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NON-COMMUTATIVE SPHERES II: RATIONAL ROTATIONS
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Dedicated to the memory of Raphael Hgegh-Krohn.

1. INTRODUCTION

In this paper we continue the study, begun in [2], of the fixed point subalgebra
of the rotation algebra under the flip. Recall that the rotation algebra Ay is the
universal C*-algebra generated by two unitaries U, V satisfying

(1.1) VU = pUV

where p = ™% and 0 <9 < 1. The flip o is the automorphism of this algebra defined
through the requirements

(1.2) o(U)=U"1o(V)=V"L

Let By = A§ denote the fixed point algebra under the flip. The main problem in our
study is the question whether By is an AF algebra or not, when # is irrational. As a
possible prelude to the settlement of this question we here make a detailed study of
By, and of the related algebra Ay X, 22, in the case that # is rational. Here Z, = Z/2Z.
One may hope that this will lead to a solution of the problem by techniques related
to the folding techniques in [3], [5], [10]. Note that examples of (non-AF)° = AF were

given in this articles — beginning with [5].

We now describe the main results of this paper. Let P(U, V) be the polynomial
*-algebra in the unitaries U, V and let P? = P?(U, V) be the algebra of flip invariant
elements of Py(U,V). The algebra P° is spanned linearly by the elements [n,m]
defined by

(1.3) [n,m] = pF (UV™ +U"V™™),
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where p¥ is an arbitrary (but fixed) square root of p. P? can in fact be characterized

as the =-algebra generated by the elements [n,m], n,m € Z, with the relations

mk-mnl nl=mk

fn,mlk,]=p" 2 [n+km+l+p 2 [n—k,m-1I
(1.4) [n,m}* = [n,m],

[~n, —m] = [n, m].

In [2], Theorem 3.6, it was proved that the enveloping C*-algebra of the *-
-algebra P? is canonically isomorphic to By when 8 is irrational. Canonicity means

that the isomorphism extends the map
fn,mjes p™2" (UPV™ + UTPV™™).

Qur first main result is

THEOREM 1.1. If 0 is rational, but 8 ¢ {0, 3}, then the enveloping C*-algebra of
P¢ exists and is canonically isomorphic to By.

During the proof we will see that the result fails when 8 € {0, %}, in the strong
sense that the enveloping C*-algebra of P? does not exist. In these two cases, indeed,
there exists representations 7 of (1.4) (of dimension 1 if § = 0 and of dimension 2 if
f =+ §), such that ||z ([n, m]) || grows exponentially with the pair (n, m). We can also
choose m such that ||z ([n, m])|| is arbitrarily large for fixed (n, m) # (0,0). However,
these spurious representations do not extend to continuous representations of the *-
-algebra of infinite sums Z Ap,m[n, ] with rapidly decreasing coefficient sequences,

equipped with its naturalnt:on;ology. Thus the enveloping C*-algebra of this topological
algebra is canonically isomorphic to By even when 8 € {0, %} All these facts, as well
as Theorem 1.1, will be proved in Section 2.

Our main result is a simple description of the C*-algebra Bs.

THEOREM 1.2. If § = fl’- where p,q are mutually prime positive integers, then
By is a subalgebra of the C*-algebra C (Sz, M,) of continuous functions from the 2-
-sphere §? into the algebra of complex ¢ x ¢ matrices M,. The subalgebra is determined
up to isomorphism as follows: There are four distinct points wgp,w;,wa, w3 In §2 and
to cach point w; is associated a self-adjoint projection P; in M. The dimension of P;
is as follows:

When q is odd, then

(1.5) dim(P) = =2

fori=20,1,2,3.
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When q is even, then

(1.6) dim (Po) = 2;2‘—2
and

(1.7) dim (P) = g
fori=1,2,3.

The algebra By consists of those functions f € C ($*,My) such that f(w;) com-
mutes with P; fori =0, 1, 2, 3.

This theorem will be proved in Section 3.

Thus, if ¢ = 1, By is the algebra of continuous functions on §2; if ¢ = 2, By is the
algebra of continuous functions from $2 into M such that the functions take values
in a subalgebra of the form M; ® M; at w;,ws and ws, and with no restriction at
wo. When ¢ >3, the algebra has a proper splitting into the sum of two full matrix
algebras at each of the points wg,w;,ws and w3.

Note that Theorem 1.2 is consistent with the classification of the one-dimensional
representations of By given in [2], Lemma 2.6: For example; when ¢ = 3, there are four
one-dimensional representations, corresponding to the one-dimensional projection P;
at w;,2=0,1,2,3, and when ¢ = 4 there is only one one-dimensional representation,
corresponding to the one-dimensional projection Py at wg; when ¢ > 5 there are no
one-dimensional representations. The spectrum [/3; is easily described from Theorem
1.2: If ¢> 3 then B; consists of §2 with each of the four points wy, . . .,ws replaced by
two points which are both limit points of the neighbouring points.

Note also that when 6 = 3 the isomorphism class of By depends only on ¢ ~ not
on p. This is different from the case of Ay, where .Az and A Ga=s) are isomorphic, but
A is not isomorphic to A,;, when p’ # p, ¢ —p. In that case Az is 2 homogeneous

c* a.lgebra over the two-torus T2 with fibre M,, and these are distinguished by the
Ko-class of the unit; cf. [9].

Actually, there are also ¢ isomorphism classes of homogeneous C*-algebras over
$? with values in M,, indexed by

(1.8) m(U(Q)/T)=2/¢Z =12,

where 1 is the first homotopy group and U(q)/T is the group of unitary ¢ x ¢ matrices
modulo its centre. Note that

(1.9) U(q)/T = Aut(M,).
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This is because any element in a homogeneous algebra over $? with values in M, can
be represented by two functions, one each from the northern and southern hemispheres
into My; on the equator the two functions have to be matched up by a function form
T into Aut(M,). If U; and U are two such functions from T into Aut(M,), then
the two corresponding algebras are *-isomorphic if, and only if, the map ei* € T +
) (e“)ﬁ Uy (') can be extended to a map from the unit disc into Aut(M,), and
this is the case if and only if m(U;) = m1(Us).

Nevertheless, the algebra Bf depends only on ¢ and is a trivial bundle. In the
course of the proof of Theorem 1.2 we shall in fact show that any fibre bundle over §°
with fibres contained in M, and with the given special behaviour at the four points
Wy, . ..,ws, is trivial in the sense that there exists a global family of matrix units.
For this it is important that the dimensions of the projections F; are as specified in
‘Theorem 1.2. If, for example, q is even and dim(P;) = £ for all ¢, there would be £
isomorphism classes in lieu of merely one.

In addition to By we will consider the closely related crossed product algebra,
(1.10) C=A4 x5 2o,

and we shall prove

THEOREM 1.3. If 6 = 5—, the algebra Cy is isomorphic to a subalgebra of the C*-
-algebra C (Sz, ng), determined as follows: There are four distinct points wo,w),ws
and w3 in $% and an orthogonal projection P in Ma, of dimension q, such that the
subalgebra consists of those functions f € C ($*,M,) such that f(w;) commutes with
Pfori=0,1,23.

