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ALGEBRAIC ORDERS ON K, AND APPROXIMATELY FINITE
OPERATOR ALGEBRAS

STEPHEN C. POWER

Approximately finite (AF) C*-algebras are classified by approximately finite
(r-discrete principal) groupoids. Certain natural triangular subalgebras of AF C*-
-algebras are similarly classified by triangular subsemigroupoids of AF groupoids [15].
Putting this in a more intuitive way, such subalgebras A are classified by the topol-
ogised fundamental binary relation R(A) induced on the Gelfand space of the masa
ANA* by the normaliser of ANA* in A. (This relation R(A) is also determined by any
matrix unit system for A affiliated with AN A*.) The fundamental relation R(A) has
been useful both in understanding the isomorphism classes of specific algebras and in
the general structure theory of triangular and chordal subalgebras of AF C*-algebras
([7], [15], [14], [21], [22]). Nevertheless it is desirable to have more convenient and
computable invariants associated with the Ko group, and we begin such an inquiry
in this paper.

We introduce the algebraic order and the strong algebraic order on the scale
of the Ky group of a non-self-adjoint subalgebra of a C*-algebra. Analogues (and
generalisations) of Elliott’s classification of AF C*-algebras are obtained for limit
algebras of direct systems

A1—>A2—>...

of finite-dimensional CSL algebras (poset algebras) with respect to certain embeddings
with C*-extensions which, in a certain sense, preserve the algebraic order. We also
require that the systems have a certain conjugacy property. Despite the restrictions
there are many interesting applications. For example conjugacy properties prevail for
certain embeddings of finite-dimensional nest algebras (block upper triangular matrix
algebras) and for systems associated with ordered Bratteli diagrams.
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Hitherto the study of non-self-adjoint subalgebras of AF C*-algebras has focused
on triangular subalgebras, where AN A* is a certain approximately finite regular max-
imal abelian self-adjoint algebra ([1], [7], [9], [11], [14], [15]). See also [8]. However
from the point of view of identifying the algebraically ordered scaled ordered dimen-
sion group, the viewpoint of this paper, it is the nontriangular subalgebras which are
particularly interesting since in this case Ko(A) (which agrees with Koq(A N A*)) can
be a “small group”, such as Z° or Q2. In such settings, the algebraic orders can be
revealed more explicitely. For example, in Section 4 we see situations in which AN A*
is a simple C*-algebra in the simple C*-algebra C*(A), and A is one of only finitely
many algebras between AN A* and C*(A). The algebraic order of such an algebra
corresponds to partial orders on the fibres of the surjection i,: Ko(A) — Ko(C*(A)).

In Section 1 we define the reflexive transitive antisymmetric order S(A) on the
scale of the Ko group of a subalgebra of a C*-algebra, and we recall some basic facts
concerning (regular) canonical subalgebras of AF C*-algebras. In Section 2 we discuss
various kinds of embeddings of finite-dimensional algebras of matrices, and we define
the strong algebraic order S;(A) associated with a canonical masa. In Section 3 we
obtain the main results, Theorems 3.1 and 3.2, together with various examples and
assoclated remarks. In particular we consider a class of triangular algebras associated
with ordered Bratteli diagrams. In Section 4 we considcr examples of non-self-adjoint
subalgebras of AF C*-algebras with small K, group. In this connection we look at
stationary pairs of AF C*-algebras D C B and their intermediate non-self-adjoint
algebras.

Most of this paper was completed during a visit to the University of Waterloo in
1989, and the author would like to thank Ken Davidson for some useful discussions.

1. ALGEBRA ORDERS ON Kj

We start by recalling some terminology and properties of subalgebras of AF C*-
-algebras.

A finite-dimensional commutative subspace lattice algebra A, or FDCSL algebra,
is an operator algebra on a finite-dimensional Hilbert space which contains a maximal
abelian self-adjoint algebra (masa). We say that a masa C in an AF C*-algebra B
is a canonical masa (or, more precisely, a regular canonical masa) if there is a chain
of {inite-dimensional C*-subalgebras B; C B; C ..., with dense union, such that the
algebras Cp = By N C are masas in the algebras By with dense union in C and, such
that, for each k, the normaliser of Ci in By is contained in the normaliser of Ci41
in Br4i. A closed subalgebra A of B is said to be a (regular) canonical subalgebra if
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C C A C B for some canonical masa C. In this case A is necessarily the closed union
of the FDCSL algebras A, = B, N A (See [16].) In particular the algebra A is an
approximately finite operator algebra and is identifiable with the direct limit Banach
algebra lim A,, where the embeddings possess star extensions. Of course the converse
is true; iFAl —+ Ay —> ... is a direct system of FDCSL algebras with respect to
embeddings, not necessarily unital, which have star extensions C*(A4;) — C*(Ag41),
then the Banach algebra A = lim Aj is completely isometrically isomorphic to a
subalgebra of the AF C‘-algebra_]é = lim C*(Ax). (However such a subalgebra need

not to be a regular canonical subalgebra in the sense above.)

The masas above coincide with approximately finite Cartan subalgebras of AF
C*-algebras [18]. A useful discussion of them is given in the notes of Stratild and
Voiculescu [20].

