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CARTAN NEST SUBALGEBRAS OF HYPERFINITE FACTORS

R. E. MERCER and S. C. POWER

We say that a nest A" of projections in a factor M is a Cartan nest if it is strongly
closed and if the second commutant A’ is a Cartan subalgebra in the sense of Feldman
and Moore. In the II; case this means that A" is a maximal abelian self-adjoint
subalgebra (masa) which is regular in the sense that the normalizer of N in M
generates M as a von Neumnann algebra. In general one must add the condition that
there exists a faithful normal expectation M — N*. Associated with A is the Cartan
nest subalgebra 7 (A') consisting of the operators x in M such that (1—p)zp = 0 for p
in M. It will be shown that if there is an isometric weak star contionuous isomorphism

TN ®...0 TWN,) = T(M1) ®...@ T(M,)

where My, ...,N; and M;,..., M, are Cartan nests in hyperfinite factors (of any
type) then r = s and there is a permutation 7 such that A; and Mq(;) are conjugate
for all 7. In asimilar way we classify infinite tensor products, relative to the normalised
product trace, of Cartan nest subalgebras of the hyperfinite 1I; factor. Furthermore,
a general representation theorem for Cartan nests is obtained in terms of measured
Borel equivalence relations on the unit interval, and the characterisation of Cartan
nests up to conjugacy is obtained in terms of this spectral representation.

Our analisys is based, in part, on a result of independent interest which shows
that if ® : Ay — A, is an isometric weak star continuous isomorphism between
weakly closed subalgebras of hyperfinite factors, and if ®(C;) = C, where C; C
C A, for i = 1,2, are Cartan masas, then there is a unique extension isomorphism
& : W*(A1) — W*(A4;). See [9] for a generalisation of this to nonhyperfinite factors.

Recall that Feldman and Moore [5], [6] have characterised Cartan subalgebras
of factors (and general von Neumann algebras) in terms of measured equivalence
relations R. In fact it is an elementary construction, which we describe in Section
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1. which attaches to each hyperfinite equivalence relation R, with quasi-invariant
thieasure g, a hyperfinite von Neumann algebra M(R) on L%(R,v) (where v is a
measure constructed from p), such that M(R) naturally contains L™°(X,p) as a
Cartan masa. Here X is the measure space underlying R. Feldman and Moore
showed that in the hyperfinite case all Cartan subalgebras arise in this way. In the
general case, which we will not consider here, it is necessary to involve a 2-cocycle
o K. We have endeavoured to make this paper reasonably seli-contained and so we
shall not rely too much on results established in {5] and [6]. An cxception is that the
Feldman Moore characterisation must be invoked te see that the specific Cartan nests
that we construct constitute all possible Cartan nests in hyperfinite factors (Theorem
1.3).

Following on from the work of Feldman and Moore, in the direction of non-self-
-adjoint operator algebras, Muhly, Saito and Solel [10] have given an extensive anal-
ysis of maximal triangular subalgebras A, in factors, for which AN A* is a Cartan
snbalgebra. In particular they obtain a definitive characterisation of the isometric
weak star continuous isomorphism classes of maximal triangular subalgebras ([10],
Theorem 5.2]). There is some overlap between this result and our considerations of
isometric isomorphisms, but our considerations relate to quite general subalgebras
containing a Cartan subalgebra. Furthermore, since we restrict to the hyperfinite
context, the cocycle considerations are absent, and elementary matricial arguments
are at hand. In fact our analysis of isometric isomorphism is the natural hyperfinite
Cartan bimodule generalization of arguments given in Davidson and Power [4].

With regard to the uniqueness of tensor product factorisations we point out that
Arveson has studied this in the context of infinite tensor products of upper triangular
matrix algebras [1, section 3]. More recently the second author has obtained unique
factorisation for tensor products of certain irreducible triangular CSL algebras (reflex-
ive algebras with commutative invariant subspace lattice) and for certain triangular
subalgebras of approximately finite C*-algebras [14]. See also [11}. However, the anal-
ysis below is independent of the deeper refinement theory used in [14] and rests on the
strueture of direct products of totally ordered measure spaces. Unique tensor product
factorisation should be viewed as a topic which goes beyond the general identification
of complete invariants, up to outer conjugacy, and addresses a more detailed analysis

of indecomposuable tensor product factorisation.