This will be proved in Section 4.

in particular, Cy and By are Morita equivalent if § >3, but not for ¢ = 1 and
q = 2 (see [6]).

In Section 5 we will study the trace functionals on the algebraic crossed product
Py x g £2, which is the #-algebra generated by three unitaries U, V, W with the relations

VU = pUV,
WU =U"'W,
(1.11) .
WV =V-lw,
w?=1.

When # is irrational, the space of trace functionals is five dimensional and is spanned
by & trace state v together with four tracial functionals 7,,,, where p1,ps €
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€ {even,odd}. These are determined by

r(pFUmY™) ‘{1 el
(1.12) p “ 10 otherwise,
T (p"FUV™W) = 0,
and
Toups (P2 UTV™) =0,
(1.13) 1 if parity(n) = p; and parity(m) = py,

B ey m —
o (P UTVTW) = {0 otherwise.
These formulae also define a trace state 7 and tracial functionals 7,,,, when 8 is
rational.

When # is irrational, the algebra €y has a unique trace state, namely, the canon-
ical extension of T to Cy, see [2], Remark 4.6. It foliows from the uniqueness of the
Jordan decomposition of continuous hermitian functionals on Cy that the only contin-
uous trace functionals on Cy are the scalar multiples of 7. It is all the more remarkable
that, when @ is rational, the four other trace functionals on Py x, Z2 are continuous
and extend to Cy as follows: There is a certain natural indexing of the four special
points w; by Z3 x Z3, say wp,p,,pi € Z2. Now define four continuous trace functionals
on Cp by

(1.14) Fouea (1) = 7 Trag (2P = 1) (o)

where Tryq is the unnormalized trace on My, and P is the projection in Theorem 1.3
Tpipz» S0 defined, is unique up to a sign corresponding to the choice P or 1 — P in
Theorem 1.3. In the proof of Section 4 the sign will be fixed by a convention, and we

shall use this convention now. Then T is related to T as follows: If ¢ is even then
(1.15) Tpaps = 2(=1)P*P21, 0,
and if ¢ is cdd then

(1.16) Foips = Z (=1)prmtpintpame

nmela

where we identify {even, odd} with Z, = {0, 1} in the standard manner. Inverting
these relations (the latter by Fourier analysis on Z; x Z3) we obtain

1 -
(1.17) Tpips = §(—1)”””’1’,,2pl
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when ¢ is even, and

(1.18) Tam = %(_1)1""7n E (~1)rprtmezz
P1p2€Z2

when ¢ is odd. This shows that the trace functionals 7,,,, are continuous, and we

even have

(1.19) 7papall = 1

if ¢ is even, and
(1.20) I7papall = 2

when ¢ is odd. (We have equality in the latter case because the four functionals 7y, p,
have disjoint supports.)
Finally, in Section 6, we compute the K-theory of By and Cy when # is rational.
We find that
Ko(Cy) = 28,

and

Ki(Cs) = 0 = K1(Bs)

for all rational 6, and Ko(Cp) = 28 if ¢ # 1,2, but
Ko (By) =2°

and
Kg (Bo) = 22 .

By using the trace functionals described above we can also show that 28 C Ko(Bs)

when @ is irrational (see Section 6).
2. THE ENVELOPING C*-ALGEBRA

In this section we will prove Theorem 1.1, i.e. that By is the enveloping C*-
~algebra of P? when 4 is rational and 6 # 0 or %

In the case 8§ = 0 or %, the enveloping C*-algebra of P? does not exist, but in
any case By is still the enveloping C*-algebra of the topological *-algebra of sums
Z An,m[n, m] with rapidly decreasing coefficients (used in the proof of Theorem 3.6

I
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in [2]; the coefficients ), ,, are said to be rapidly decreasing if for all k = 1,2,...
there exist a constant Cj > 0 such that

[Anml € Ce(1 4+ |n| + |m|)~*

for all n,m € Z).
These facts follow from a description of the characters (i.e. the one-dimensional
represcntations) of P?. A character of P? in the case § = 0 is determined by a

nonzero family of scalars (pn,m) z verifying the relations (1.4) with p, m in place

n,meg
of [n, m]:
(2.1) Bnme,] = Pntk,m+l + Ba—km—1,
(2.2) B = Hnym,
(23) Hen,—m = HPn,m.

By (2.1) and (2.3), pooknm = 2#tnm, and so since not all ., are zero,
(24) oo = 2

(This corresponds to the fact [0,0] = 2.) It is easily seen from (2.1) and (2.3) that all
other p,,, are determined by p19, o1 and gq1. It follows from (2.1) and (2.3) that
Hiopo1py = (p11 + u1,_1) Hi
= p22 + poo + K20 + Ho2
= pd) — oo + poo + 3o + Boo + #3; — Hoo
= ¢y + plo + ud; — 2u00,

ie.,

(2:5) 2p00 — p8y — 3o — #31 + proporpnr = 0.

It is not difficult to check that any quadruple (po0, £10, 01, #11) of complex numbers
satisfying (2.4) and (2.5) has the form

(2.6) (2,2cos e, 2 cos B, 2 cos(a + B))

for some pair of complex numbers (e, 3), unique modulo 27Z except for the trans-
formation (a,8) — (—a,—pB). On the other hand, for any pair (o, 8) € C?, the
family

(2.7) (#am) = (2 cos(na + mf))
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verifies (2.1) and (2.3). The relation (2.2) for the farmily (2 cos(na + mf)) just means
that cos @, cos @ and cos(a + /3) are all real. Equivalently, this means that either «
and @ are both real, or, modulo 7#Z, they are both purely imaginary. In the latter case
the coefficients p,ny grow exponentially with (n,m), and hence only the characters
corresponding to real o and B extend to the C*-algebra Bp ~ or, for that matter, to

the subalgebra of sums Z Anmin, m] with rapidly decreasing coefficients.
n,m

Incidentally, the argument above showed that the relations (2.4) and (2.5) are
the only relations among the coefficients pgo, p10, o1 and 13, apart from reality.

After having determined the characters of P, let us now consider the case that
g == lq’ is rational but nonzero, and let us show that, provided also that 8 # -%, By
is the enveloping C*-algebra of PJ. It is enough to show that any irreducible -
-representation 7 of P? by bounded operators on a Hilbert space extends to By. First
note that (1.4) implies that the centre of P? is equal to the linear span of the elements
{ng, mq], m,n € Z. Furthermore, this subalgebra is isomorphic to the algebra Pg, -
since the clements [n, m}, = [ng, mq] are linearly independent apart from the relation
—n,—m], = [n,m], and satisfy the relations (1.4) with p = 1. Since 7 is irreducible,
the restriction of 7 to the centre of P? is a character. It follows from the previous
classification of characters on P§ that there exist complex numbers « and S, either

both real, or both imaginary modulo #Z, such that
(2.8) 7 ([n, m]y) = 2 cos(na + mf)

for ., m € Z.