We now give a definition of Ko(A) for a not necessarily self-adjoint subalgebra A
of a C*-algebra. In the unital, or stably unital case, Ko(A) coincides with the usual
definition in terms of the stable algebraic equivalence of idempotents. (See Proposition
5.5.5 of [2).) Write p — ¢, or p —4 ¢, or p —, ¢, for p, ¢ in Proj (A), the set of self-
-adjoint projections of A, if there exists a partial isometry v in A with v*v = p, vv* = ¢.
Write p ~ ¢ if v can be chosen in AN A*. Define Kf (A) as the set of (Murray von
Neumann) equivalence classes [p] of projections in Proj (A ® My),n = 1,2,... with
the usual identifications AQ M,, C A® Mp41,n = 1,2,.... A semigroup operation is
given by [p] + [¢] = [p + ¢], where p and ¢ are representative with pg = 0, and Ko(A)
is, by definition, the Grothendieck group of K§(A). For a canonical AF subalgebra
K (A) has cancellation and embeds injectively in Ko(A). The scale of A in Ko(A)
is the partially ordered set £(A) = {[p]:p € Proj(A)}. A celebrated theorem of
G. Elliott [4] asserts that AF C*-algebras B; and B are isomorphic if there is a
group isomorphisms 6: Ko(B;) — Ko(B2) with 8(Z(B,)) = Z(B3).

For a canonical subalgebra A of an AF C*-algebra note that

KO(A) =lim Ko(An) = lim Ko(An nA:‘) = KQ(A ﬂA‘).

Define the algebraic order S = S(A) on £(A) to be the reflexive transitive anti-
symmetric relation such that [p]S[q] if and only if ¢ —, p for some partial isometry
v in some A ® M, for some n. For canonical subalgebras we can take p,q,v in A,
because K (A) has cancellation. The pair (£(A), S(A)) does not form a complete
invariant for such subalgebras of AF C*-algebras, but we shall see that it is complete
for certain subclasses.
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2. EMBEDDINGS AND NORMALISERS

Let C C A C B be as in the second paragraph of Section 1. Every self-adjoint
projection in A is equivalent in A N A* to a projection in A, N A}, for some n, and
so is equivalent to a projection in C,, for some n. Furthermore the algebraic orders
can be understood in terms of the partial isometries which normalise C, as we now

indicate.

DEFINITION 2.1. The normaliser of C in A is the semigroup N¢(A) of partial
isometries v in A such that vCv* C C and v*Cv C C. The strong normaliser of C in
A is the subsemigroup N&(A) of elements v which preserve the relation —s 4 in the
sense that if py — 4 pa, with p; <v*v, and pa < v*v, then vp v* — 4 vpav*, and if
p1 ——4 P2, with p; <vev*, and pr < we*, then v*pyv — 4 v*pav.

The normaliser N¢(A) has the following important property. Each v in N¢(A)
has the form cw with ¢ a partial isometry in C and w an element of N¢, (Ax) for
some k. (Also, every operator of this form is in N¢(A).) We use this below without

further explanation. For details see [14] or [16].

LEMMA 2.2. Let p and q be projections in A. Then [p]S(A)[q] if and only if
there exist projections p’ and ¢’ in C and a partial isometry v in Nc(A) such that
p~p,a~¢q and v*v=¢, 0" =p'.

Proof. Suppose that [p]S(A)[g]. For some large k there are projections in Ag
which are close to p and ¢, and so it follows that there exist projections p’ and ¢’ in
Cr with p ~ p', ¢ ~ ¢’. By the hypothesis it follows that there is a partial isometry w
in A with w*w = ¢’ and ww* = p'. Increasing k if necessary, choose an operator z in
Ap, close to w, with £ = p'zq’, such that z is invertible when viewed as an operator
from ¢’ H to p’ H where H is the finite-dimensional Hilbert space underlying A;. Let
P =pi+...+p.,¢ =q|+...+¢. be the decompositions into minimal projections of
Ci. By the invertibility of z it follows that there is a permutation 7 of 1,...,r such
that pﬁxq;(i) is nonzero for each i. By the minimality of the p; and g; it follows that
there is a partial isometry v; with initial projection gr(;j and final projection p;. The
partial isometry v = v; + ...+ v, satisfies v*v = ¢/, vv* = p’, and since v belongs to
N¢, (Ag) it follows that v belongs to N¢(A). [

In the next section we consider embeddings affiliated with maximal abelian sub-

algebras and the following terminology will be useful.

DEFINITION 2.3. Let A, A’ be FDCSL algebras containing masas C,C’ respec-
tively and let a@: A — A’ be an injective algebra homomorphism with C — C’. The

embedding is said to be
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(i) star-extendible, if there is an extension C*(4) — C*(4'),
(i1) regular (with respect to C,C’) if Ng(A) — N¢:(A'),
(ii1) strongly regular (with respect to C,C’) if N¢(A) — N&.(4').

IfACM,A C M, Q® My, identified with M,(M;,), and if AQ CI C A,
then we refer to the natural embedding p: A — A’, given by p(a) = a® 1, as
a refinement embedding. In particular, viewing Ty, as the upper triangular matrix
subalgebra of M,,(M,,) we have the refinement embedding p: T, — T;m. In contrast,
if CI® A C A’, then we refer to the embedding 0: A — A’, given by o(a) =
l1®a=a®...®a (n times) as a standard embedding. In particular, with the same
identification Ty, C Mp(Mp), we have the standard embeddings 0: T, — Ty
Standard embeddings, refinement embeddings, and many other hybrid embeddings
are strongly regular. In contrast the embedding 75 — T4 given by

a 0 0 b

a b a b 0
[c]_' ¢c 0
c

is a regular star-extendible embedding which is not strongly regular.

