proposition
6.4 to find wy in Y(C(X1)) suck that fi = wylfi], and extend it from the closed
subset X to a continuons, circle-valued function w on the one-dimensional space
X. Replacing f with w*f we sce that it suffices to consider the case where f =
= (f1, f2), fi(@o) = fo(2o) = 0 and f1 > 0. Workinug in the sub-Stonean space X,
we use Proposition 6.4 to find clomoents vy, v2 in H{C{X5)), such that fo = %—(w +¥2).
The remeining task is to find svitable continuous extensions of these functions on
Xi. We may assume, without loss of generality, that Re(vi(z¢)) 2 0. (Otherwise
we considor vy; and sinee vi(zg) + v2(2g) = 0, one of them will work.) Furthermore
we may assume that Im(vy(2g)) 2 0, since the argument for Im(vy(z0)) < 0 is quite
symmetric. Lot

Z = {= @ X1jfa(z) € Rewi{zg)}.

This is a closed subset of Xy containing zo. For each  in £ we define
v(z) = vi(ze),  b(2) = 2f1(2) — va(=o).
It is easy to check that |b(z)] < 1, and clearly fi = %("ii + b) on Z. Morcover, v and b

are continious extensions of vy and vz from X3 to Xa|J Z, because
Zo

b(zo) = —v1(z0) = va(zo).
For cach z in X; \ Z we define
w(e) = filz) +i(1 - Lf(2)D)E,
b(z) = fole) ~i(1 - (=)

Again it is clear that these functions are unitary and continuous on X \ Z, with
hi = -,’j(v 4 b). To see that v and b are, in fact, continuous on X, consider any point
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z on the boundary of Z. By definition of Z we must then have f1(z) = Re(vi(z0)),
which implies that

(z) = vi(zo) = fi(z) +i(1 - |fu(2)P) .

Moreover,
b(z) = 2f1(z) - v1(z0) = fi(z) - i(1 = | fu(z)?)}.

We see that v and b on the boundary of Z agree with the definitions of v and b
given on X, \ Z, and thus v and b are continuous on all of X;. Put w = (v,v,) and
¢ = (b,vz). Then w and ¢ belong to C(X), w is unitary and ||c|| < 1; and, most
importantly,

f:%(w-{-c). |

Theorem 6.6 is not quite satisfactory, since we do not obtain a classification of
those compact Hausdorff spaces X for which the A-values are attained for all elements
in C(X). Moreover, the concept of 2-sub-Stonean spaces is somewhat artificial; and
the author has been unable to produce examples of such spaces except, as in Propo-
sition 6.7, by glueing together sub-Stonean spaces at a finite number of points. The
author fears that the problem does not admit a clean solution.

Extending the results above to the general, non-comutative case seems nontrivial.
For C*-algebras that are o-finite (in the sense that any family of non-zero, pairwise
orthogonal elements is countable) Haagerup and Rgrdam in [10] showed that the
condition

B = (1441

implies that {l is a finite AW*-algebra. It was known from [25, Proposition 2.7] that
the condition implies that B = UBga, so the aim of their ingeneous argument was
to provide a unitary polar decomposition T = U|T| for every self-adjoint 7" in B.
Replacing one copy of U with B as in Theorem 6.6, we no longer have B = UB,, for
free, so the Haagerup-Rgrdam argument is not directly applicable.

Looking for sufficient conditions that will give unitary polar decompositions we
meet the SAW*-algebras. A C*-algebra 2 is an SAW™*-algebra (sub-AW*) if for any
two elements S, T in A with ST = 0, there is an E in 2, with 0 < E < I, such that

SE =0=(I - E)T.

As shown in [23] a commutative C*-algebra % = C(X) is an SAW*-algebra if and only
if X is a sub-Stonean space. Pertinent to our discussion is the fact from [25, Theorem
3.5], that if every element in a C*-algebra 2 has a unitary polar decomposition (in
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symbols: U = U2, ), then A is an SAW*-algebra with 2~ dense in A. The converse
holds under the additional hypothesis (which may be vacuously true) that also M(2)
is an SAW*-algebra.

Thus from the Haagerup-Rgrdam result, Proposition 6.4 and Theorem 6.6 we

can make an educated guess of a general result.

JONJECTURE 6.8, For a unital C*-algebra 2 the following conditions are equiv-
alent:
(i) B=1{u+y).
(1) A =uA,.
(iii) 2 is an SAW*-algebra with st(2) =1 (i.e. A~ is dense in ).
Moreover, if % C B($)), with $ separable, then already the condition
(v) B = b +B)
will imply that 2 is a von Neumann algebra.