1. CAI'TAN NESTS

First we show how to construct Cartan nests.

A countable {standard} Borel equivalence relation on {0, 1} is an equivalence rela-
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tion R, with countable equivalence classes, which is a Borel set in the product Borel
o-algebra on [0, 1] x [0, 1]. Let m.(z,y) = y and m(z,y) = = be the right and left co-
ordinate projections and define the right counting measure v, on R, with the relative
Borel structure, by

v (E) = / |77 () N E|d)(z),

where A is some o-finite Borel measure on [0, 1]. Left counting measure v; is defined
analogously. The integrands here are Borel functions of z. Also, if A C [0, 1] is a
Borel set then so too is its saturation

R(A)={y : (z,y) €R forsome z € A}.

These two facts follow since 7, is countable-to-one (see [5], and [6]). We shall assume
that the measures v, and v; are mutually absolutely continuous. This is equivalent
to A being quasi-invariant for R. This means that whenever A C [0, 1] is a null Borel
set then so is its saturation (see [5]).

We now define a von Neumann algebra on L%(R,v,). Let a(z,y) be a Borel
function on R, with |a(z, y)| < « everywhere, such that for each z there is at most a
single point z = 2(z) with |a(z, z)| # 0, and such that such points z(z) are distinct.
For ¢ in L(R, v,) define (La{)(z,y) = Y _ a(z, 2)¢(z,y). Then

z

Il = [ 1(Ea) e, )P dvr(a,y) =
R

= [ S0 @ nPa) =
=Y [ la(e, 22K @), PG <
<Y [ 1@ P <

<[]

More generally, if a(z, y) is a finite linear combination of functions of the above type
then the associated operator L, similarly defined, is a bounded operator on L(R, v,),
and the collection of these form a self-adjoint operator algebra. Let M(R) be the von
Neumann algebra generated by the operators L,. (It can be shown ([6, Proposition
2.3]) that the functions a(z,y) coincide with the class of left finite functions; the
bounded functions a(z, y) for wich there exists an integer n such that the cardinality
of the support of the coordinate functions a(-,y) and a(z,-) is no greater than n for
every z and y.)
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A useful class of examples to bear in mind are the relations Rg arising from a
countable subgroup G of the real line: (z,y) € Rg ifand only ifz —y € G.

‘The following two conditions ensure that M(R) is a hyperfinite factor:

(i) R is hyperfinite in the sense of being the union of a sequence Ry C Ry C ... of
finite Borel equivalence relations on [0,1]. (Recall that finiteness here means that there
is an upper bound to the cardinality of each equivalence class.) This is easily seen to
imply that M (R) is the weakly closed union of the subalgebras M(R,). Since M(R,)
is isomorphic to M;(C ® L*°([0,1], 1), for some k and some sigma-finite measure p,
it follows that each M (R,) is hyperfinite, and also M(R) is also hyperfinite.

(ii) For every Borel set ID C [0,1] the saturation R(D) is either null or conull.
This is the condition that X is ergodic with respect to R, and it ensures that M(R)
is a factor.

If, in addition, the Radon-Nikodym derivate dv, /dv is 1 almost everywhere, then
the functional 7(Lg) = | a(z, z)dA(z) extends to a trace on M(R), and so in this
case M(R) is the hyperfinite II; factor.

Let C(R), or simply C, if there is no possibility of confusion, be the abelian
subalgebra of M(R) generated by the left finite operators L, for which a(z,y) =
= 85y p(2) for some function ¢ in L>([0, 1], A). Then the linear map ¢ — L, is a von
Neumann algebras isomorphism from L*®([0,1],A) to C. It is elementary to see that
the normalizer of €' (the group Ng(M(R)) of unitaries « in M(R) with uCu* = C
generates M(R), and that € is a masa in M(R). Furthermore there is a faithful
normal expectation from M(R) onto C. (This is elementary in the II; case.) For
these last two facts the reader should consult Feldman and Moore [6]. That C is a
masa comes about throught the description of the commutant of M(R) in terms of a
von Neumann algebra generated by right finite operators.