It is elementary to check that a strongly regular star-extendible embedding
T, — T,, is determined , up to conjugation by a unitary in the diagonal alge-
bra Dy = T, N (Thm)*, by its restriction to the diagonal algebra D,. Recall that
a finite-dimensional nest algebra A is an FDCSL algebra whose lattice of invariant
projections is totally ordered. Similarly it can be shown that a strongly regular
embedding a: A — A’ between direct sums of such algebras is determined, up to
conjugacy by a unitary in A’ N (A’)*, by its restriction to A N A*.

DEFINITION 2.4, Let C C A C B be as in the second paragraph of Section 1.
The strong algebraic order S;(A) is the subrelation of the algebraic order S(A) such
that [p]S1(A)[q] if and only if there are representatives p, ¢ in Proj(C) and a partial
isometry v in N&(A) with ¢ —, p.

In general S;(A) is a proper subrelation of S(A). This can be seen for elementary
FDCSL algebras. On the other hand these relation agree in the case of triangular
nest algebras. Note that S;(A) depends on an implicit choice of canonical masa, so it
is not clear, a priori, whether S;(A) is even an invariant for isometric isomorphism.

However in the context of limits of nest algebras we have:

LEMMA 2.5. Let A be the limit of the system Ay — As — ... consisting of
direct sums of triangular finite-dimensional nest algebras and strongly regular embed-
dings. Then S;(A) = S(A), where S1(A) is the strong algebraic order of A.
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Proof. If Ay is a triangular finite-dimensional nest algebra then S;(4x) =
= S(Ag). Indeed, if p,q are projections in a masa Cy of Ax, and ¢ — p, then
we can order the minimal subprojections (in Ci) of ¢ and p and obtain ¢ — p
where v € N¢, (Ax) is a partial isometry which matches these subprojections in or-
der. Since v preserves the partial ordering on minimal projections (induced by Ax) v
belongs to N§&, (Ak).

If [€]S(A)[f], and C is the limit of the subsystem C} -— C2 — ..., choose p, q
in Proj (Cy) for some large k with [e] = [p}, [f] = [q¢] and with ¢ — 4, p. Choose v
as above in N¢, (Ar). The embeddings are strongly regular and so it follows that v
is in N&(A). a

3. CLASSIFYING LIMIT ALGEBRAS

Let Ay — As — ... be a direct system of FDCSL algebras with star-extendible
injective embeddings. We say that the system has the conjugacy property if whenever
a: Ap — Apyk is a star-extendible embedding whose restriction a|Cy, to a masa in
Ay, is equal to the given injection i: C; — Ap4k, then there is a unitary operator
win Apqr N A} +k such that @ = (Adu) o i, where ¢ is the given injection of Ay.
Similarly we say that the system has the conjugacy property for strongly regular
maps if the same conclusion holds just for maps a: An — An4 which are strongly
regular relative to two masas. This is the appropriate concept for direct systems with
strongly regular embeddings.

We noted above that a strongly regular direct system A; — A; — ..., with
each A a direct sum of triangular finite-dimensional nest algebras, has the conjugacy
property for strongly regular maps. On the other hand it can be shown that the

natural direct system
Al — A1 @A — A1 QAQ A3 — ...,

where each Ay is an FDCSL algebra, has the ordinary conjugacy property.

In the theorem below we obtain a generalisation of Elliot’s classification of AF C*-
-algebras, and the proof is modelled on the self-adjoint case. However, in our general-
ity it is necessary to do extra work to lift relations on the scale of Ko(A) to normalising
partial isometries in such a way that we can construct star-extendible embeddings.
(We remark that even strongly regular embeddings of FDCSL algebras need not to
be star-extendible.)

Let A be a canonical subalgebra with canonical masa C, and let R C S(A) be
a connected transitive reflexive finite subrelation. We view this as a binary relation
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on the set {1,...,n}. It follows from Lemma 2.2 that we can find orthogonal projec-
tions py, ..., pn in M (C) and partial isometries v;; in Moo (Ng (A)), with p; —y,; pi,
whenever (4,j) € R. We say that S(A) has the star realisation property if for every
such subrelation there is a choice with {v;;: (%, j) € R} a subset of a complete matrix
unit system. By this we mean that the natural map A(R) — My (A) given by
(ai;) — (aijv;;) is a star-extendible injection from the FDCSL algebra A(R) associ-
ated with R. The star realisation property is rather restricted, as we observe below
in Remark 3.3. Nevertheless it holds in several contexts of interest and allows for the
statement of a general theorem.

In an exactly analogous way we can define when S;(A) has the star realisation
property, and there is a corresponding variant of the following theorem for strongly
regular systems. )

THEOREM 3.1. Let A and A’ be the limits of the systems Ay — Ay — ... and
A} — A} — ... consisting of FDCSL algebras and injective star-extendible regular
embeddings. Suppose further that the systems have the conjugacy property and that
the algebraic orders S(A) and S(A’) have the star realisation property. Then A and A’
are isometrically isomorphic if and only if there is a scaled order group isomorphism
8: Ko(A) — Ko(A") which gives an isomorphism of the algebraic orders.