7. LEFT INVERTIBLE ELEMENTS

The relative ease with which the A, -function can be calculated for elements in a

C*-algebra 2 is partly due to the easily established series of inclusions:
1 1 _
(*) B! CUB, C (U+1) C 5(U+B) C (B

where B~° = B NA~! by definition. The distance, a(T), of an element T in B to
(any of) the sets in (+) determines A, (T") (if T ¢ A~!), cf. Theorem 5.1.
To determine the A-function we shall need the multiplicative semigroup of left

invertible elements
A7l = {AeU|UAA = ).

Thus A € ‘4’1;1 if BA = I for some B in 2. It follows from the open mapping theorem
that A € Ql;l if and only if A is injective with closed range, so that

27! = {A €YU m(4) >0},
with m(A) as in section 4. From this, or using the equation BA = I, so that
I=A"B'BAL|B|?A"A=|B|?|AP%,

we see that |A| is invertible. Moreover, V = A|A|~! is an isometry (V*V = I).
Consequently, A € ;! if and only if it has a polar decomposition A = V|A[, with V
an isometry and |A] invertible. In symbols,

Al = ALY,
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where &; denotes the set of isometries in 2 (so that & C €).
Setting %[,1 = !BHQ(ZI we have a series of inclusions, corresponding to (*), given
by
B;'CEBy C -;-(Ga +&)C %(Ga +B) C (B)=.

The last of these from the observations that if V € ¢ and B € B, then for t < 1,
V+tB=(I+tBV)Veu vV Ccyl,
or, equally effective,
m(V+tB)21-|itB||>1-t>0.

In section 8 we will consider *-invariant conditions, so we shall need also the set
;! of right invertible elements. Note that 27! = (%;")*.

I 2 is a finite C*-algebra, then A;* = A~!. Indeed, if A € A;’, then A = U|A|
with |A| in 2~ and U*U = I. By finiteness, UU* = I, so U is unitary and A € %~ 1.
On the other hand, if Ql;l is dense in U, then 2 is finite. Forif A € Ql[l and BA=1,
we can find C in ;! close to B such that ||I — CA|| < 1. But then CA € 2~, and
if DC = I we have

A=DCAeDU e Y

whence 4 € %;' N2 = AL, and Corollary 3.4 applies.

By contrast, consider 2 = B($)), and let S be the unilateral shift on £2 = §, cf.
section 9. Then, of course, S € A}, since $*S = I, but ||S — A|| > 1 for every A
in A7, Yet A7 URAS! is dense in A (for any factorial von Neumann algebra o) by
Proposition 3.6.

For any element T in a C*-algebra 2 we define

ay(T) = dist(T, 2%;1).

Moreover, working on some Hilbert space §3, we consider the polar decomposition
T = V|T| in B($), and denote by Ej the spectral projection of |T'| corresponding to
the interval )6, co[, cf. section 3.

THEOREM 7.1. For each 6§ > ay(T) there is an isometry U in &;, such that
UEs = VE;. For § < ay(T) there is no isometric extension of VE; in .

Proof. If § > a,(T) there is an A in ;! such that |T—A|| < §. Write A = W|4|,
where W € €; and |A| € A~!. Then ||TW* — AW*|| < §, and since AW* € (A1)~
(because W|A|W* + €I € A~! for every € > 0) it follows that a(TW*) < 6, with «
as in section 5.
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Note now that TW* has the polat decomposition VW*(W|T|W*). Moreover,
if f is a polynomial without constant term, then f(W|T|W*) = W f(|T|)W*. The
relation therefore holds when f is a Borel function (with f(0) = 0), so if E; is the
spectral projection for |T'|, corresponding to the interval )6, 00[, then WE;W* is the
correspording spectral projection for W|T|W*.

Applying Theorem 3.1 to TW* we find a unitary U in U such that

UWE;W* = VIW*(WE;W*) = VEsW"*.

Therefore, UW € &; and UW E; = V Ej, as desired.
Conversely, if U € & such that UEs; = VEj for some § > 0, define f(t) =
= (t-6)v0. Then S =V f(|T|) € . In fact, since f(t) = 0 for t < §, we have

§ = VI(ITI)Es = UEsf(ITI) = US(ITI) € (%),
because f(|T'|) + eI € A~ for every ¢ > 0. Since
T - Sl = INT1 - £UTDI < 6,

it follows that a,(T) < 6. [

COROLLARY 7.2. Each element of the form V f(|T|), where f is a continuous
function on sp|T| such that f(t}) = 0 for t < 6, for some § > o(T), has a polar
decomposition U f(|T'|) = Vf(|T|), where U is an isometry in 2.