We now know that C is a regular masa and the image of a faithful normal expec-
tation, and so, by definition, C is a Cartan subalgebra of M(R). In the hyperfinite
case the characterization in [6] can be started as follows.

TuroreM 1.1. Let A be a Cartan subalgebra of a hyperfinite factor M (of type
I, 1l or II1). Then there is a hyperfinite countable Borel equivalence relation R on [0, 1]
with an ergodic quasi-invariant o-finite Borel measure such that M is isomorphic to
M(R) by a von Neumann algebra isomorphism which carries A onto the canonical
Cartan subalgebra C' of M(R).

Apart from some technical aspects of countable standard relations, the verifica-
tion of conditions (i), (ii), and the verification that C C M(R) is a masa, we have
given the details necessary for the construction of the pair (M(R),C). On the other
hand we have given no details of the proof of Theorem 1.1, and for these we refer the
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reader to [6].

In the next section we will make use of the following more elementary facts.
Let R,S be equivalence relations on [0,1], as in Theoreml.1, with quasi-invariant
Imeasures pg,ps, and right counting measures vg,vs respectively. If R and S are
isomorphic, that is, if there is a Borel isomorphism 7 of [0, 1] with ys o 7 and pg
mutually absolutely continuous and 7 x 7(R) = S, vg-almost everywhere, then M(R)
and M(S) are naturally isomorphic by an isomorphism ®, which carries C(R) onto
C(S). Conversely, if ® is an isomorphism with this property, then there is a unitary
element z in C(S), and an isomorphism 7 of R and S, such that ® = Adz o ®,. For
further details see [10].

DEFINITION 1.2. A Cartan nest in a factor is a strongly closed totally ordered
family of projections which generates a Cartan subalgebra.

Let R, A be as in Theorem 1.1 and define
N(R) = {La : a(:c, y) = 6z,yX[o,t](z), 0<tgl }

to be the nest in the Cartan subalgebra C(R) of M(R) associated with the intervals
[0,t), 0t < 1. Clearly N(R) is a Cartan nest in M(R). The next theorem shows
that all Cartan nests in hyperfinite factors arise this way.

" THEOREM 1.3. Let N be a Cartan nest in a hyperfinite factor M (of any type).
Then there is a pair R, A, as in Theorem 1.1, together with a von Neumann algebra
isomorphism from M to M(R) which maps N onto N(R). Furthermore if M is of
type II or III then X can be taken to be Lebesgue measure.

Proof: In the proof of the characterisation of Cartan subalgebras given in [6,
Theorem 1] the first step is to identify the Cartan masa C = N as L®°(X, X) where
A is a probability measure coming from a faithful normal state on C. The sub-
sequent arguments obtain a standard Borel equivalence relation R so that the pair
(M(R),L*(X,))) is isomorphic to the pair (M,C). It suffices then to show that
we can choose X = [0,1] so that N appears as the standard projection nest in
L*([0,1],X). If NV is not continuous then there exists an atomic interval p — ¢ with
p,q in N which is necessarily a minimal projection of M since N is a masa. It follows
that M is the I factor in this cases. Cartan nests in I, factors are necessarily
purely atomic (see [3, Theorem8.6] for example) and the desired realisation of C
and A is elementary in this case. On the other hand if A is continuous and o is
a faithful normal state on C' then we obtain the desired realisation by considering
® : C — L*™([0,1], A), where A is Lebesgue measure, defined by ®(p) = X[o,0(p)], for
p € N, and by weak star linear extension.
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We finish this section with some examples.

MATRICIAL NESTS. Let A be Lebesgue measurc on [0,1] and let Rg be the
countable Borel equivalence relation on [0, 1] associated with a countable subgroup
(7 of the unit interval. Thus (z,y) € Rg if and only if 0Kz, y<land y—z € G.
Clearly X is invariant for Rg and, by classical results of Dye, for example, M(Rg)
is the hyperfinite II; factor. If G C @ then the Cartan nest N (Rg) in M(Rg) is
is naturally the weakly closed union of finite subnests, and it is natural to make the
following general definition of a matricial Cartan nest in a general factor M.