Proof. Assume that 6 exists. Thus it is assumed that @ gives a bijection between
the algebraic orders S(A), S(A’) associated with canonical masas C, C’, respectively,
affiliated with the given direct systems. It will be enough to construct a system of

embeddings ,
Ar o0 Ay o Ay
which commute with the given embeddings Ay — An,, A}, — Ay, .. .. In partic-

ular the constructed isomorphism maps UA,, onto UA/. This isomorphism, namely
@ = lim ¢, will also implement the given isomorphism 8.

’ﬁle algebra A is a regular canonical subalgebra of the AF C*-algebra C*(A) =
= limC* (An), and from this it follows that we can choose systems {ef;} of matrix
units for C*(4,), for n = 1,2,..., such that each ef; is a sum of matrix units in
{e}‘j"'1 , and such that {e’} spans the masa C, in A,. (See [16] for example.) Let
{ef: (4,5) € £2,} be the set of matrix units in A,. Similarly choose the matrix unit
system {f7}} for C*(A},), with {2} spanning C;,, and let {f}: (i,5) € £2,} be the set
Ann{fal}.

Choose n; large enough so that there are orthogonal projections g;; in Cj, such
that 8([e}]) = [gi] for all i. (We need not be precise about the range of i.) Let
(i,7) € 1. Since 6 preserves the algebraic order, and since S(A’) has the star
realisation property, there is a choice of partial isometries v;; in M (N¢r(A4')), for
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(4,5) € £1, such that g;; ——y,; 8ii, and such that the induced map ¢;: 4; —
-—+ Moo (A’) is star-extendible. Since the orthogonal projections gy; lie in Cy,: the
range of ¢, is actually in A’. In view of the remarks preceeding Lemma 2.2, ¢; has
the form

1 .
o1 | D aiel; | = aijeiwi
91 Ql

where, for some large enough k, w;; is a partial isometry which is a sum of some of
the matrix units in {f£: (i, §) € 2}, and where ¢;; € C’ for all (3, j) € £2,. However,
by the star-extendibility of ¢, the set {c;;wi;: (¢,7) € 21} is a subset of a complete
matrix unit system. From this it follows that {w;;: (¢, j) € £1} is necessarily a subset
of a complete matrix unit system. It can now be shown that ¢;jw;; = cw;jc* for some
partial isometry ¢ in C’. So, replacing ¢; by (Adc*) o ¢,, and replacing n; by k, we
obtain the desired map ;. It is regular because the images of the matrix units of 4,
lie in the normaliser of a masa.

We have obtained a regular star-extendible embedding ¢;: Ay — Aj,, such that
[1(ei;))S(A)[p1(e];)] for each matrix unit ef; in A;. We now construct the desired
map ¥1: A, — Am,. Choose orthogonal projections h;; in Cy,, for suitably large
my, so that [hi] = 0-([f3*]) for all i. We can do this in such a way so that, for
each ¢, if g;; = Z fii* then Zh,-; coincides with i(ek). In other words, the choice

J.‘ Jl
of the projections h;; determines an injection w:C};, — Cp, and we can arrange

this so that w o ¢, agrees with the given injection i:C; — Cyp,,. By our earlier
arguments, increasing m; if necessary, there is a strongly regular star-extendible em-
bedding &: A}, — Am, which extends w. Because of the hypothesised conjugacy
property there is a unitary element u in A, N A7, so that the map ¢; = (Adu)ow
is the desired injection from A}, to As,, with ¢; 0 p; = i. We can now continue to
obtain the desired system. n

It will be noticed that the star realisation property is much stronger than is
necessary for the proof of Theorem 3.1. The essential point is that any finite transitive
reflexive subrelation of S(A’) (respectively S(A)) which is isomorphic to the relation
for Ay (respectively A} ) for some k, is star realisable.

THEOREM 3.2. Let A and A’ be limits of direct sums of triangular finite-
dimensional nest algebras with respect to injective strongly regular star-extendible
embeddings associated with ordered Bratteli diagrams (as in 3.8). Then A and
A’ are isometrically isomorphic if and only if there is a scaled group isomorphism
0: Ko(A) — Ko(A') which preserves the algebraic order.

Proof. The proof above applies with simplifications. Firstly, note that the maps
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©1,v¥1,. .. are easily defined by specifying images for the .superdiagonal matrix units
(the matrix units of the first superdiagonal). Secondly, observe that ordered Bratteli
diagram systems have the conjugacy property. Indeed, if ¢: E — F' is an ordered
Bratteli diagram embedding between triangular finite-dimensional nest algebras, and
if € is a matrix unit in E, then in each summand of F the minimal subprojections of e*¢e
interlace those of ee*. It follows that the partial isometries v in F' with e*e — ,ee*
agree modulo a multiplier of C. a

REMARK 3.3. In general the algebraic order of a FDCSL algebra may not have
the star realisation property. In fact more is true. There are FDCSL algebras A;, A2
and a scaled ordered group injection 6: Ko(A;) — Ko(Az) with () (R(A4;)) C R(42)
which is not induced by any regular injective embedding. To see this consider the
subalgebra A, of matrices (a;;) in My ® M3 of the form
a7 0 a3 0 a5 0 @17 as]
aze 0 azq 0 azx axr a2

azz O 0 0 azr O
(a,-j) - a44 0 0 0 a4s
ass 0 0 oass
ass as7 0
arr 0

L ass |
Let A, = T5 ® T and consider the injection ¢: A; N A} — Az N A3 which is
given by ¢ — ¢ ® I,. This in turn induces a map 6: Z(A;) — Z(Az) with
0®)(R(4,)) C R(A2). Examination shows that there is no unital regular injection
Ay — A, star-extendible or otherwise, which induces #. We remark that in the case
of infinite tensor products of proper finite-dimensional nest algebras the algebraic
order contains arbitrary subrelations , and in particular subrelations isomorphic to
9(>)(R(A1)). Thus it does not seem that the methods of Theorem 3.1 are immediately
applicable in the classification of infinite tensor products.