PROPOSITION 7.3. If a C*-algebra ¥ contains an element T with ay(T) > 0, then
there is an S in B with ay(S) = 1. If, nioreover, ay(T*) > ay(T) we may assume
that also a(S*) = 1.

Proof. As in the proof of Theorem 5.4 we regard 2 as a C*-subalgebra of some
B($) and let T = V|T| be the polar decomposition of |T'|. Assuming, as we may, that
IT)| =1 we let S = Vf(|T]), where f(t) = 1A ay(T) " tfor 0t <1,

If og(S) < 1, then with E; as the spectral projection of |S| corresponding to
the interval ]6, o[, there is by Theorem 7.1 an isometry U in & such that UE; =
= VE;s for some § < 1. Since S = Vf(|T|) and T = V|T), it follows that E; is also
a spectral projection for |T|, but corresponding to the interval }6a,{(T’), 0o[. Since
8ay(T) < a4(T), this contradicts Theorem 7.1, applied to T'. Thus a,(S) = 1.

If ay(7*) 2 ay(T) and ay(S*) < 1, then, since S* = V*(V|S|V*), we can apply
the previous argument to find an isometry U in &, such that

U(VEsV*) = V*(VEsV*)
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with 6§ > 1. Since VE;V* is the spectral projection of |T*| (= V|T|V*) correspond-
ing to the interval ]6a(T), oo[, we conclude from Theorem 7.1, applied to T*, that
ay(T*) < 6ay(T). But ay(T*) > a,(T) by assumption, and again we have reached a
contradiction. Thus also a,(S*) = 1. |

LeEMMaA 7.4. (Cf. (20, Cor. 2.3]). Forevery T in a C*-algebra 2 and any isometry
U in € the spectrum of TU* contains a disc about the origin with radius oy(T).

Proof. If A € C with |A| < ay(T), but A & sp(TU*), then TU* —AI = A€ A~
But then
IT — AU = ]AU]| = [A] < exe(T),

a contradiction, since AU € 91[1. [ ]

THEOREM 7.5. Let €; be the set of isometries in a C*-algebra A, and take T in
A IfT ¢ A, ' then

dist(T, €;) = max{||T|| — 1, ee(T) + 1}.
Otherwise we have an approximant V in €; with

dist(T, &) = ||T = V|| = max{||T]|| - 1, 1 — m(T)}.

Proof. If T ¢ 24;! then for any U in &
T - Ul 2 IUT =1|| 2 r(U*T - I) 2 1 + ay(T),

because the spectral radius of U*T — I must be at least 1 + a(T") by Lemma 7.4.
Clearly we also have ||T — U|| > ||T]| — 1, so we have established inequality in the
formula above. To prove the reverse inequality, consider § > a¢(T). As in the proof
of Theorem 7.1 there is an isometry W in €; such that a(TW*) < §. By Proposition
3.5 there is for any € > 0 a unitary U in 4 such that

ITW* - U|| < max{||TW*|| - 1+¢, § +1}.
But then UW € €; with
|IT-UW| < ||TW* - U|| < max{||T|| - 1 +¢, 6§+ 1}.
Since ¢ and é are arbitrary we get

dist(T, &) < (||T| = 1) V (ae(T) + 1),
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and thus equality.

If T € A;! we have a polar decomposition T = V|T| with V in & and |T| in
2~1, Thus, as in the proof of Theorem 5.1 (see (*)), we have m(T") = || |T|~*||~! and
evidently

IT = VII= 1Tl = 1)l = (IT|| - 1) v (1 — m(T)).

Conversely, if U € &; then, of course, ||T — U|| > JIT|| — 1, and moreover
U =Tl = sup ||[(U - T)=l| >

> sup [|Uz|| - ||T'=|| = 1 - inf ||Tzf| = 1 - m(T),

when z ranges over the set of unit vectors in §. Thus, in this case
dist(T, &) > (IT| - 1) v (1 — m(T)),

which, in conjunction with the previous result, completes the proof. a

~

8. PRIME C*-ALGEBRAS

Using the result from section 7 we can extend the A-theory to a large class of
infinite C*-algebras.
For any element T in a C*-algebra 2 we define

aq(T) = dist(T, %, U Y) =
= og(T) A ae(T?).