Let us use the assumption 8 & {0, 1} to show that o and 3 are real. Forgetting
for the moment about the involution and the restrictions on o and 8, any character
of the centre of P7, corresponding to the pair (e, §), extends to a representation of
P° on C?, namely,

(2.9) 7':[n,m} s p 5 [(ei%Uo)n (eigVo)m + (ei%Uo)~n (eigvo) _m] .

where Uy, Vp are ¢ x ¢ matrices with ¢’th power equal to 1 such that VoUp = plo V.
{(For an example of such matrices, see Section 3.) The eigenvalues of U and Vo
are then the ¢’th roots of 1, and hence the eigenvalues of #'([1,0]) are eStImey
4 (ef§+2mG - ,k =0,1,.... If o is purely imaginary and nonzero modulo #Z,
it follows that #'([1,0]) has ¢ distinct eigenvalues. Correspondingly, if 8 is purely
imaginary and nonzero modulo 7Z, 7'('1, 0]) has ¢ distinct eigenvalues. Thus, if both
@ and B are purely imaginary and nonzero moduio wZ, then #’(P?) contains all

the spectral projections of Vy and Uy and hence #n’' (P?) consists of all operators on
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C4. If only one of @, B, say B, is purely imaginary and nonzero modulo 7Z then the
eigenvalues of 7'([1, 0]) become pairwise equal except for the eigenvalues +1 (where —1
occurs only if ¢ is even). Thus 7/ (P?) contains Vp and the one-dimensional projection
P onto the eigenspace of Uy corresponding to the cigenvalue 1. But VEPV;E, where
k=0,1,...,9 — 1, ranges over all the eigenprojections of Up, and thus #’ (P?) again
consists of all operators on C¢. We conclude that in all cases where a and 8 are
imaginary modulo 7Z, and at least one of them is not real, then 7’ (P?) consists of
all operators on C9.

Since (as is scen by careful inspection of (1.4)) the g2 elements [n,m], n,m =
=1,...,¢-- 1 span P? linearly over the centre of P?, it follows that =’ (P?) is the
algebra generated freely by the generators n'{[n, m]) subject to the first and third of
the relations (1.4) together with the relation

(2.10) 7' ([ng, mq]) = 2 cos(na + mB)1.

(It has the maximal dimension permitted by these relations.) Therefore, there is a
homomorphism of 7/ (P?) to = (P°) taking #'([n, m]) to x([n, m]), and since =’ (P?)
is a simple ring this is an isomorphism. Since 7 (P?) is also all operators, this shows
that #' is similar to a *-representation. But since spectrum is a similarity invariant,
and since [1,0]* = [1,0] and [0, 1]* = [0, 1], it follows that the spectrum of #'([1,0]) =
=eTU + (ci%Uo)_l and of #'([0,1]) = eV + (eiévo)_l must be real. But the
spectrum of 7([1, 0]) is

o . . ey —1
(2.11) {e‘?“’“% + (e‘?”’"%) k=0,1,.. .,q}

and this cannot be real if @ has a nonzero imaginary part, unless ¢ = lorg=2. A
similar argument for 0 establishes that & and 8 must be real when ¢ > 3.

In this case, 7 extends to a (continuous) *-representation of the norm closure of
the centre of P inside By. Since By has a finite basis over this subalgebra consisting
of elements of P?, namely, the elements [n,m], 0<n, m< ¢ — 1 (see Section 3), it
follows immediately that m extends to a x-representation of By, as desired.

Note in particular that when 8 = %, two-dimensional *-representations of P?
with exponential increase of ||w([n, m])|| are given by

(2.12) 2([n, m]) = 2i"™ cosh(na + mb)U V™

where

1 0 0 1
2.13 = =
(2.13) Uo [0 —l] » Vo [1 0]
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and
‘ 0 if nis even,
{2.14) n]= .

1 ofnisodd,

and a,b are real constants. These representations appear by choosing i% = a and

. 3 .
17 = bin (2.9). ’
3. STRUCTURE OF THE FIXED POINT ALGEBRA

In this section we shall prove Theorem 1.2. The starting point for the description
of Bg = AJ and Cy = Ag x, Z is the characterization of Ay given in [9], which we
will develop in a form suitable for our purpeses.

Assume that § = lq’-, where p, g are mutually prime positive integers and 1 {p < ¢—
—1. Put

251
q

(3.1) p=ec¢™  w=e

Detine ¢ x ¢ matrices Up, Vo and I'p by

oo 050 00
0 r 0 0 00 0 0 0
Up= {0 0 p? ¢, Ve={. . . . .|
Do ’ 0 0 0
) L0 00 p 10 0 0 0
(5.2) ]
100 ... 00 0
000 ..00 1
0 .0 10
I’o:.(.)(.) .
001 ..000
0010 ...00 CJ

The following relations are valid:
3.3) VoUs = pUsVa, Uol'e =TeUs?, Volo= TI'oVy?,
o r2=1, TI¢=T}, Up,V; are unitary.

-1
Using that -}- Z p‘”kUa‘ is equal to the matrix element egr in Mz, 0 < & < g, it is not
n=0
hard to verify that

g—1 q-1

(3.4) o= .;-Z Y U v,

n=0m=0
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We now define three automorphisms oy, a2 and 7 of M, by the requirements

al(Uo) = Uy, 011(V0) =wW,
(3.5) az(Uo) = wly, aZ(VO) = VO;
vUo) =Ust, 1 (Vo) =V}

Then
(3.6) oy = AdW,
where
1 ¢ 0
, -1 0
(3.7) w=vr=|. “
0 O w=(e-1)
and
(3.8) pp' = —1 modg (and 0 < p’ < ¢).
Furhermore,
(39) Qg = Ad Wz
where
[ 1 0 1
0 1
0 .
0 0 1
Wy = Vop = v
(3.10) 1 0 0
1
0 0
L 0 0 1 J
M
and

(3.11) pp” = 1modg (and 0 < p” < ¢).
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I'inally,
(3.12) ¥o = Ad I'y.

The algebra Ay can be described as the algebra of functions f from [0,1] x [0, 1}
into Mg such that

f(:cxl):al(f(x70)) 0<3<1,

(3.13)
f(l,y) = e2(f(0,y)) 0<y<l,

with pointwise matrix multiplication and involution.
In particular, the generators U and V correspond to the functions given by

U(Z) y) = szO:

(3.14)
Viz,y) =w'V

for (z,y) € [0,1] x [0,1], where w® = e®™%. The flip
(3.15) o(U)=U"1, o(V)=V"!
can be described as

(3.16) (0f)z,y) = oo(f(1 — 2,1 - y)),
where og is the automorphism of M, determined by
(3.17) oo(Us) = w™ U2, oo(Vo) =w™ V5t
One checks that
U(z,y)"! = w Uyt = w20 W5t =
= w!™%ay(Up) = ao(w* ~*Us) = oo(U(1 — 2,1 - y))

and similarly
Viz,y) ' =w ¥V = ao(V(1 - 2,1-y)),

so ¢ does really represent the flip.
Now, the automorphisms ay, @ and 7 verify the commutation relations
Qa0 = a0,
(3.18) Yooz = a7 "0,

-1
Yoo2 = Cy Y0,
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and the automorphism oo} maps Up into w™ Uy ! and Vg into w™V; ', Hence
(3.19) op = ‘yoal"laz_l = o1020-