REMARK 3.4. If A and A’ are isomorphic as Banach algebras then it can be
shown that there is a scaled ordered group isomorphism from Ko(A) to Ko(A’) which
preserves the algebraic order (See [16].). As a consequence the algebraically ordered
scaled ordered group Ko(A) is a complete invariant for bicontinuous isomorphism

within the classes subsumed by Theorems 3.1 and 3.2.

It seems plausible that any two canonical subalgebras of an AF C*-algebra are
isometrically isomorphic if they are algebraically isomorphic. Settling this problem
will be a good test of the efectiveness of any future methods in the study of canonical

subalgebras of AF C*-algebras.
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REMARK 3.5. There exist triangular canonical subalgebras A and A’, with
S(A) = 81(A), with S(A’) = S;(A’), and with an algebraic order preserving iso-
morphism 0: Kg(A) — Ko(A’), preserving the algebraic orders, which are nev-
ertheless not isometrically isomorphic. To see this let B = lim(Max, pr), where
i Mar — Morer, k = 1,2, ... are refinement embeddings, and let_.B’ be the subspace
liﬁm(.Mék , ) where MJ, is the subspace of matrices with zero diagonal. Furthermore,
let D = lim(Dax, pi) be the canonical diagonal subalgebra of B. Adopting a little
notationafdistortion, define

A:[D B], A’:[D B'].
0 D 0 D
These canonical subalgebras of M ® B are not isometrically isomorphic. This can be
deduced from the fact that A and A’ do not have topologically isomorphic fundamental

relations. See [15]. We leave the verification of the other assertion as a simple exercise.

REMARK 3.6. Theorem 3.2 is not true if the embedding condition is relaxed.
Let A = lim(T4», p) be the limit of upper triangular matrix algebras with respect
to refinement embeddings, and let A’ = IEn(Tgn,Bn) be the limit algebra where
On(efy) = plefy) if § < 27 or (i,5) = (2",2"), and On(efzn) = e;?"zln“_l + 6'2‘:-11,2n+13
otherwise. These embeddings, in which the final column of matrix units is embedded
with twisted orientation, are not strongly regular. Despite the fact that the binary
relations (£(A), S(4)), (£(4’), S(A’)) are naturally isomorphic, A and A’ are not iso-
morphic. This observation is essentialy due to Peters, Poon and Wagner [9]. See also
[15].

In [9] a partial order <4 on Proj (C) is defined by p <4 ¢ ifand only if ¢ —, p for
some » in Ng(A). If A is triangular, so that AN A* = C, then <4 can be identified
with $(A). It is shown in [9], using the invariant <4, that there are uncountably
many isomorphism classes of limit algebras of the form lim(T¥, ¢x). In [11] related
invariants are exploited in the study of nest suba.lgebra,s?-’ In particular it is shown
that there are uncountably many nonisomorphic triangular nest algebras A in any
given UHF algebra, all having the same trace invariant {trace(p):p € Lat A}. Here
Lat A is the projection nest in C determining A.

REMARK 3.7. Baker [1] has shown that the unital limit algebras im(75,,0),
associated with standard embeddings and the sequences (nx), with n; div_i:iing Nty
for all k, are classified by their enveloping UHF C*-algebras. In [9], [14] and [15]
other proofs are given and the limit algebras lim(T5, , p) are similarly classified. These
standard limit algebras are special cases of the triangular algebras of Theorem 3.2.

REMARK 3.8. The limit algebras of Theorem 3.2 are determined by ordered
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Bratteli diagrams as in the following discussion.

Consider, as an illustrative example, the two stationary direct systems A =
= li_r.n(T,, x®Tn, i1, 0k), A" = im(T,, ®Th, ., , Y1) with the strongly regular embeddings
br(z®y) =y (zdy), and 12(:069 y) = y®(y® z) where (n) = (1,1,2,3,...) is the
Fibonacci sequence. Then C*(A) and C*(A’) are isomorphic, with stationary Bratteli
diagram generated by the diagram

However, the ordered Bratteli diagrams representing A and A’ are generated by the
graphs

and A and A’ are not isometrically isomorphic. The easiest way to see this is to note
that there is a special point, z say, in the Gelfand space M (AN A*) with the following
maximality property: if y # = then there do not exist orthogonal projections py, p-
in Az N Aj, for any k, such that y(py) = 1,2(pz) = 1 and py — 4, p-. This point
is the intersection of the supports of the “right-most” minimal projections in the
right summands of the A;. An isometric isomorphism would transfer this property
to M(A' N A™), and it is easy to check that there is no such point.