As with the definition of mq(T') from m(T') in section 4, we would have liked to define
aq(T) as an infinum of distances to 2; " of elements ZT + (I — Z)T*; instead of just
taking Z == 0 and Z = I, cf. (* * %) in section 4. The absense of spectral projections
in C*-algebra theory prevents this, but it also explains why our program will only
work in C"-algebras that are prime, i.e. where SUT = 0 implies S = 0or T = 0
for any pair S,T in 2. The A-theory for general C*-algebras, as well as the theory
for extremal extensions, approximations and convex decompositions, will be carried
out in [34). In a prime C*-algebra 2, the extreme points are either isometries or
co-isometrics, so that
E=¢GUE,;

and we see why aq(T) can be used in this context. Alternatively, we could define
a special A-function on general C*-algebras, related to € U € in analogy with the
Au-function in section 5. But this time we will play fair.



THE A-FUNCTION IN OPERATOR ALGEBRAS 369
THEOREM 8.1. If A is prime C*-algebra and T € B, then
NT) = 5(1 - aq(T))
ifT ¢ A7 UATL. Otherwise
NT) = 51+ mq(D)),

where mq(T) = m(T) V m(T*).

Proof. If a > ag(T) there is an element A4 in ;' UA;! with ||IT - 4| < a. We
may assume that A = V|A| with V in & and |A4| in A~!, passing otherwise to T*.
Consequently

o(TV*) = dist(TV*,%7") < ||ITV* - VIA|V*|| < a.
By Theorem 5.1 there is a pair U, B in 4 x B such that
.1 1
TV* = -2-(1 -a)U+ 5(1 + a)B.
Since V*V = I this means that
1 1
T= 5(1 -a)UV + 5(1 + a)BV;
and since UV € € and a > ay(T') was arbitrary we conclude that
1
*) NT) > 5(1 - ag(T)).

Conversely, if
T=AV+(1-A)B

for some V in € and B in B, we may assume that V*V = I (passing otherwise to
T*). Assume for the moment that A < } and ||B|| < 1. Then, as we pointed out in
the beginning of section 7, cf (),

V+B=(I+BV*)V e,
because I + BV* € A1, so that
V*Q+BV*) {(V+B)=1.

Since in our case
T - AV + B)=(1-2)\)B,
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we conclude that ay(T) < 1 — 2A. The condition ||B]] < 1 can be removed by
continuity, and the conclusion is that

(++) ag(T) < 1- 2X(T)
provided that A(T) < 1. But if A > 1, the same arguments shows that
T=MV+211-)B)ey;’.
Thus if 7' ¢ A; ' UA;! it follows from (+) and (+#) that
NT) = 5(1 - aq(T)).
T €U " we have T = V|T| with V in & and |T| in 2~*. Thus
m(T) = |71,
As in the proof of Theorem 5.1 this implies that
[T = AUy + (1 — Ao)Us,
where A = 3(1+ m(T)) and Uy, U; € 4. It follows that
(% * %) T = XVU; + (1 = A)VU2,
so that A(T) > Ao. Conversely, if T = AV + (1 — A\)B with V in €; and B in ‘B then
m(T) = inf{|Tll [l = 1} > 2~ 1,

so that m(T) > 2X(T) — 1. Applying the same arguments to T* we finally conclude
that if T is left or right invertible, then

NT) = 21+ mo(T)). .

COROLLARY 8.2. If T is a left or right invertible element of a prime C*-algebra
U, then
T=ANT)V+Q1-MT)W

for some V,W in €.
Proof. See (* * *) in the proof of Theorem 8.1. u

THEOREM 8.3. A prime C*-algebra ¥ has the A-property if and only if

(vt =1,
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in which case it has the uniform A-property for A = %

Proof. By Theorem 8.1 we have A(T) > 1 if and only if aq(T) = 0 for all T in
8, i.e. if and only if %;' U ! is dense in A. Moreover, 2 has the A-property if
and only if a,(S) < 1 for every S in B. But if ay(T) > 0 for some T in B, we may
assume that ay(T*) > ay(T) > 0, whence a,(S) = 1 for some S in B by Proposition
7.3. ]

9. EXAMPLES OF INFINITE C*-ALGEBRAS

For general (infinite, non-prime) C*-algebras we have no explicit formula for the
A-function. Some interesting examples can, however, be computed. For this we need
a few results from classical index theory, found in any number of textbooks, e.g. [26,
3.3). We also wish to mention some results from C*-algebraic K-theory (non-classical
index theory), and refer the reader to [4], [19] or [33], in decreasing order of complexity.