We are now ready to describe the fixed point algebra A = Bjy. Using the
description (3.13) of 44 land the description (3.16) of o one easily identifies By as the
algebra of continuous functions f from the triangle

(320) {(z:y)|0<-’ﬂ,y<11 -"3—3120}

into My with the following relations at the boundary:

f(l',O)=C!2')’0(f(1—1',0)), OS-‘BSL
(3.21) f,y) = exadyo(f(1,1 - y)), <y<l,
f(z,z) = a1a2v(f(1—2,1-2)), 0Kzl

The identification is by restricting f € Ay from the square to the triangle. This can
be seen from the following picture of f € Aj, where

a=f(:c,:l:), b:f(:c,O), c:f(l,,y) andd:f(0,0):

o) Go(V)
; } 0,0, (d)=Go(d)=0,0,Y (d)
o, )+ +c
Oy(a)
=(1,a2'Yo(a)
L
(3.22)
a
Cole) T 0L,06(€)=04,0,Y,(c)
d e - o,d)
v 0, O,(v)
=0L,Y,(v)

In particular, the points (0, 0), (%, 0), (%, %) and (1, %), which correspond to the
four fixed points of the homeomorphism defined by o on the spectrum TZ of Ay, are

exceptional in that the values of f € .AJ are restricted to lie in a subalgebra of M,
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which 1s direct sum of two full matrix algebras. The subalgebra depends on the point,

and can be described as fellows:
At (0,0): {d € My|vs(d) = d}.
1
At (5, 0) :{b € Mg|eayo(d) = b}.

A (5 5) Ha & Mylerazye(a) = a}.
At (1, é) {ee Mqlalozgyo(c) = ¢}.

(Note that all automorphisms of the form o vy are involutions, as a consequence
of (3.3), (3.12) and (3.18).) Thus, at the point (n, m) where n, m are half-integers (or
integers), the involutive automorphism defining the subalgebra is

(324) a’?ma%n‘)’o,
and this automorphism is implemented by the unitary
(325) Wn,m = p%-(P'pIIQnZM)UnglVbzmpupo

where pp’ = —1 mod ¢, pp” = 1 mod ¢, and the phase factor p3(P’?"202m) is inserted
in order to make the unitary W, ,, self-adjoint. Here we have used (3.6) to (3.12).
‘The dimensions of the two subalgebras of M, at the four exceptional points are
equal to the dimensions of the two eigensubspaces of the self-adjoint unitary operator
W corresponding to the point. These dimensions are determined by Try (W) where

‘I, is the unnormalized trace on M, given by

. - d
(3.26) Tr, (URV™) = { g ifn, m‘ 0 mod g,
0 otherwise.
Using this together with the expansion (3.4) for I'y, one computes
T, (0" UG V5" Io) =

1 nw ' »
== ) pFH UV USV) =
ez,

]. nm 2l s b e
(320 = 137 sy, () =

= %ZP%&“”(’”H)’I‘IQ (%m+21) =
i
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- %Zp-g(mm)rﬁq (V) |
1

In the latter sum, only terms where m + 2! = 0 mod ¢ survives, so there will be two,
one or none surviving terms depending on the parity of ¢ and m. We thus obtain the
following table

g m pn P8 Try (USVE"To)
odd -1
odd
even 1
odd
even 1
odd 0
even
odd 0
even
(3.28) : even 2

(An alternative way of deriving this table, suggested by the referee, is to note that
it follows from (3.2) that I'g represenis the permutation ¥ — —k (mod)¢ and V§»
represents the permutation ¥ — —k — m (mod)q of Z/qZ. Thus V§"I'y represents
the permutation & — —~k — m (mod) g, and therefore the non-zero diagonal elements
of the permutation matrix V" I'o are ones on the sites corresponding to the fixed
points of this permutation, which are the integers among the two numbers 45~ and
—5 ,modq. Since U§"® multiplies the k’th row of Vg»I'y by p™* we obtain

m q—m
ke { 5 } N Z}
and (3.28) follows immediately from this.)
We now use this table to compute Try (W, m), where Wy, m is given by (3.25).

T @pVrT) = Y|

There are two cases:
Case 1: q is odd. Then pp’ and pp” are even, so p-2mp’ is even for any half-integer
m; thus

(3.29) Tr (Wpm) =1

for all half-integers n, m in this case.
Case 2: q is even. Then pp’ and pp” are odd, and hence the two numbers

/1

p-2mp', 2np

are even or odd according to whether the twe numbers

2m, 2n
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are even or odd. Thus

(5.30) Te (W) = { 2 if 2m a;nd 2n are both even,
0 otherwise

This ends the proof of Theorem 1.2 as far as the dimensions of the projections
P are concerned. It remains to establish that By is a trivial bundle over the sphere.

‘To this end, we see from figure (3.22) that we may obtain the spectrum of By by
folding the triangle along the three axes (3,0) - (3,3). (3,3) - (1,}) and (1,3) -
—(£,9), joining the three corners at the top and joining the edge (0,0) — (1,0)
to (1,0) - (%,0), etc.. Thus, By may be viewed as an algebra of functions f from
the sphere $2 into M,. These are continvous cxcept on a tree on §? with three edges
emanating from a central vertex, corresponding to (0,0}, and ending at three vertices,
corresponding to the points ( 3,0) (73 2) and (1,% . This tree corresponds to the
perimeter of the triangle in figure (3.22). At the edges of the tree the function f has
jump discontinuities, such that the limit values on one side of the edge are equal to
the limit values on the other side modified by an involutory automorphism which is
constant along the edge, but dependent upon which of the three edges we are at:

(12,1/2)

0,05Ye

(3.31)

To finish the proof of Theorem 1.2, it is sufficient to show that this algebra
is isomorphic to the algebra B{;[ of continuous functions from S$? into M, with the

1 1
@37%0 (f (5)0)) = f (5’0) )
11 11
o a'a = Sta i
(3.32) Lo (f (2 2)) d (2 2)
ol fl1 l =f{1 l
1%2750 19 - 19 )
azyoeraiyoesasyo (£(0,0)) = 70 (£(0,0)) = £(0,0)
at the four special points. This amounts to showing that there exists a map g8 from

$” into Aut (M,) = U(g)/T which is continuous except at the tree, and is continuous
on each side of the edges of the tree with limits as follows:

restrictions
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(3.33)

Furthermore, on going through the four circle sectors on the figure, the function
has to take values in automorphisms with the same fixed point algebra as, or a larger
one than, the quotient of the two automorphisms on the two sides on the circle sector.
This ensures that, although the map from $? into Aut(M,) is necessarily discontinuous
at the four special points, when this map is applied to a function in B;r, a function
which is continuous at the four special points is obtained. The isomorphism from B;r
to By is then given by

(3.34) (Bf)(w) = Bw)(f(w))

for f € B;r, w € §%\tree.
To obtain the map w — B(w) we will actually define a map

(3.35) w Uw) € Ulg)
and put
(3.36) B(w) = Ad(U(w))-

Along the edges of the tree, the values of U are given as follows:

(3.37) 2"