The examples above fall into a class of limit algebras associated with what we
call standard ordered Bratteli diagrams. These are the Bratteli diagrams for which at
each vertex there is a specification of the order of the incident edges. Such a diagram,
together with a specification of the size of the summands of A,, gives rise to a unital
direct system Ay — Ay — ... in which each A is a direct sum of upper triangular
matrix algebras. The resulting embeddings are in fact strongly regular. The examples
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above illustrates the fact that these algebras are highly dependent on the specified
orderings.
In a similar way one can consider ordered Bratteli diagrams for direct sums of

general finite-dimensional nest algebras.

REMARK 3.9. It seems quite likely that Theorem 3.2 remains true without the
assumption of triangularity. Unfortunately the proof of this given in [16] is incomplete
because locally strongly regular maps (ones that map matrix units into the strong

normaliser) are not necessarily strong regular.

4. FURTHER EXAMPLES

It is particularly interesting to calculate the algebraic orders for nontriangular
subalgebras of AF C'*-algebras. In the examples below we have a canonical subalgebra
A of an AF C*-algebra B = C*(A), and we write D = AN A* for the diagonal
subalgebra. By hypothesis, D contains a canonical masa of B, from which it follows
that the inclusion i: D — B induces a surjection i,: Ko(D) — Ko(B). We shall
identify this map and the algebraic order on the scale £(A) = X(D) for various

examples.

ExaMPLE 4.1. The simplest example is finite-dimensional. Let B = M,, A =
= T,...,ne),D = ANA* = M,, ®...06 M,, where n = n; +...n,, and A
is the block upper triangular subalgebra of M,, associated with the ordered r-tuple
n1,...,nr. Then Ko(A) = Z" with scale [0,n,] x ... x [0,n,] (with the product
order), and (@,...,a;)S(A)(b1,...,b;) ifand only if @y +...a, = b1 + ...+ b, and
br+...+b2ar+...4+a, for 1 <k<r. The map i,:Z" — Z is simply addition. Let
S be the equivalence relation on L(A) generated by S = S(A). Then the sets iy }(z)
for z in ¥(B) = [0, n] are precisely the § equivalence classes.

FixAMPLE 4.2. In analogy with the last example let B be the UHF C*-algebra
associated with the generalised integer 2°°, let C be a canonical masa in B, and
consider a finite nest 0 < p; < ... < pr = 1 of projections in C, and its associated
nest subalgebra A = {b € B: (1-p;)bp; = 0,1<j<r}. Let 7 be the normalised trace
on B and set d; = 7(p; — pi—1),1 < ¢ < r. Then K¢{B) = Qq, the binary rationals,
with the ordinary ordering, Ko(A4) = 7, and £(A) = 5N ([0,d1] x ... x [0,d,]).
‘The algebraic order is exactly as in the finite-dimensional case, ¢, is the addition map,
and the fibres i71(z) for = in £(B) are the $ equivalence classes. (This latter point

is a general phenomenon.)

ExaMpPLE 4.3. For a related example, let B = lim(Mysx, p), let Ay be the unital



ALGEBRAIC ORDERS ON Kj... 99

subalgebra T'(nx, 1, m;) C Moe with n,27% < a < (ng +1)27F, for all k, where « is
a fixed nondyadic point in [0,1). The refinement embeddings p restrict to strongly
regular embeddings 6y: Ay — Ag4+1 and the limit algebra A = lEn(Ak,Gk) can be
visualised as a subalgebra of B. We have Ko(A) = lim Ko(Ax) = lim(Z3, (6x).) where
(6% )« has the form - -

2 & 0
G)e=]0 1 0
0 1-6 2

where (éx) is a sequence of zeros and ones.

A direct argument can be given to show that Ko(A) is the subgroup of (Q4+
+al) ® (Q4 + al) consisting of pairs a @ b with a + b € Qg and that Z(A) is the
subset with a € [0, @),b € [0,1— ). The algebraic order is given by (a ®5)S(A)(c®d)
ifand only ifa+b=c+d and b <d.

One can similarly compute (£(A), S(A)) for analogous algebras of the form

A =Um(T(ng,1, - -, 7k ), P)-

Notice that in all the examples above the diagonal algebra D has a certain block
diagonal form. In contrast the examples below use more interesting embeddings which
result in algebras for which D is simple. G. A. Elliott [5] and E. G. Effros and C.
Y. Shen [3] have analysed the dimension groups of various stationary direct systems.
Recall that the dimension group of a strictly positive stationary unimodular system
is determined in terms of a distinguished Perron-Frobenius eigenvector for the matrix
determining the system. We will not need detailed theory beyond this in the discussion
below.

EXAMPLE 4.4. Let A = lim(Ag, Ax) where Ay = To®@ My and Ax: Ay — ArQM,
is the regular embedding

[:l: z] Y 0
—
0 y z

L Y.

where z,y, 2 € Myx, and where unspecified entries are zero. Then Ko(A) = Ko(D) =
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= Q2 since this is the limit of the stationary system

& 72— ...
[3 1] [3 1]
1 3 1 3

Furthermore @2 has the strict ordering from the first coordinate ((a, b) < (c, d) if and
only if a < ¢ or (a,b) = (c,d)) and the scale £(A) is the order interval {(0, 0),(1,0)]
(sce [2. page 61]). The map i.: Ko(AN A*) — Ko(C*(A)) is (a,b) — a (C*(A) is
the 2°° UHF algebra), and the algebraic order is such that (a, )S(A4)(e, d) if and only
ifa=cand b<d.