DEFINITION 1.4. A projection nest A in a hyperfinite factor M is called a
matricial nest if there exist finite-dimensional subfactors My C M, C ... containing
maximal projections nests A; C A> C ... such that A is the weakly closed union of
this chain of nests.

Although all Cartan subalgebras of the hyperfinite II; factor are conjugated by an
antomorphism, for Cartan nests we see in Corollary 2.4 that there is an extreme form
of nonconjugacy. For example using this corcllary it can be shown that the Cartan
nests N'(Rg,) and A(Rg,) are conjugate by an automorphism of the hyperfinite I1;
factor if and only if G; = G2. This is no surprise since in many contexts in no-
self-adjoint operator theory it happens that triangular algebras can serve as complete
invariants for underlying relations or homeomorphism used in their construction. (We
have in mind results in [2], {10], and [13], for example.)

Let A be a matricial Cartan nest in the hyperfinite II; factor M. Then M is
the weakly closed union of finite-dimensional factors My; C M» C ..., with unital
inclusions, and A is the weakly closed union of the finite nests A7 C N, C .... Let
B C M be the UHF C*-algebra generated by M:, Ms,.... Then M is the weak
closure of B and T (V) is the weak closure of the nest subalgebra A = BN T(A) =
= BN AlgNy, where A is the union of the finite nests. There are many examples of
matricial Cartan nests other than the examples N'(Rg) above with G C @. Perhaps
the simplest example is the following. Let T,, be the algebra of upper triangular

matrices, let U = 1 0) and define

B =lim(Man,0,) ,A=1m(Tan,0,) ,

where
wn((aij)) = (as;U7 7).
Let M be the weak closure of B in the standard left representation on L?(B, ),

with 7 the normalised trace, and let A/ be the weak closure of the (countable) nest
of invariant projections for A. Then A is a Cartan nest, and it is straightforward
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to identify the associated Borel equivalence relation on [0,1]. (It is the union of
the graphs of the partial homeomorphisms associated with the natural matrix unit
system for B.) Corollary 2.3. shows that for anv G the nests N and N'(Rg) are not
conjugate.

We should remark, however, that if A" and A are matricial Cartan nests in
the hyperfinite II; factor, with M, Ny, B, A and M', Nj, B', A’ as above, then it
can happen that A and N’ are conjugate in M, even though Ay and Aj are not
equivalent by a *-automorphism B — B’. Thus the classification of matricial Cartan
nests is courser than the classification of their associated countable subnests in their
UHF C*-algebras. This is because the subnests are classified by their topological
(fandamental) relation (by [13]) whereas the Cartan nests themselves are classified by
their Borel relation on [0, 1] (by Corollary 2.3 below). This is most simply illustrated
by considering the matricial Cartan nest A associated with

B =lim(Mzn,0,), A=1Lm(Ts,6,),

where 6(e;;) = e;; @ U if j = 2" and (4,7) # (2",2"), and 0(e;;) = e;; ® I otherwise.

There is a natural von Neumann algebra isomorphism ® of the hyperfinite II;
factor such that ®(N) = N(Rg), where G is the dyadic subgroup, because compu-
tation shows that Rg = R(N') almost everywhere. Nevertheless the subnests are not
conjugate within the associated UHF algebra. (For this see [12], where these twisted
embeddings were first discussed in the C*-algebra context, or see [13].)

There are many natural questions arising for the Cartan nests and their algebras.
We mention the following.

Question 1. If A is a matricial Cartan nest, then is it equal to the weakly closed
union of a chain A7 C Nz C ..., as above, with the additional property that the
normaliser of C*(N}) in M is contained in the normaliser of C*(Ng41) in My, for
all k? (This condition is a sufficient condition for the matricial nest to be a Cartan
nest.)

Question 2. Which of the nests N'(Rg) fail to be matricial nests?