On the separable Hilbert space $ (= £2) we let £ denote the algebra of compact
operators, and we denote by § the set of Fredholm operators in B($)) — the operators
whose images in the Calkin algebra B($))/R are invertible.

THEOREM 9.1. Let 2 be a C*-subalgebra of B($)) containing &, such that FN2A
is dense in U. Then X(T) > 1 for every T in B.

Proof. Since £ is a minimal ideal, 2 is prime, so by Theorem 8.3 it suffices to
show that the left or right invertible elements in A are dense.

Given T in B and € > 0 we can by assumption find F in § N 2 such that
IT - F|| < €. Since A(T) = MT*) we may assume, without loss of generality, that
the index n of F is £ 0, considering otherwise T* and F*. Since 8 C 2 we can
choose a partial isometry A of finite rank from ker F' into ker F*. As ker F* = F($)*,
the operator F + A is an injection of §) onto a closed subspace (= F(R) ® A($)) of
co-dimension —n. By the open mapping theorem (F + A)*(F + A) is invertible, so
that

F+A=V|F + A
for some isometry V (= (F + A)|F + A|~!) in 9. Since F*A = FA* = 0, it follows

that F = V|F|. Likewise, F + €A = V|F + cA|, where |F + ¢A| € %A~'. Thus
Fi+eAE€e Ql[l, and

IT = (F + eA)|| < 2.

Since ¢ is arbitrary it follows that aq(T’) = 0, whence A(T) > 3 by Theorem 8.3. ®
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Let S denote the unilateral shift on £2, i.e.
S(ay,az,...) =(0,01,02,...).

Thus S is an isometry in § with index —1. Since S™(1—-SS") is the rank one operator
that takes the first basis vector to the n’th, it is not hard to see that the C*-algebra ¥
generated by S — the Toeplitz algebra — contains the algebra £ of compact operators.
Since the image of S in the Calkin algebra is a unitary with full spectrum, we have a

short exict sequence
0 — &H3-5LC(T) — 0.

We choose the identification of T/R& with C(T) such that ¢(Ty) = f for every f in
C(T). Here Ty is the Toeplitz operator on the Hardy space H? (identified with £2);
so Ty = PM; P, where P is the projection of L%(T) onto H?, and M 7 is the ordinary

multiplication operator on L2(T).
CoOROLLARY 9.2. The Toeplitz algebra % has the uniform A-property for A = %—

Proof. Since & C T and the invertible elements are dense in T/K (= C(T)), the
conditions in Theorem 9.1 are met. [ ]

Our final example is a curious non-prime C*-algebra, which is finite in the
Murray-von Neumann sense, but which nevertheless contains non-unitary extreme

points. For this we shall need the *-automorphism 8 of C(T) of order two, given by
0f(t) = f(t™!), teT.

PROPOSITION 9.3. If % is the C*-algebra of operators on §) = £* @ €2, generated
by T = S&® S*, then A consists of those elements in B($)) of the form B @ C, where
B €%, C €T and q(B) = 8¢(C).

Proof. The set g of elements B® C in T T, such that ¢(B) = ¢(C) evidently
constitutes a normclosed, *-subalgebra of B($)), i.e. a C*-algebra. Since ¢(S) = id
and ¢(S*) =1d = id~"! (where id(t) = t on T), we see that T = S & S* € %o, whence
A C Up.

To prove the converse inclusion, note that

T*"T-TTr =(IeI-P)-(I-PdI)=P & -P,

where P, denotes the rank one projection on the first basis vector. Thus Py 0 € 2
and 0@ P, € A. Moreover, as T"(P, $0) = S™ P, ®0 we see, as before, that 2 contains
the ideal £ 0. Similarly 0@ & C 2. The projection Z = I&0 in B($)) commutes with
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2 (because it commutes with T'), so the map A — AZ is a *-homomorphism of %.
Since T'Z = S®0 we see that AZ = TPH0. Now take any element BB C in Up. There
is an element A in % such that AZ = B. Since % C Uy we know that A = B&@ D,
where 8¢(D) = q(B). But also 6¢(C) = ¢q(B), so ¢(D) = ¢(C);ie. C—D=K € &
As0@RC Y,

A+(0oK)=Bod(D+K)=B&C €4,

whence 2o C . , u

ProPosITION 9.4. With 2 as in 9.3, the set € of extreme points in the unit ball
B is the disjoint union
¢=Jury,
nel
where T-" should be interpreted as T*" and T° = I. In particular, € contains no

non-unitary isometries, so U is Murray-von Neumann finite.