It is straightforward to check that the conjugacy property holds for the system
above and, more generally, for systems over the algebras 7> @ B with B a finite-
dimensional C*-algebra. Thus it follows from Theorem 3.1, and the remark after the
proof, that the associated limit algebras are classified by the algebraically ordered
scaled Ky group.

ExAaMPLE 4.5. Consider the stationary system
T1,)eC —,T1,2)eM; —,T(1,4)® M3z — ...

where

ofs et

o o 8
o g ©

z
Oe[xz]

0 y
Yy

with direct limit A = lim(Ag, ). Then Ko(A) = Ko(A N A*) is the limit of the
stationary system

23 , 23 28— .
100 100
0 1 1 011
110 110

‘I'he embedding matrix is in GL(3,Z), and so Ko(A) = Z3. The enveloping C*-
-algebra B = C*(A) has Bratteli diagram
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2 1
3 2
5 3

and so Ko(B) is 22 and the surjection Ko(A N A*) — Ko(B) can be identified with
the map (£, m,n) —> (£ + m,n). The algebraic order is given by (¢, m,n)S(q,r,s) if
andonlyifn=s2+m=q+rand mgr.

The positive cone, P, say, of Ko(AN A*) = Z2, is {(m,n) = ma + n > 0} where
o = (1 ++/5)/2, and this, in turn, can be viewed geometrically as the positive cone
of the subgroup Za + Z of R. We now indicate how to identify the positive cone C of
23 = 71 & (2o + Z) with the set {(¢,m,n):£ € Ly, ma+n € £(1 —a)+ P,}. Let pi
be the Fibonacci sequence so that pa41/pr decreases to o and py/pak41 increases to

a. WithY = (1 1) we have
1 0
vk = (Pk+1 Pk )
Px  Pk-1
1 0 0

X*=| -p
Pr+1

-k

The point (£, m, n) lies in the positive cone C if and only if for some u,v,w in Z; and
for some odd integer k, (¢, m,n)t = X~¥(u,v, w). In particular, (1, m,n) lies in the

(2)= G )

for some odd k and u,v in Z,.. Since the smallest value of —pya + pr41 i8 1 — o, and

cone if and only if

since (0, m’,n’) lies in C for all m’, n’ with m’a + n’ >0, it follows that (1, m,n) is a
point of C if and only if mea + n > (1 — a). The desired description of C now follows.

STATIONARY PAIRS OF AF C*-ALGEBRAS.

The last example is a special case of the following very general scheme.
Let X = (aijx1) be an n x n matrix of nonnegative integers, where 1 Lk ks, 1 <
<< k;,1€ig<r,1<j<r, and k3 + ...+ k- = n. Assume that for each pair i, j the
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partial colurnn sum

bij = @ijie+ ...+ ijre

is independent of ¢, and form the associated r x » matrix Y = (b,]) We have the

commuting square of group homomorphisms

" X, y &

s Ls
ZT L Zr
where § is the homomorphism associated with the partition of X, given by

(S#); = ®oyg1+ ...+ o471 Where £y =0 and £y =G + ks fori=1,...,r— 1.

For the stationary dimension groups Gy = lim(Z", X), G2 = lim(Z",Y) we have the
induced group homomorphism S,,: Gy — G; Choose order u_r‘lits % in Gy and ¥ =
== Seott in G2 and consider AF C*-algebras 1) and B with Ko(D) = Gy, Ko(B) = G»
with the chosen order units. Furthermore view D as a unital subalgebra of B so
that the inclusion map i: D — B induces Seo (i« = Soc). One way to visualise this
inclusion is to form the stationary Bratteli diagram for X and to group together the
summands assoclated with the partition of the n summands into r sets. In Example
4.5 this can be indicated by the following diagram

4

where the horizontal lines indicate the grouping. The partial summation condition
above is precisely the condition needed so that we can enlarge the grouped sumrmands
to full matrix algebras, and extend the given embeddings to these matrix algebras,
and so thereby obtain a stationary Bratteli diagram associated with Y.

We call the resulting pair of unital AF C*-algebras D C B a stationary pair.
Actually it would be more precise to refer to the pair D C B as a symmetrically
partitioned pair, since the same partitioning is used for rows and columns. However
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we restrict attention to this symmetric case and use the more relaxed terminology.
Clearly D is a canonical subalgebra of B, and so too are all the closed intermediate
algebras D C A C B. It should be noted that the pair D C B is determined by the
construction above, even though we make a choice of matrix units when we form a
system B; — B — ... which extends the system Dy — Dy — .. ..

In the example above it is easy to see from the Bratteli diagrams that there are
only two distinct proper intermediate algebras (namely Example 4.5 and its adjoint).
The following simple pigeonhole argument shows that in general there are only a
finite number of intermediate algebras. Let B = lim B, be the stationary unital
direct system associated with the matrix ¥ (and a choice of order unit) so that
D = limD,, is a direct system associated with X where D,, C B, for all n. Note
that fO_I: each n there are exactly the same number of distinct proper intermediate
algebras, E1, ..., E? say, lying between D,, and B,,. Suppose that D C E C B. Then
E =limEy,, with E, = B, N E. If Al ... A°*! are s + 1 such algebras, then there
must exist distinct ¢ and j so that A* N B, = Al N By, for an infinity of values of
n. Thus A® = AJ. Simple examples reveal that the number of intermediate limit
algebras can be strictly less than s.