2. EXTENDING ISOMETRIC ISOMORPHISMS

Let A be Lebesgue measure on [0, 1] and let R be a hyperfinite countable ergodic Borel
equivalence relation for which A is quasi-invariant, as in Theorem 1.1. We pass over
the I case since the needed modifications will be clear. Let R be the union of the
finite Borel equivalence relations R,,n = 1,2,.... Each of the subalgebras M(R,) is
a type I von Neumann algebra and admits a representation

M(Rn) = (Mk(n,l) ® Cn,l) ®...06 (Mk(n,r,,,) ® Cn,r,.)
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where

C= (Dk(n,;) ® Cn,l) ®...® (Dk(n,rn,) ® Cn,r,.)

is the direct sum decomposition of the masa C corresponding to the Borel parti-
tion of [0,1] into the r, sets where the R,-orbits have the same finite cardinality
k(n,1),...,k(n,r,). Similarly, if A,, C M(R,) is a (non-self-adjoint) subalgebra con-
taining C, then W*(A,) is a type I subalgebra of the form M(S,), for some finite
equivalence relation, and it follows that A, admits a decomposition

Ap = (An,l ® Cn,n) D...8 (An,s“ ® Cn,a,,)

where each A, ; is an irreducible subalgebra of a full complex matrix algebra contain-
ing the diagonal subalgebra for 1 <4< s,. In other words each Ay, ; is an irreducible
finite-dimensional CSL algebra.

If A C M(R) is a weakly closed subalgebra containing the Cartan masa C then,
by the spectral theorem for bimodules, ({10],{8]) A is the weakly closed union of the
subalgebras A, = AN M(R,),n = 1,2,.... These subalgebras have the form just

mentioned, and so are amenable to analysis by finite-dimensional methods.

LeMma 2.1. Let A be a finite-dimensional CSL algebra in M,,, let D be a masa
on the separable Hilbert space H, let C be a Cartan subalgebra of the factor M,
and let ® : A® D — M be an isometric weak star continuous algebra injection with
(D, @ D) = C, where Dy, is the diagonal subalgebra of M,,. Then there is a unique
star extension @ : C*(A)@ D — M.

Proof: The proof of this lemma is a variation of an argument used in Davidson and
Power [3] where isometric isomorphisms of non-self-adjoint algebras were considered
in a various situations, including the most basic context of finite-dimensional CSL

algebras. It was noted there that if the unitary operator U = (u;;) in M} (C) has the

form
[0 w 0 . 0 7
0 0 U2
U=
0 Up—1
lu, O 0
with unimodular entries w,,...,u, and if S is the subspace of M} consisting of

matrices whose supports are contained in the support of (v;;) = V = I + U, then the
Schur product map ¥y : S — S given by (a;;) — (ajjvi;) is isometric if and only if
w1y ...ux = 1. Similarly, if u,,...,u; are unitary operators on a separable Hilbert
space H, then the associated Schur product map from S to S@ L(H ) is isometric if and
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only if uyus...ux = Iy. Indeed, reduce to the case with uy = us = ... = up_; = 1,
by conjugation with a block diagonal unitary, and obtain this case by considering the
spectral representation of uy.

To apply the above, consider the isometric representation ¥ : A — M given by
¥ = Poé where § : A — A® D is the canonical injection. This map is an inflated
Schur product map of the form ¥ : (a;;) — (as;u;;) where u;; = ¥(e;;) are the images
of the matrix units e;; which span A. Let {e;; : (4,7) € T'} be the set of these matrix
units. It will be sufficient to show that there exist partial isometries v;, belonging to
the normalizer of C in M, such that u;; = v;v] for all (i, j) with ¢;; in S. Clearly we
may assume that A is irreducible.

First we observe that the operators u;; are partial isometries in the normaliser of
C. Fix & = u;;. There is an identifying isomorphism from ®(e;; @ D) to &(e;; ® D)
given by ® o Ad(e;; ®1)o®~!. Let E = ®(e;; ® D) and identify ®(e;; ® D) with E by
this isomorphism. Since @ is isometric we obtain ||e; zes|| = ||e1e2|] for all projections
ey, ez in E. Since E is maximal abelian self-adjoint algebra in ®(ei; ® D)M ®(e;; @ D),
it follows that 2 is identified with a unitary element of E. Thus u;; normalises C.