LA

pPPUEVEP Typ 2 USVET,
_PE
=p 2 VOp
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Here pp’ = - .1 mod ¢ and pp” = —1 modg. In going around the circle sectors at
1,2,3, and 4, we have to choose the map U so that the value of U commutes with
the quotient of the values of U on both sides of the circle sector. For example, going
around 1, let P, be the spectral projection of p&"fl U¥ I 174 "Fo corresponding to the

eigenvalue ~1 so that
(3.38) P UP VP Ty = (1- P) - Py

is the spectral decomposition of this self-adjoint unitary operator. If ¢ is a real pa-
rameter varying from 0 to 1 in going around the circle sector near 1 clockwise, then

the map U along the circle sector can be taken to be
(3.40) ts (1— Py)+e2mi(34mt)p,
where n; is an arbitrary integer. In a similar way we use the spectral decompositions

pp;pngIV:pl'Fo ES (1 - Pz) bt Pz,
(3.41) VI o= (1~ Ps)— Py,

when going around tho semicircles at 2, 3, and 4. At 4 we have in addition to unwind
the phase factor p~ ¥, Altogether, when going around the contour, we thus define
a map from the circle into U(g) with winding number (in the sense of [1]; in this case,

the winding number of the determinant)

(3.49) #= (% + "1) dim (Py) + (1 + nz) dim (P2) +

(1+ nz)dim (P3) — (1 + m) dim (Pz) +¢ (pz;’p" +n )

where the last term comes from unwinding the phase factor, and n,, ..., ns are arbi-
trary integers. This map now defines 2 map 8 from the circle into U(q)/T = Aut (M,),
and a necessary and sufficient condition for this map te be extendible to a continuous
map A on all of $?\tree is that the winding number of the map into U(g) be an integer
mltiple of g. (To prove sufficiency, which is all we shall need, it is easily seen to be
enough to consider the case that the winding number is zero, and then, for instance
by [1], the path is contractible in U(g).) To see that it is possible to choose ny,...,n4
(ms is irrelevant) such that this is the case we divide the discussion into two cases:
Case 1: q is odd. Then

(3.43) dim (Py) = g__;j
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for =1,2,3,4 by (3.29). Thus, modulo ¢,

1 -1 -1 1 -1
(3.44) #=§mﬁW+25—+0n+nr+m~n013—=5mﬂ”+nq2,

where n is an arbitrary integer. But since

pp’ = —1mod g,

pp" = 1mod g,
and 1<y, p” <q—1, we have p’ = ¢ — p"’ and hence p’ and p” have distinct parity.
It follows that %pp’ p" is an integer. But as 9;—1 and ¢ are mutually prime, it follows
that # can take any integral value modulo ¢ as n varies, and in particular we may

choose n so that
# =0modg.

Case 2: q is even. Then

dm(P) =1, i=1,23,

(3.45) 2_2
dim (Py) = =2,
2
by (3.30). Thus, modulo g,
1 70 q 1
(3.46) #=§PPP +(1+n1+n2+n3—n4)§— §+n4 .

1

In this case p,p’ and p’ are necessarily all odd; hence %pp’ p"” — 5 = m is an integer,

and hence the possible range of values of # is

#=m+n-g—+lc

where n, k are arbitrary integers. Now choose n =0,k = —m.
It follows that B does indeed extend to a continuous map from $%\tree into
Aut(M,). This ends the proof of Theorem 1.2.

REMARK: As a matter of fact, it is necessary to compute the winding number of
the path U in U(g) as defined in the proof of Theorem 1.2. Since blocks at two of the
four double points have relatively prime order, the choice of U can be modified near
these points so that U has winding number zero.

More generally, we see in this way that any bundle over §? with fibre M, except
at some finite number of points, where it is the commutant of some finite family
of orthogonal projections, such that some integral combination of the dimensions of
all the projections is equal to 1(i.e., the dimensions are relatively prime), is trivial.
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{Omne first expresses such a bundle in terms of a sewing along some tree joining the
singular points, determined by some continuous path of unitaries around the tree,
commuting with the projections at each vertex in the neighborhood of that vertex,
and then modifies the path, near the vertices, so that it has winding number zero,

and so extends to a continuous family on the whole complement of the tree.)
4. STRUCTURE OF THE CROSSED PRODUCT

In this section we shall prove Theorem 1.3. We first note that if ¢ is an involutive
automorphism of a C*-algebra A, the crossed product A x, Z3 can be described in
a simple fashion which in particular makes the connection between A X, Z2 and A”
clear. If W is the canonical unitary in A X, Z3 implementing o, the usual left regular
representation of A X, Zg is given by

A 0
Aedr {0 a(A)J !
g0 1
W i— [1 0] .

‘Thus, a general element in the crossed product is
A+BW—[A 0]+[B 0]'0 1]_[/1 B]
T 10 o(4) 0 o(B) L 0] " le(B) o(A))

Changing coordinates such that W becomes diagonal, i.e. conjugating the expression

above with the self-adjoint unitary

1 [1 1 ]
V2|t -1}’
we obtain the following representation of the crossed product:
1 A+B) (1-0)A-B
(4.1) A+BW=1[(+®( ) (L=o)A-B)]
2{(1-0)(A+B) (1+0)(A-B)

Consider the spectral subspace
(4.2) A%(—-1) = {A € Alg(A) = —A}

of A corresponding to the eigenvalue -1. Then, as A, B vary independently over A,
the elements (1 + 0)(A + B) and (1 + o)(A — B) vary independently over A°, and
the elements (1 — 0)(A + B) and (1 — ¢)(A — B) vary independently over A?(~1). It

follows that the crossed product can be described as

A B ) o
(4.3) Axolgz{[c D]'A,DGA,B,CGA( 1)}
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with standard matrix multiplication and involution. In this representation

» w=[! 2]

and the projection P = (1 + W) such that (by [13]) P (A x, Z2) P = A% is

10
(4.5) P=(0 0).

Let us now specialize this to A4y, with 8 = % Using (3.16) and the technique
leading to (3.21), one may identify .4°(—1) with the set of functions f from the
triangle

(4.6) {(z,vI0€2z, y<l, z -y 20}

into M, with the following relations at the boundary:

f(.’l?,O) = _a270(f(1 '—xao))i 0<zK],
(47) f(lay) = _ala%70(f(1a1_y))) 0<y$1,
f(z,z) = —araav0(f(1 — 2,1~ z)), 0<zgl.