We say that a stationary pair D C B is unimodular if X € GL(n,Z). In this
case Y is necessarily in GL(r,Z) and so both the stationary systems for X and Y are
unimodular in the usual sense. To see this form the matrix X; which is X but with
the rows for ¢ = ky,k; + ko, ..., n replaced by the associated partial columns sums.
The entries in the new rows are the numbers b;; and the determinant of X’ is equal
to that of X. Each term in the expansion of the determinants of X’ along a fixed
unchanged row is divisible by detY (We can assume there is at least one such row
otherwise X = Y is either zero or has the determinant of Y as a divisor.) This can
be seen more clearly if the new rows are moved by row operations to occupy the first
r rows of a new matrix X", still with unimodular determinant. Since detY divides

det X the argument is complete.

EXAMPLE 4.6. Let X,Y be the matrices in GL(5,Z) and GL(2, Z) given by

13

so that ¥ and X are related as above (with k; = 4,k2 = 1). Associated with the
pair X,Y, and a choice of order units, is the stationary pair D C B which has joint
Bratteli diagram generated by the graph
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A choice of order units corresponds to the specification of the size of the 5 matrix
algebra summands of D) corresponding to the first row of the graph. Ko(D) = 2°
and Ko(13) = Z* with positive cones P(a) and P(f), respectively, determined by the
eigenvectors @ = (1,1,1,1,a),8 = (1, 8) for the maximal positive eigenvalues of X
and Y. Thus P(e) = {a € Z%:(a,a) >0}, P(B) = {a € Z°:(a, ) 2 0}. These facts
follow since Y is strictly positive and X has a strictly positive power. (See {3] for
mere detail.)

We now wish to describe all the intemediate algebras D C A C B. The lattice of
such subalgebras is in fact a copy of the lattice of algebras lying between M4(C) and
its diagonal subalgebra C*. Indeed an algebra E between C* and My(C) is determined
by a directed graph G(F) on four vertices. Fixing an assignment of these vertices to
the four summands of D, which are grouped in By, we can generate an intermediate
algebra Dy C E; C B by including matrix units from B; to belong to F; if there is
an associated directed edge in G(E). The image of E; in Ba generates, with Dj, the
analogous algebra E» and we obtain the intermediate algebra E= li_rpEb On the
other hand if D C A C B is a closed algebra then A = 1i_rp(A N Bg), from which it
follows that A = E for some E. The map E — E provides a bijection of intermediate
algebras.

Considering the special case E = Ty, and some ordering of the grouped vertices
(for definiteness, take the order corresponding to rows of X), we obtain an interme-
diate algebra A = E which is an inductive limit of finite-dimensional nest algebras.
Whilst the embeddings AN B, — AN By are not strongly regular, they are nev-
ertheless regular and the direct system has the conjugacy property. Thus A is an
example of the algebras appearing in Theorem 3.1. The algebraic order is given by
aS(A)bifandonly ifas = b5, a1 +...+as = by+...+bs,and a;+.. . +as <bi+.. . +by
fori=1,23,4.

It can be shown that all of the intermediate algebras £ = li_r‘n Ej, are defined
by systems with the conjugacy property and have algebraic orders with the star
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realisation property. Thus they also fall within the influence of Theorem 3.1. As with
Ty, the algebraic order of such an algebra E is rather simply related to the algebraic
order of E.

Finally it is interesting to pause to consider the fundamental relation R(A) of
one of these intermediate algebras. Recall that if C is a canonical masa in A then
zR(A)y, for z,y in the Gelfand space M(C), if and only if there exist v in N¢(A) such
that z(c) = y(v*cv) for all ¢ in C. It can be shown that in general A = A* if and only
if R(A) is symmetric (see [21] for example). In the case of the intermediate algebra
A = T the equivalence relation generated by R(A) is R(B). The fact that there is
very little room between A and B is reflected in the observation that R(B)\R(A) is
finite. (With the exception of at most four easily identified points z in M(C), the
R(A) orbit of  and the R(B) orbit of z agree.)

FINAL REMARK

Recently, the interesting preprints of Skau [19] and Herman, Putnam, and Skau [6]
have appeared. In these it is shown, roughly speaking, how ordered Bratteli diagrams
provide models for minimal homeomorphisms ¢ of Cantor spaces and their associated
crossed products C(X) x, Z. This work rests, in part, on earlier work of Putnam
[17) who showed that the C*- algebra B, generated by C(X) and the elements fu,
whith u the canonical unitary, and f in C(X) vanishing at z, is an AF C*-algebra.
In fact the tower construction in [17] generates an ordered Bratteli diagram with
associated system By — By — ... of finite-dimensional C*-algebras. It is not hard
to check that if A is the semicrossed product C(X) x, Z4, if Ax = By N A, and
if A(p,z) = AN B, then A(p,z) = lim Ay and A(p,z) is a triangular canonical
subalgebra of B; determined by a ordeer Bratteli diagram. The converse assertion
is true, and easier to establish: if A is a canonical triangular algebra detemined by a
ordered Bratteli diagram, then A = A(yp, ) for some Cantor space homeomorphism
and some point & of the Cantor space.

For more on this circle of ideas see [10], [16] and the recent preprint [12].
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