Proof. If V € €, then V = U @& W for some partial isometries U and W in €. In
fact, since we have AZ = T 0 and A(I - Z) = 0 X (with Z = I & 0 as in the proof
of Proposition 9.3), both U and W must be extreme in T. They are therefore either
isometries or co-isometries, and in particular they belong to §. Since the winding
number of the function ¢(U) is — index U, and since # reverses the direction of its
path, we see that

index W = —indexU.

Assume now that index U = n > 0. Thus W is an isometry, U a co-isometry, and S"U
and S*"W are partial isometries of index zero. Choose partial isometries A and B of
finite rank from ker S"U to ker U*S*" and from ker S**W to ker W*S™, respectively.
Then

UL=5"U+AeS""W+B

is a unitary in %, because both summands are unitaries in ¥ and
0g(S"U + A) = 8¢(S™)0q(U) =

=¢(S"")g(W) = ¢(S*"W + B).

We have
T"U, =S™(S"U+A) e S™(S""W+ B) =

=(U+5"A) @ (S"S*"W + S"B) = U @ S*(S*"W + B),

because
A(€%) = ker (U*S™™) = ker S*".
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Both W and S"(S*"W + B) are isometries in ¥ with index —n, so
Vo= W((W*S" + B*)S*" +C
is unitary in ¥ for a partial isometry C of finite rank. Since
kerC = S™(S*"W + B)¢® = S™¢,

it follows that CS™ = 0, so
VLS"(S*"W + B) =
= (W(W*S" + B*)S*" + C)S"(S*"W + B) = W.

Finaly, WW* = I — @ and $"S*" = I — P for some projections P and Q of rank n,
50

Va=(I-Q)YI-P)+WB*S"+C=1+K
where K € . Consequently, Us == I @ V> is unitary in % by Proposition 9.3, and
U0y = (1@ Va)(U © S*(S*"W + B)) =U @ W,

as desired.
The case where index U < 0 follows from the above by considering V* = U*@W*,
and the proof is complete. a

ProrosiTioN 9.5. The C*-algebra 2 from 9.3 and 9.4 has the uniform A-property
with A = 3

Proof. From the Proposition 9.3 we see that there is a short exact sequence
(*), 0 — £6 ASA-2HC(T) — 0

where we choose p such that p(B© C) = ¢(B) for every B&C in A and g : T — C(T)
as above. We can therefore use almost the same arguments as in Theorem 9.1.

If A== B®C € Aand ¢ > 0 we can find E = F ® G in ¥ such that p(E) (=
= ¢(F) = 0¢(G)) is invertible in C(T), and such that

IB-F|VIC-Gll=[(B-F)e(C-G)=llA-E| <e.
Regarding F and G as elements in TN § we may assume that
index F = —indexG=n <0
(considering otherwise A* and E*). As in the proof of Theorem 9.1 this implies that

F=VIF|, G=W"G]
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where V and W are 1sometries in ¥. Since
69(V) = 0 (a(F)a(F*F)~}) =

= ¢(G)e(G*G)~ = (W),

it follows from the Proposition 9.3 that V* @ W and V @ W* are elements in %. For
each element X @Y in A define

AXOY)=XV'@WY, o(X0Y)=XVeWy.

Since

09(XV*) = ¢(Y)g(W) = ¢(W)q(Y) = ¢(WY),

and similarly 6¢(XV) = ¢(W*Y), it follows that p and o are normdecreasing linear
maps of % into itself. Moreover, o o p =identity. Now

lo(4) - |F*| @ |G| = ||IBV* @ WC - FV* @ WG|l =

=||(B=F)V* @ W(C - G)|| = [lo(A - E)|| < ¢,

and since ¢(]F*|) = ¢(|F|) we see from Proposition 9.3 that |F*|® |G| (= p(E)) € Y.
Evidently |F*|® |G| € (%~1)=, so 4

- dist(p(A), A7) <&
By Theorem 5.1 this means that Ay(p(A)) > (1 —¢), so
1 1
p(A) = 5(1 —e)U + 5(1 +¢)D
for some U in 4 and D in B. Consequently
‘ 1 1
A=o0p(A) = 5(1 —-e)o(U) + 5(1 +¢€)o(D).
Here o(U) € B, whereas, if U = Uy ® U, we have
c(U)=UhVeW'U; €€

It follows that A(A) > 2(1 —¢), and since ¢ is arbitrary A(4) > I |

REMARK 9.6. Using the six term exact sequence in K-theory arising from the
short exact sequence () in the previous proof, we find that K;(2) = 0. whereas
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Ko(U) = Z @ Z, one copy of Z for the finite projections and one copy for the co-finite
projections. The interesting part of the diagram reads

K(C(T) - Ko(fof) —> K(A) L Ko(C(T))

I Il Il Il
Z 2 1e1 5 291 L z

where 6(n) = (n,n),e(n,m) = (n - m,0) and f(n,m) = m.