By our earlier remarks, since ¥ is isometric we know that
* * —
u,-lj,uizjluim .- 'uikjkuiljk =1

whenever there is a cycle of indices (2171), (s271),...(31x) in T. Fix vy = wvy; and
define v] = u;; whenever (1, j) € S. Continue, defining v; = u;;v;, if (¢,7) € S and v;
is defined, and let v] = v} u;; if (¢,j) € S and v; is defined. The cyclic identity above
is precisely the condition needed to ensure that vy,...,v; are well-defined and have
the desired property. By the irreducibility of A all these elements will be defined and

so the lemma follows. [ ]

THEOREM 2.2. Let A! and A? be weakly closed subalgebras of hyperfinite fac-
tors, containing the Cartan subalgebras C' and C? respectively, and Iet
® : A' — A? be an isometric weak star continuous algebra isomorphism with ®(C?) =
= C?. Then there exists a unique weak star continuous star extension ® : W* (AHY —
— W*(A?%).

Proof: By our earlier discussion A! is the weakly closed union of algebras AL,
n = 1,2,..., each of which is the direct sum of algebras of the form A ® D, as in
Lemma 2.1. It follows that ® has a (unique) star extension @ to the star subalgebra
BX, which is the union of subalgebras Bl = W*(Al),n = 1,2,.... It now follows
from hyperfiniteness that ® has a unique weak star continuous extension to the weak
closure, which gives us the desired extension. Indeed let E} : W*(A') — B} and
E2 : W*(A?) — B2 be the conditional expectations onto B} and B2 = &(BL). Let
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e be a net in the unit ball of BY, with the weak star limit 0. We have E2(®((z,)) =
®(El{zq)) and so lién E2(®((z4))) = 0 for each n. Thus if y is a weak star limit
point of the net &(z,) it follows that E2(y) = 0 for all n. Since W*(A2) is the
weakly closed union of the algebras B2 this means that y = 0. Thus if lién zo=10

then lim@(z4) = 0, and so & has an extension to the weak closure, as desired. B
[+

JOROLLARY 2.3. Let N(R) and N(S) be Cartan nests for the hyperfinite Berel
equivalence relations R, S on [0, 1] with ergodic quasi-invariant o-finite measures A,
As respectively. Then N(R) and N(S) are conjugate if and only if there is an order
preserving Borel isomorphism 7 : [0,1] — [0, 1] such that A2 o T and A, are mutually
absolutely continuous and 7 X 7(R) = S.

COROLLARY 2.4. Let M(R) and M(S) be realisations of the hyperfinite II; factor
arising from hyperfinite Borel equivalence relations on [0,1] which have Lebesgue
measure as invariant measure. Then the Cartan nests N'(R) and N'(S) are conjugate
if and only if R = S almost everywhere with respect to left counting measure.

COROLLARY 2.5. Let M(R) be a hyperfinite factor associated with the measured
Borel equivalence relation ([0,1], R,\) as in Theorem 1.1, and let Sy,S2 be Borel
subsets of R which are reflexive, antisymmetric, transitive and contain the diagonal
A (perhaps after deletion of a v,-null set). Then the associated non-self-adjoint
subalgebras A(S;) and A(S:) are isometrically weak star isomorphic if and only if
there is a Borel isomorphism 7 : [0,1] — [0, 1], with A o 7 and A mutually absolutely
continuous, such that v x 7(S1) = S2 almost everywhere.

Notice that Corollary 2.4. also serves to classify Cartan nest subalgebras of the
hyperfinite I1; factor up to conjugacy, simply because the nests are conjugate if and

only if the algebras are conjugate.

The proofs of the Corollaries follow quickly from Theorem 2.2 and the remarks
preceding Definition 1.2. In Corollary 2.4 7 is necessarily the trivial Borel isomorphism
of [0, 1] since it is both trace preserving and order preserving. The crucial point that
T is order preserving, in Corollary 2.3, is simply a consequence of the fact that there
must be an induced bijection between the Cartan nests.

A different approach to Corollary 2.3 and Corollary 2.4, which are weaker than
Corollary 2.5, follows from the analysis of maximal triangular algebras of Muhly,
Saito and Solel. The assumptation of maximal triangularity there means that the

arguments of Lemma 2.1 are not needed.
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3. PRODUCTS OF CARTAN NESTS

We use the main result of the last section, together with an elementary unique di-
rect product factorisation theory for totally ordered measure algebras, to obtain the
following two unique factorisation results, whose proofs are presented later in this
section.