Hence, on using (4.3), the crossed product A X, Zy may be identified with the set of
functions f from the triangle (4.6) intc M2q = My, ® M2 with the following relations
at the boundary:

0= (wmoena [0 ] a-zon, 0<z<l,
0

(48)  f(l,y) = (a1a§70®Ad [(1) L

o Sua-ai-a o<t

[ o=, o<y<l,

f(:c,:c) = (a1a270 ®Ad [

Thus the value of f ranges over all of My, except at the four exceptional points
(0,0) (and (1,0),(1,1)), (%,0) , (-;—, 1) and (1, -;—), where the value is restricted to the
0
] where

0 -1
V is a self-adjoint unitary matrix in M,. But the dimensions of both eigenspaces of

1

V x
b
is concerned. To prove triviality of the bundle, one notes that if U is the map from

2¢ X 2q matrices commuting with a unitary matrix of the form V ® {

] are ¢, and this establishes Theorem 1.3 as far as the dimension of P

the circle into U(g) defined by Figure (3.37) and the subsequent remark, one may
immediately define a similar map by replacing U by

V=UQTr
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1 0
where I' is a map from the circle into U(2) which varies from 1 to [0 1] on the

circle sector 1, from [ ] to 1 on sector 2, from 1 to [ ] on sector 3, and

back to 1 on sector 49 Thi winding number of this new map can be taken to be
zero, and hence the winding number of V is two times the winding number of U, and
therefore V may be chosen to have winding number zero modulo 2¢ by the reasoning
around (3.43) and (3.46). The remaining details of the proof of Theorem 1.3 are like

those of Theorem 1.2.
5. TRACES AND PROJECTIONS ASSOCIATED TO THE CROSSED PRODUCT

In [2), Proposition 4.1, all the trace functionals on P?(U, V) were determined in
the case that @ is irrational. These are spanned by five functionals 7, Tee, Teo, Toe; Too

(e=even, 0=z0dd), where 7 is the trace coming from P(U, V), i.e.

2 ifn=m=90
5.1 , = ’
G-1) (. mi) {0 otherwise,
and
- 1 if parity(n) = p1, parity(m) = pa,
62 (=) SO =py peri(m) =0
0 otherwise.

In particular, this incorporates the convention
5.3) Tee([0,0]) = 1,

which is essential for (5.4), below. These trace functionals are of course also defined
on P?(U,V) when 4 is rational.
The four latter traces have the additional property that

(5.4) Tpip2(CD) = —Tpxpa(DC)

whenever C, D are in the odd subspace P?(—1). This can be verified by explicit
caleulations on C, D of the form

(5.5) [n,m)- = p™* (UV™ -U"V"™).
The latter elements span P?(—1) linearly, and satisfy the relations

mk=rnl

(5.6) [n,m]_[k,l]-=p" = [n+k,m+1]—pL_22£[n—k,m—I],

(5'7) [n:m]t- = _[nrm]—:
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(5.8) [~n,~m]- = ~[n,m]_.

Using that n + k and n — k have the same parity, and also m+ 1 and m — 1, one
immediately obtains (5.4) from (5.6).

Now let Py X, Z2 be the algebraic crossed product of Py by Z2. Then Py x, Z2
is the *-algebra generated by three unitaries U, V, W with the relations

VU = pUV,

WU =U"'W,
(5.9)

wv =v-iw,

w?=1.

Since Ay is the enveloping C*-algebra of a pair U, V of unitaries with the first relation,
it follows from the universal properties of the crossed product that the enveloping C*-
-algebra of Py x5 Z; exists and is canonically isomorphic to Ag X, Z3. (Incidentally,
Alexander Kumjian (E-mail correspondence, May 24, 1989) has pointed out that
Ag x o Z3 1s the universal C*-algebra generated by three self-adjoint unitaries z,y, 2
with the relation

zyz = pzyz.

The correspondence with (5.9) is
z=VW, y=W, 2=UW,

or
U=z2y, V=zy W=y)

Furthermore, it follows from (4.3) that P X, Z> can be realised as an algebra of 2 x 2

matrices:

A B,
(5.10) Py xo Ly = {[c D] |A,DeP?, B,C E'P"(—l)}.

ProPosITION 5.1. If # is irrational, any trace functional on Py X, L2 has the
form '

(5.11) [A B

c D] — Ar(A+ D)+ Z ApipaTpipa(A — D)

Pip2

where A, Aee, Aoe, Aeo, Aoo are complex numbers, A, D € P?, B,C € P?(—1) and the
last sum is over all four possible combinations of parities p;, ps.
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In terms of the standard description of the crossed product, the same functional

is given by

(5.12) A+ BW A1 (%(1 + o)(A)) + D AopaToaps (%(1 + a)(B))
Pip2

for A,BeP(U,V).

Before proving this proposition we note from Section 4 that when 6 is rational the
algebra Py %, Z2, and even Ag X, Z2 , has many more traces. The space of extremal
trace states of Ay x, Z3 is homeomorphic to the sphere §% with four points deleted,
Joined disjointly with a discrete eight point set (see Theorem 1.3).

To prove Proposition 3.1, let ¢ be a trace functional on Py x,Z5, and decompose

© as

(5.16) o([5 1)) = e+ 0D+ pa(B) +0()

where @1, 2 are linear functionals on P? and g3, @4 are linear functionals on P?(-1).
Now the identity

(5.19) [(1) _(.)1] [3 ?] [; _01]2[8 _oB]

and the trace property of ¢ imply ¢s = 0, and similarly ¢4 = 0. Furthermore,
restricting to elements of the form 0 0 one sees that ) is a trace functional on
P?, and similarly so is 5. Finally, using this, and checking the trace property on the

product of two general elements of the form c D] , one deduces:

LEMMA 5.2 The functional ¢ on Py %, Z» defined by (5.10), is a trace functional
if, and only if,

(5.15) 03 =g =0,
(5.16) @1, 2 are trace functionals on P7,
(5.17) ©1(BC) = ¢2(CB) for C,B € P°(-1).

Now, by (5.16) and the first paragraph, above, which uses the irrationality of 6,

each ¢; has the form

(318) w; = N7+ Z /\vgmmrmpz, i=1,2.
P1p2
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Using (5.4), the fact that 7(BC) = 7(CB) for B,C € P°(-1), and the fact that
P?(—1)% = P? (see [2], Lemma 2.10 and its proof), one deduces from (5.17) that

A=A2= A
(5.19) o

Mpipe = —A2,p1,05 = Apypa

Conversely, one can deduce (5.16) and (5.17) from these relations, and this e-
stablishes Proposition 5.1 execpt for the final remark, which is immediate from (4.1).
Now, define five trace functionals on Py x, Z3 by

(5.20) (A + BW) = %T(a +0)A)
and
(5.21) Toipa(A + BW) = 7,5,((1 + 0) B)

for p;1, p2 =odd, even. By Proposition 5.1, if @ is irrational these functionals span all

trace functionals.

Let us now consider the following projections in Py X, Z3 introduced by Nest in

[11]:

(5.22) P(n,m) = % (L+p 5 UV™W) = ! [

2+ ([n,m] —[n,m]_
; §

[n,m]- 2—[n,m]
It is easily verified that these elements are indeed self-adjoint projections, and
%(P(n,m)) =1,
(5.23) L if parity(n) = p; and parity(m) =
R (Plnym)) = { 7 P () = pi and poriy(m) = pa
0 otherwise.
Thus, the five projections 1, P(0,0), P(0,1), P(1,0) and P(1, 1) separate the five trace
functionals, as
1) =1,
(5.24) 0( )
T plpg(l) =0.
In particular, whether @ is irrational or not, these traces are independent in the
periodised cyclic cohomology of Py X, Z3. A complete computation of the cyclic
cohomology is given in [11].
We have seen that whether 8 is irrational or not, the poliomial algebra Py x, Z3
has the five, ”abstract”, trace functionals 7, 7p,p,,p1,p2 € {odd,even} = {o,e}. (We
omit the super-script 0 from now on). Explicitely, these are given by

am 1 fn=m=0,
= nym —
T (p vty ) { 0 otherwise,

T (p*FU"V™W) =0,

(5.25)
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and

Tp1pa (p-'g&Uan) =0,

(5.26) 1 if parity(n) = p1 and parity(m) = pa,

22 rrnysm —
Tz (p CUv W) B {0 otherwise.