10. PURELY INFINITE C*-ALGEBRAS

We now consider C*-algebras that are infinite in the extreme. Recall from [5)
that a C*-algebra 2 has real rank zero if for every pair S,T of elements in 2 such
that ST = 0, and every € > 0, there is a projection P in 2 such that SP = 0 and
||(I - P)T|| < €. This condition has a number of equivalent formulations. One is that
2~ N Y, should be dense in Us,. Another, seemingly much stronger, is that the set
of self-adjoint elements with finite spectra is dense in Ug,.

Following Cuntz [6] a simple C*-algebra 2 is said to be purely infinite if it has
real rank zero and every non-zero projections is infinite (i.e. Murray-von Neumann
equivalent to a proper subprojection). This implies that for any pair P, @ of non-zero
projections, there is a partial isometry V in 2 such that V*V = P and VV* £ Q. A
number of equivalent formulations are found in [15).

THEOREM 10.1. If ¥ is a purely infinite C”-algebra, the set of elements T of the
form T = V|T|, where V is an isometry or a co-isometry in ¥, is dense in . Thus

(€A~ =A.

Proof. If T € U it has a polar decomposition T' = V|T|, with V in U”, cf. section
3. It follows from the (Stone-)Weierstrass theorem that V f(|T]) € 2 whenever f is
a continuous function on sp{7’| vanishing at zero. We also note that T* = V*|T*| is
the polar decomposition of T*, with |T*| = V|TjV*.

If 7] € U~! then V = T[?[~! is an isometry in 2. Similarly, if |[T*] € %!
then V* is an isometry, so V is a co-isometry in 9. If 0 is an isolated point both in
sp|T| and in sp|T*|, let e(t) = 1 if t €.sp|T}\ {0} and e(0) = 0. Then P = ¢(|T))
and @ = ¢(|T*|) are projectionsin Aand V=VP =QV. AsI—Pand I - Q are
non-zero projections in A, and % is purely infinite, there is a partial isometry W in
Awith W*W =1T—-Pand WW* I -Q. Then U = W + V is an isometry in ¥,
and T'= U|T.
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We are left with the case where 0 is an accumulation point both in sp|T’| and in
sp|T™*]. Given € > 0 we define

fit)=(t-€e)V0, fit)=(t-2)VO0,
a@®)=QQ =) v0, gi(t) =(1~-(2)"t) Vo,

for t > 0. Assuming, as we may, that ||T]| = 1, we see that

AT Dar(IT*)) = £(ITDg2(IT)) = 0,

because f;g; = 0, 1 € ¢ € 2. Since YU has real rank zero we can therefore find
projections P and @ in 2 such that

(I-P)g(|Th =0, IPL(THIi<e,

I - Qau(IT* D < e, QA(T*])=0.

Evidently P and Q are non-zero, since g1(0) = g2(0) = 1 and 0 € sp|T| Nsp|T*|.
Since 2 is purely infinite we can therefore find a partial isometry W in 2 such that
W*W = P and WW* £ Q. Now define S = eW + V f1(|T|). Then S € 2 with

1T = Si < e +IV(IT] = AGTHH < e+ llid = filleo = 2¢.
On the other hand
$°S = €2 P + F3(IT)) + 2eRe W*V 1 (IT]) =

=?P + f{(IT]) + 2cRe W*QA(IT*)V = P + F{(IT)) 2
2 €2:(ITl) + F£(IT)).

Since e2g2(Jt[) + f(|t]) > 0 for 0 < t < 1 (in fact e2g5(t) + F2(t) > 5€2) we see that
|S| is invertible, whence S = U|S]| for the isometry U = S|S|~! in 2. [ |

CoROLLARY 10.2. Every purely infinite C*-algebra has the uniform A-property
for A = %

Proof. Since A, C (A~1)= it follows from Theorem 10.1 that
A= (€A™ = (A7 uA )=,

Thus aq = 0 for every T in B, whence A(T) > % by Theorem 8.3. |

Again we may ask, as in section 6, whether the supremum in the A-function
is attained for the C*-algebras considered in sections 8-10; and again the author is
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inclined to bet that the answer is negative in general. Indeed, on the principle of not
being hanged for a sheep, we offer the following companion to Conjecture 6.8.

