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ON RESONANCES OF GENERALIZED N-BODY
’ STARK HAMILTONIANS

XUE-PING WANG

1. INTRODUCTION

The resonances of Schrédinger operators in a weak homogeneous electric field
(i.e. Stark effect) have been studied by many authors. See for example [8], [9], [11],
[12] and the references quoted there. In particular, precise exponential estimates
on resonances and resonant states are obtained in [11] and [12] for atomic type N-
-body problems with Stark effect. However it seems difficult to directly apply the
methods utilized by the both authors to the regular N-body problem. Remark that
in the later case, the existence and the stability of resonances in Stark-effect have been
established by Herbst-Simon in [8] by means of analytic dilation. On the other hand,
we have given in [12] precise location of the essential spectrum of distorted Stark
Hamiltonians. Thus a natural question is to estimate the number of the discrete
spectrum of distorted Stark Hamiltonians, which are by definition, the resonances
of the original Stark Hamiltonian. The purpose of this work is to give a unified
treatment of Stark resonances, to establish results paralell to those in [11] and [12] in
a more general setting and to estimate the number of resonances in a large complex
domain. The results obtained in this paper can be applied, for instance, to the N-
-body Stark Hamiltonians obtained by removing the mass centre from the operators
with Coulomb potentials:

P= Z (—-——+eq,e :c_,) +Z Iz‘;—-’cgl

i<j

z; € R3, ¢j,¢;; € R and e € §? being the field direction and € > 0 the field strength,
and hence can give precise exponential estimates over the width of resonances and
resonant states. Remark that the existence of resonances for this class of operators has
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heen obtained in {8] (see also [9]), but the exponential estimates on the widths are not
contained in [11] and [12]. We think the proofs presented here are more transparent,
althought the classes of potentials in this paper are slightly different from those in
na.

The methods used in this paper are similar to those in [12]: we use analytic
distortion machinery to define the resonances and deduce the main results throught a
precise parametrix for a suitable Grushin problem of the distorted Stark Hamiltonians
(sce [2], [6]). However there are two differences: the analytical distortion is modified to
adapt to the generalized N-body operators and we substitute some quasi-inversibility
estimates to the detailed analysis of the essential spectrum of the distorted Stark
Hamiltonian in [12]. Although the result on the essential spectrum of the distorted
Stark Hamiltonian obtzined in this paper is not so precise as that obtained in {12],
it Is still global in nature and enables us to estimate the number of resonances in a
large domain.

The organization of this work is as follows: In Section 2, we give the definition of
generalized N-body Stark Hamiltonians and formulate the generalized Weinberg-van
Winter equation, which is a fundamental tool in the analysis of generalized N-body
Schrédinger operators. We give this result, just because we have not been able to
find an exact reference needed. In Section 3, we give the assumptions on potentials
and introduce the analytical distortion. As an important step in the construction of a
parametrix for the Grushin problem of the distorted Stark Hamiltonian, we establish
a quasi-inversibility estimate in Section 4 (Theorem 4.2). In Section 5, we give the
main results of this paper: the existence of resonances generated by the discrete
eigenvalues of the N-body operator without Stark effect, the exponentials bounds
on width of resonances and resonant states. These results are deduced on studying
a suitable Dirichlet problem and constructing a precise parametrix of the Grushin
problem. The details are often the same as in [6] and [12], therefore will only be
sketched. Finally we show in Section 6 that in a large domain in C below the bottom
of the essential spectrum of the N-body operator with zero homogeneous field, the
resonances of the generalized Stark Hamiltonian are all generated by the discrete
eigenvalues of the corresponding N-body operator without Stark effect, hence are
all exponentially close to the real axis. This gives in particular an estimate on the

number of resonances in above-mentioned domain.

2. GENERALIZED WEINBERG-VAN WINTER EQUATION

The Weinberg-van Winter equation is a fundamental tool in the spectral analysis
of N-body Schrédinger operators. For regular N-body operators, see [10] for the
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references and the result. Since we are not able to find an exact reference for the same
equation for generalized N-body operators, we give in this Section a formulation of
the generalized Weinberg-van Winter equation, which will be used in Section 4.

Let us first introduce the generalized N-body Stark Hamiltonians. Recall the
definition of a generalized N-body operator. Let X be a real vector space with
dimX = d, and ¢ a positively definite quadratic form over X. Let {X,,a € A} be a
family of linear subspaces in X, satisfying some axioms. See for exampile [4]. Denote
by X® the orthogonal complement of X, in X (with respect to the scalar product
induced by ¢) and by 7% the orthogonal projection from X onto X°. For x € X, we
write 2* = 7% and ¢ = 2% + z,. For a € A, let N(a) (#a, resp.) denote the number
of particles (clusters, resp.) in a. N(a) (#a, resp.) is by definition the maximal
number n such that there are a; € A, j = 1,...,n, with a; # ag, if j # k and
@1 =amin CasC...Cap=a (a1 =aC...C Gy = Gmax).- Here amin and amax are
respectively the minimal and the maximal element in A. Put N = N(@max). Then
the generalized N-body Schrédinger operators of the form:

(2.1) P=-A+)_ Va(z*).