When 8 = E- is rational, it follows from Theorem 1.3 that the space of extremal
trace states on Ay X, Z5 is the disjoint union of the two-sphere §% with four points
deleted and a discrete eight point set. Using 3.22, a point on the sphere outside
the four points can be specified by a pair (z,y) with 0 <z, y<1, 22>y (with some
identifications at the boundary on this region), where (z,y) # (0,0), (%,0) ) (%,%

and (1, 3). The corresponding trace state is defined by

(5.27) e (f) = ~21—qmq(f(z, %)

in the function representation given by (4.8). We will compute 7,y on the linear
generators of Py X, Z2. These are given by

poomym b ),

- [p,m]-  in,m]
(5.28)
2 rrpyrm - l [n) m] _[n7 m]"‘
A0 =3 (. i )’
by (4.1).

In the function representation, by (3.14),

[n, ml(z,y) = p= (U(z,y)"V(2,9)™ + U(z,y) "V(z,y9)™™) =

=p= (wﬂl'+myU63V0m + w—rw—nyUo—nVo—m) )

Combining this with (3.26), we see that

ey (PFUV™) =

- am 2 1 ifn,m = 0modg,
(330 mh el (7(7”: * my)) . {0 otherwise,

Twy) (P FUVTW) =0.

Of course, 7(; ) is also a trace state when (z,y) is in the half-integer lattice, but then
it is not extremal, —— it decomposes into the average of the two extremal trace states

given by

1 0
(5.31) ) = %mq (% (1 + We ) ® [ 0 - 1]) f(a:,?l))
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where Wz .y is the self-adjoint unitary implementing the flip at (z,y), ie.,

i1

(5.32) Wiey) = pECPP 2’”2”)U§”'V02”"1‘0

by (3.23) and (3.25), where pp’ = —1mod ¢, pp = 1 modg. Since

1 10 1[12 Wy O ]
5.33 {1+ W, = = '
(5:33) 2( * ('”)®[0 —1]) 2[ 0 1FWay

we obtain

nm nm 27!' 1 if n,m= Omodq
+ EM pepyrm) . 2D “n . ’ ’
(5.34) 7%, (p"FUV™) = p™ cos ( p (nz + my)) {0 otherwise,

while
T(:::c,y) (P FUNVTW) =
= :t'zl' Tr, (p™ (W™THF™UPV™ +w "™ V™) Wizy)) =

= :i:2l Tr, (w"”my pmyp' p= e pE(2yp'+n)(2zp"+m)
q

1 "
JHPARY 2P HM Mo 4 similar term with n i —n, m — —m) .

But according to (3.28), Tr, (p*# U§Vg"I'o) depends only on n and m through the
parity of » and m, and as the two integers 2yp’ & n have the same parity, and also
2zp’' £+ m, we obtain

1 2w " ,
(5.36) = j:E cos 7(nz(1 —-pp"y+ my(1 +pp)) ) -
T, (p%(Zyp'+n)(2zp“+m) U02yp’+n%2zp”+m To) .
Since 1 — pp” = 0modq, 1 + pp’ = 0mod ¢ and z,y are half-integers, we deduce that
T(::.y) (pFUPVTW) =

(537) — :t_l_(_l)%(n2z(1—pp")+m2y(1+PPI)) ) ¢(q’ 21:1)// + m,p(2yp' + n))
q

where ¢(-, -, -) is the integer-valued function tabulated in (3.28).
Now, for (z,y) = (0,0), (3,0),(3,3) and (1,}), introduce the trace functionals

. ~ q -
(5.38) Tzy) = 5 (T&Z,y) - T(x,y)) -
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Then

(5.39) Fay) (PTUV™) =0,

_ Tay) (P UMVTW) =

({)40) L( 2 (1 1" 2 1 I) /

= (=1)32eC-pP04m2y(4289) . 4(g, 22p” + m, p(2yp' + n)).

Hence,
(5.41) F0,0) (P T UV™W) = é(q, m, pn),
(542) %(%,0) (pﬂzﬂUnvmw) = (_1)%"(1—Pp")¢(q,pll + m’pn)’

(543)  Fiyp) (PFUTV™W) = (~D IO HRCNG(g, 5 4 m, plp’ + ),

2'2

(5.44) 7a,3) (PBUNV™W) = (=1)7m0+P0g(g, m, p(p' + n)),

where we have used that ¢ depends only on the parity of its arguments.
To obtain a more tractable expression for 7, we again divide the discussion into
two subcases: ¢ even or odd.

Case 1: q even: Then p,p’ and p” are all odd and as p’ + p” = ¢ we derive

(1+pp') — (1 — pp’) = pg = odd multiple of g.

— o' 7"
parity (1 qpp) # parity (1+qpp )

If the parity of lifi is odd, one uses the table (3.28) to derive (putting 7z,y) (p "5 U™
VW) = e (s m))

Then

2 if m and n are even,

7:(0.0)("': m) = ¢(g,m,n) = {

0 otherwise,

2 if m is odd and n is even,

T(%,o)(n) m) = ¢(q) m+ 1) n) = { 0 otherwise,

(5.45) i

-2 if m,n are odd
- —_(_1\™ = ’ ’
T(%,%)(n) m) = (-1)"é(g,m+1,n+1) {0 otherwise,

- . 2 if m is even and n is odd,
o p(mm) = (<8l mn+ 1) = { |
2 0 otherwise.
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If ﬁ;ﬂi is even, one derives exactly the same expression for 7(; 4y as above. Comparing
this table with (5.26) we see that

(5.46) To) = 2=1)* Ty(ay)p(20)
for (:L‘, y) = (01 O)a (%: 0) ) (%: %) and (1) %) where
(5.47) p(k) = parity of k.

This concludes the discussion of even gq.

Case 2: ¢ is odd: In this case the table (3.28) implies
¢(Qa m)pn) = (_l)pmn .
Using (5.38) to (5.41) we obtain
Too(n, m) = (=1)P"™,
F3,0(n,m) = (=1)"""p1(n),
f'(%,%)(n, m) = (—=1)"""p1(n)p2(m),
71,3y (n,m) = (=1)"""p2(m)

where Y Y
o1(n) = (_1)(%(1—pp +ep")n

pa(m) = (_1)(%(1+pp’)+pp’)m.
But as pp” = 1 mod q one has

%(1 —pp")+ pp’ = 1mod (g — 1),

and as ¢ — 1 is even, this number is odd; hence

p1(n) = (~1)™.
Similarly,
p2(m) = (-1)™,
and hence
(548) Ry m) = (1P 1) PEI (1) (—pyprmtsentzem

for 2,y = (0,0), (3,0), (1, 1) and (1,}). Comparing with (5.23) we deduce that

2’2

(5.49) Fagy= D (1Pt ime oy im)

nmel;
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for (z,y) = (0,0),(3,0),(3.3) and (1,3). Conversely, one could obtain 7,5, from
the 7z ,)’s by applying the inverse Fourier transform over Z3 x Z,.
This proves relations (1.15) to (1.18).