CoN3ECTURE 10.3. For a unital C*-algebra 24 the following conditions are equi-

valent:
(i) B= §(¢+ ¢).

(i) A = ¢A,.

(iii) A is an SAW*-algebra with (?).

Moreover, if A C B($), with ) separable, then already the condition

(iv) B = }(¢+B)
will imply that 9 is a von Neumann algebra.

Brief. Obviously (ii) = (i), so the job is to establish (i) = (ii). For condition (iii),
note that any sort of weak polar decomposition will imply that 2 is an SAW*-algebra.
Indeed, if ST = 0 in A we may assume that S,T € 2, replacing them otherwise
with $*S and TT*. Now let R = § — T, and assume that we have a decomposition
R = V|R| for some V in % with ||V]| < 1. (The norm estimate is crucial here.) Then

|R(I-V*V)|R|=|RP-R°R=0,

whence (I — V*V)|R| = 0 because 0 < I - V*V.
In our situation |[R|=S+T,80 S-T=V(S+7T),i.e.

I-V)S={I+V)T.
Squaring this equation we get
SI+VV-V-V)S=TI+V'V+V 4+ VT,

which equals zero, since the two sides are orthogonal. Since V°VB = S and V*VT =
= T we derive the equations

2-V-V)S=0=(2+V 4+ V)T
LetE::}I-—%(V+V‘). Then 0 < E < I and
ES=0=(I-E)T,

as desired. ‘

We see that condition (ii) is much stronger than demanding that 2 is an SAW*-
-algebra. Therefore the enigmatic (?) in condition (iii) is needed for the (hopeful)
implication (iii) = (ii). One necessary ingredient in (7), replacing Rieffels stable rank
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one in Conjecture 6.6, can be given. Recall from [5] that a C*-algebra 2 has real
rank n (in symbols RR(2) = n), if for any n + 1-tuple A;,..., Any1 of self-ad_jomt
elements and € > 0 there is an n + 1-tuple By,...,Bp41 in lea, w1th ||[Ae — Bi]] <
for 1 < k < n+1, such that ZBf € %~1; and such that n is the smallest number
for wich this condition is satisfied. If 2 is commutative, i.e. %A = C(X), it follows
from [5, Proposition 1.1} that RR(2) = dim X. Moreover, by [5, Proposition 1.2] we
always have RR(2) < 2sr(2) — 1. Thus if the stable rank of 2 is 1 we know that the
real rank of 2 is 0 or 1. The converse is definitely false, since every von Neumann
algebra has real rank zero, but infinite stable rank — unless it is finite.

THEOREM 10.4. If ¥ is a C*-algebra satisfying the uniform A-property for A = -;-,
then the real rank of 2 is at most one.

Proof. Given A;, Az in %ga and € > 0 we lat T = A; +iA42. By scaling the
elements we may assume that ||7|| < 1. By assumption we can find V,B in € x ‘B

such that ) ) ) 1
T= 5(1—55) V+§ (1+§e)B.

(3 d (b

Then ||To —-T|| = " e(V - B)" g, so if we write Tp = By +iBg, with By, By in s,
then |[By — Ag| < € for k = 1,2. Moreover,

Let

1 . 1]
B? + B! = 5(To To + ToTy).

To show that the element above is invertible, consider the multiple S of Ty given

by
2 2 ’

where ¢t = (1 + %s)—l (1-1e) < 1. Realizing % as operators on some Hilbert space
9, we let Z denote the projection on the closure of the subspace (I — V*V)$. Since

I-VVAI-V*V) =0,
it follows that Z belongs to the center of A" (the von Neumann algebra generated by
2), and that
I-vv)Z=0=(I-V*V)I - 2).

Thus V(I — Z) is an isometry on (I — Z)$ and V Z is a co-isometry on Z§). Therefore
S*S(I-2)=(V*+tB*)(V+tB)(I-2) =
=V*(I+tVB*)I+tBV*)VW(I-2) >
V(1 -8V -2)=(1-t)*I - 2).
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Similarly,
S8*Z = (V+tB)(V*+tB)Z =
=V{I +tV*B)(I+tB*'V)V*Z 2
SVA-)VrZ =(1-1)%Z.
Consequently,
S*S+88*>8'S(I-2)+852>(1-¢t)I,
which proves that B? + B? is invertible. u
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