THEOREM 3.1. Let My,..., N, and My,..., M, be Cartan nests in hyperfinite
factors of any type (except I)) and suppose that the product nest algebras T(N1)®
®...0 T(N;) and T(M;1)® ...® T(M,) are isomorphic by an isometric weak star
continuous isomorphism. Then r = s, and there is a permutation 7 such that N; and

M ;) are conjugate for 1 Cigr.

THEOREM 3.2. Let N1, N3,... be Cartan nests in the hyperfinite II; factor R,
and let A = T(M1) ® T(N2) ® ... be the associated weakly closed subalgebra of
R=R®R® ... (with product trace as normalized trace). If a is an isometric weak
star continuous automorphism of A then there is a permutation © which permutes
conjugate Cartan nests, an associated automorphism f; of R, and an isometric weak
star continuous automorphism a; of T (N;) such that o = (1 ® @2 ® ...) 0 fr.

o0
Let (X,P)= H(X;,P,-) be the direct product lattice obtained from the total
i=1

orderings P; on the sets X;, for ¢ = 1,2,.... If [#,y] is an order interval in (X, P)
then we say that an axis for [z, y] is a totally ordered subinterval which is maximal in
the sense of set inclusion. (Note that in order for a subinterval to be totally ordered,
its members can differ in only one coordinate.) Furthermore we define the dimension
of [z, y] to be the number of distinct axes it contains. Plainly [z, y] has dimension one
if z and y differ in exactly one coordinate, and it is easily checked that these are the
only intervals of dimension one. The point of this discussion is that the dimension of

an interval is preserved under order isomorphism. Using this we can obtain.

o0 o0
LemMma 3.3. Let (X,P) = H(Xz-,P,-) and (Y,Q) = H(Yj,Qj) be products of
i=1 j=1
total orders, and let o : (X, P) — (Y, Q) be an order isomorphism. Then there is a

permutation m and order isomorphisms
@ :(Xi)Pi)—’(Yw(i)aQt(i)) , 1=1,2,...,

such that @ = a3 X ag X ...

Proof: Consider a point £ = (z;) in X with image y = (%) in Y. If we fix k£ and
set &’ = (z}) where z} = x; for i # k and z}, is strictly greater than zj, then [z,2'] is
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a one-dimensional interval. Hence [y, a(y’)] is a one-dimensional interval, from which
it follows that y' and a(y') differs in only one coordinate. It is elementary now to use
this to show that « has the desired form. n

LeMMa 3.4. Let Ay,..., A, and y,, ..., s be nonzero finite Borel measures on
[0,1], none of which is a point mass, and each of which is either purely atomic or
nonatomic. Let T be a measure space isomorphism from ([0,1]", A1 x ... x A;) to
{{0,1]", 3 X ... X p,) such that  is order preserving after restriction to some conull
set. Then r = s and there is a permutation «, and order preserving measure space
isomorphism 7; : ([0, 1], A;) = ([0, 1], ta(s)), for L i< 7, such 7 is the product of the

maps 7.

Proof: Let B, B’ be the Borel measure algebras associated with A; x...x A, and
ft1 X ... x ps respectively. Consider the subset X C B consisting of classes [E] deter-
mined by sets E of the form E(ty,...,t,) = [0,t1]x...x[0,¢,], for 0 <1,1<iKr.
Observe that X carries a natural partial ordering, P say. Furthermore if X; C X is
the subset of classes associated with the sets E(t,...,t,) for which t; = 1 for all
J # ¢, then X; is totally ordered by P. With these total orderings, P; say, we can
identify (X, P) with the direct product (X;, P1) x ... x (X,, P;). Similarly we can
identify the analogous subset Y C B’ for p3 X ... X p, associated with the classes of
sets F(t1,...,%,) = [0,t1] x ...[0;¢,], with its partial ordering @, as a direct product
M, @Q1) x ... x (Ys,Qr).