6. K-THEORY.

THEOREM 6.1. Let wy,wa,...,w, be a set of r distinct points on the 2-spere S°.
If g > 1, let Py, P,,..., P, be projections in My, with 0 < P; < 1. Let C, denote
the C*-algebra of functions f € C($%,M,) such that f(w;) commutes with P;, for
r=0,12,...r,
KO (Cr) = Zr+2;
K. (C;) ~ {0}

Proof. Let J, denote the ideal of C, consisting of those functions which vanish

at wy,ws,...,w,. Then from the exact sequences, for r =0,1,2,...,
0 Jri1 HJr’_’Mq'_’O:

where Jp ~ C(Sz) ® M, =~ Cp, we deduce that

KO (Jr) ja z)

Ky (J) =~ 27!
for r > 1. The identification of K; (J,) with Z"~! is as follows. Let v be a unitary
in J,, the unital extension of J.. Then the class of 4 in K; (J;) is identified with
ely] = (ni:i € Z/rZ) in 27 /2(1,1,...1), where n; is the winding number of det(y)
along a line from w; to w;q41.

Then from the exact sequence
0 Jr = Cr = @ (PM,P;® (1— )M, (1— B)) = 0
=1

we have

7 — Ko(G&) — I

[ L

0 — Ki() — 7!
We show that « is surjective, from which the assertion for K.(C,) follows. Fix j €
€ {1,...,r}. Take e = (&) € @ (PM P& (1 - P;)My (1 — Pi)), where ¢; is a
minimal projection, and ¢; = 0 for i # j. Then we can extend e to a continuous

function on $2, so that p[exp 27ie] = [(n;)] where

-1 ifi=j—1,
={+1 ifi=j,

0 otherwise.
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Thus « is surjective.

By Theorem 1.2 and 1.3, this implies that the K-groups of By and Cy are as
described in the introduction when 6 is rational.

If @ is irrational, then, as shown in Section 5, there is a rank five subgroup
of Ko(Cs) which is separated by the five-dimensional space of traces on the dense
subalgebra of rapidly decreasing sums. A sixth independent element is obtained by
adjoining the class of the Rieffel projection, [12]. This is seen by noting that, while
Nest’s projections have rational values on a basis for the space of traces, Rieffel’s
projection has trace § with respect to the canonical trace, 7. Thus, Ko(Cs) D Z°.

Since By is Morita equivalent to Cy, also Ko(Bs) 2 Z. It would be interesting to
determine if Nest’s projections in fact already belong to My(Bs).

7. A SECOND APPLICATION OF THE DENSELY DEFINED TRACES ON B, AND ;.

Throughout this section we will assume that 8 is irrational. We shall show that
in the dense subalgebra of By consisting of sums ) A, m[n, m] with (A, ) rapidly
decreasing (see (1.3)), the linear combinations of the projections cannot be dense
in the natural topology. We refer to the topology obtained from the seminorms
16767 ()|| on Ag°, where 6, and 8 are the canonical derivations of A3 (see [4]). We
shall denote this dense subalgebra of By, which is a Fréchet algebra in this topology, by
Bg°. Likewise we will consider the subalgebra of Cy consisting of linear combinations
of the monomials U?V™ and UPV™W with rapidly decreasing coefficients. This *-
-algebra is a Fréchet algebra in its obvious natural topology and is denoted by C§°.
It is the algebraic crossed product of B° by the action o of Z;. We will show that
the linear combinations of the projections in C§° are not dense in C§° in the Fréchet
topology.

These results should be contrasted with the fact, proved in [7], that the linear
combinations of projections in the C*-algebras By and Cy are dense in the algebras in
the usual topology, at least for a dense set of irrational values of 4.

Another comment which seems appropriate at this point is that, while the result
of [7] also holds for the rotation C*-algebra, — that is to say, the linear combinations of
the projections are dense in the C*-algebra A4 for many values of § —, our methods,
which involve the four-dimensional spaces of spurious trace functionals on By and
Cy, respectively, do not allow us to conclude that the linear combinations of the
projections are not dense in A3° (in the natural topology of this algebra).

We shall prove the opening statement for the algebra C§°; the statement for Bg°
can be deduced by minor modifications of the argument by using the embedding of Bg°
into C5° described in Section 4. Thus we shall establish that the linear combinations
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of the projections cannot be dense in C§°.

We note first that if 7 is the canonical trace and 7. is the tracial functional on By
defined by (5.18), then the tracial functional 7+ %Tee is positive on any projection in
Bg® for each rational value & of §. This follows from (1.14), (1.17) and (1.18), together
with the fact that, on a projection, the value of 7 can be obtained by evaluating at
any point of $2 and then taking the normalized trace on M3, —— rather than doing
this at all points and averaging. In particular, one can evaluate at one of the split
points of §%; at such a point the relevant trace is the sum of the traces in the two
blocks, normalized by dividing by 2q.

It follows by continuity that r+ %ree is positive on each projection in Cg° when ¢
is irrational. More explicitly, each projection eg in C3° is part of a family of projections

eor =3 (M UV™ + 4 UV ) € CF,

n,m

¢’ belonging to an interval containing 8, such that the coefficients /\f;,m and ;Af‘:m are
rapidly decreasing uniformly in ¢, and are continuous in #’ for each n and m. This
follows from continuous field techniques (see [8]) together with the fact that C3° is
closed under C*-calculus of the self-adjoint elements (see [4]), or it suffices to use
that C5° is closed under holomorphic calculus. Continuity of 8 + (1 + 37e.) (es)
follows, and positivity at the irrational point 8’ = # follows from positivity at rational

points shown above.

Therefore, if the linear combinations of the projections are dense in C§° in the
natural topology, then, since 7., is continuous in this topology, and of course also T,
the trace functional r + %‘ree is positive on CZ°.

This is contrary to the uniqueness of 7 as a tracial state of C§° proved in Theorem
4.7 of [2].

Acknowledgement. Most of this work was done while the authors visited the Mittag-
Leffler institute. We are indepted to the referee of this paper for making several constructive
remarks.

Note added in proof. Since this paper was submitted, several of the questions posed
in the paper have been solved. A. Kumjian proved that Ky(Cy) £ 26 and K1(Cg) = 0 for
all 8, whether irrational or not, by using different techniques from ours, in KUMJIAN, A,
Non-commutative spherical orbifolds, C.R. Math. Rep. Sci. Canada, 12(1990), 87-89. Also,
using techniqnes completely different from those proposed in the introduction of this paper,
it has been established that Cjy is an AF-algebra when 4 is irrational, in BRATTELL, O.;
Evans, D. E.; KIsHIMOTO, A., Crossed products of totally disconnected spaces by Z3 * Z3,
Ergodic theory and dynamical systems, to appear, and BRATTELI, O.; KISHIMOTO, A., Non-
commutative spheres III, Irrational rotations, Comm. Math. Phys, 147(1992), 605-624.
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