The hypotheses on 7 ensure that the map o« : {E(ty,...,t,)] — [r(E(t,...,t,))]
is an order isomorphism from X to Y. Moreover, except possibly a null set, we have
o([E(ty,...,t)])) = [F(r(t,...,t,))]. By Lemma 3.3. r = s and there are order
isomorphisms a; : X; — Yq(;), for all 1<i<r and a fixed permutation 7 such that
@ = o1 X ... X ap. For notational convenience we assume that 7 is trivial. If \;
is nonatomic then y; is also nonatomic and we may assume that A; and p; have
support [0,1]. In this case we can define a point realisation of a; by «; itself, so
that [F(1,...,ai(t:), 1,...1)] = as([E(1,...,t;,1,...,1)]). On the other hand if A; is
purcly atomic then its support is a countable set, and we can identify X; with this
countable set. In this case Y; is necessarily countable and o; can be viewed as an
order isomorphism from X; C [0,1] to Y; C [0,1]. We have shown then, that almost
every (t1,...,%,) in [0,1])", with the understanding that ¢; € X; in the discrete case,

we have

[F(r(t,....t:)) = a([E@s, ..., t)]) =
=a1([E(t,1,..., DDA ... A ((E(L,...,L,t)]) =
= [Fay(t1),1,...,DIA...A[F(L, ..., L, e (2,))]) =
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= [F(al(tl), ey a,-(t,-))].

It follows that 7 = @; X ... X ¢y as a measure algebra isomorphism, as desired. M

In an exactly similar way we can use Lemma 3.3 to obtain the following lemma,
which is needed for Theorem 3.2.

LEMMA 3.5. Let 7 be a measure preserving measure space automorphism of
([0,1]°°, A x A x ...), where X is Lebesgue measure, such that after restriction to a
conull set, T preserves the product order. Then 7 is a permutation automorphism.

Proofs of Theorem 3.1. and 3.2. Let ® be an isometric weak star continuous
isomorphism from AV = T(M) ® ... 9 T(N;) to A®) = T(M)) ® ... ® T(M,).
By Theorem 2.2 there exists a star extension ® from W*(A!) to W*(A?) which
maps the Cartan masa C(R;) ® ... ® C(R,), say, for A!, onto the Cartan masa
C(51) ® ... ® C(S;), say, of A%2. By the remarks preceeding Definition 1.2, there
is a Borel isomorphism 7 : ([0,1]",A; x ... x A;) — ([0,1]°%, 41 x ... x p,) with
TRy x ... x Ry) =51 X ... x S, almost everywhere with respect to left counting
measure, such that ® = Adz o ®,, where ®, is the isomorphism implemented by
7, and where z is a unitary in the Cartan masa of A%2. Let R} = R; N {(z,y) :
:2<y,1<i<r}, and similarly define the sets S’;", 1<i<s. Then A! can be viewed
as the subalgebra of W*(A!) with support Rf x ... x R}, and in view of the fact
that ®(Al) = A? it follows that &,(A') = A2, and, by a simple application of the
spectral theorem for bimodules ([9], [7]), that (R x ... x R})=S5F x ... x SF,
almost everywhere. Let A = Ay X ... X Ap, it = pt3 X ... X p,. In view of the definition
of counting measure it follows that there is a A-conull set N such that 7()((N x N)n
AR x...x RF)) = (M x M)N(Sf x ...x S}) where r)(N) = M. We are not
yet in a position to apply Lemma 3.4 to factorise 7, since we have not shown that
T preserves the product order on a conull set. Indeed, as the lemma indicates, this
property is equivalent to the factorability of . However we know that @ induces
a projection lattice isomorphism from LatA(!) to LatA(®), the invariant projection
lattices of A1) and A®), namely M; ® ...® N, and M; ® ... M, respectively. The
classes [E(1,...,t,)] correspond precisely to join-irreducible projections of the lattice
(see [14] for example), and so ®, which is implemented by 7, effects a map from (X, P)
to (Y, @), namely

[E(t1,....te)] = [F(r(ty, .., 1))

The proof of Lemma 3.4 gives the desired factorisation.
The proof of Theorem 3.2 is similar, using Lemma 3.5 in place of Lemma 3.4.

.
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