aEA
Here —A is the Laplace-Beltrami operator over (X,q) and {V5,a € A} is a family
of interaction potentials. Throughout this work we assume that V, is —AS%-compact
in £2(X®), where —A® is the Laplace-Beltrami operator over X°. Let X; be a real
linear form on X. The generalized Stark Hamiltonians studied in this paper are of
the form:

(2.2) P(B) = P+ BX1,

where P is given by (2.1) and B > 0 is a small parameter. In physical situations the
linear form BX; arises from a weak homogeneous electric field (i.e., the Stark effect)
and f is proportional to the field strength (cf. [7]). Clearly operators P(8) contain
regular N-body Schrédinger operators with Stark effect as particular examples (cf.
[4]). By rescaling 8 > 0, we can assume that

(2.3) X1 =(e,z), z€X, forsome ec S 1={zeX,|z|=1}.

Here |z| = q(z)%.

To formulate the Weinberg-van Winter equation in a general setting, let Py be a
closed operator in £2(X) and {V;, a € A} a family of Py-bounded perturbation with
relative hound 0. For a € A, put:

A, ={b€A;5Ca}, B.={beAbg A},
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Cs ={c € A;c# amax and ¢ = bUa, for some b € B, }.

A string of cluster decompositions S is a collection (a;,az, ..., a;) with a;4, € C,; U
U{amax} and a; # aj41. For any given string of cluster decompositions S = (ay,. ..,
ai ), we define the lenght of S to be |S| = k and order of S to be N(S) = N(ay). For
e € A, b€ (C,, define

(2.4) B= ) V.
c€B,, cUa=b
For a given string S = (a4, ..., ar), we put:

8

I =V, and IJ =13, ,forj=2,... k-1

G541’
Now consider the operator P = Py + Z Va. The spectral properties of P have

aEA
much to do with the subhamiltonians P, a € A, a # @max, defined by

Pa=Po+ )V
bEA,

For z & o(P,), put Ra(z) = (P — 2)71. If z & | 0(Ps), we define:

D(z) = Z (=1)*" R, (2)I3_  Ray_,(2) .. . I R4y (2), and

(2.5) N(S)XN-1
I(z)= ) (-V)*'L_ Ray (L5 I} Ray(2).
N(S)=N

ProposITION 2.1. For z ¢ o(P), put R(z) = (P — z)~!. Then the following
Weinberg-van Winter equation holds:

(2.6) R(2) = D(z) + R(2)I(2), for z ¢ o(P)U ( U a’(Pa)) :

a-f‘amsx

Proof. We successively expand R(z) in terms of R,(z), making use of the second
resolvent equation. For the simplicity of notations we omit the dependence on z,
. which is asssumed to be in the resolvent set of all operators. Put Rg = R,,,,. Then

R=Ro— Y RViRo= Ro+ ) (RI.RaVaRo — RaVuRo).
a a

Here I, = Z Vs. For each a € A, a # @max, We split B, into two parts: B/, and BY,
beB,

according that e C bor a ¢ b. Let ZI (Z”, resp.) denote the sum over b € B}
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(BY, resp.). Then for a # amax, we have

RIR.VaRo = Y (RyVsRaVaRo — RIsRaVs RaVaRo)+

+ Y (RVoRaVaRo — RI.R.VsRaVaRo) =

c=aub

= > (RoIf RaVaRo — RI,RyI§ RaVa Ro).
beC,

Here I¢ is defined in (2.4). Consequently,

R=Ro~ RV, Ro— Y (RsVaRo— RVa,, RaVaRo—
a¢ama.x
= > (RsI§ RaVaRo — RIy Ry I} RaVa Ro)).
beC,

(2.7)

K N(b)=N-~1,then I, = I5___. If N(b) < N — 2, repeating the above processes,
we obtain:

RIRsI§ RaVaRo = (RVapo s + Y (ReIlRy — RI.R.ILRs))If RaVaRo.
c€Ch

Since for ¢ € Cy, b € C,, one has N(¢) > N(b) + 1 > N(a) + 2, after iterating the

process at most (N — 1)-tir{1es, we arrive at the expression:

R=Ro— RVap,Ro— D (RaVaRo— RVu,, RaVaRo-

a#“mux
— Y (RyI¢ RyVaRo — RVay,, RoIf RaVaRo—
beC,
(2.8) =3 ..
c€Ch

— D (RuILR,...RyI{ RaVaRo — RI,RyI R, ... RaVaRy). . .))).
ueC,

Here C,, v € A, is such that Yu € C,, N(u) = N — 1. Remark that all strings
of lenght k appear after k-times of iteration. Since Iy = Ij_ _ for N(u) = N —1,
resurnming (2.8) according to the order of strings, we obtain (2.6). a

In a way similar to (2.5), we can also construct D’(z) and I'(z), having the same
properties as D(z) and I(z) such that

(2.9) R(z) = D'(2) + I'(2)R(2).
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(For selfadjoint operators we need just take D’(z) and I'(z) to be the adjoint of
D(Z) and I(Z), respectively). (2.6) and (2.9) are useful in the spectral analysis of
generalized N-body operators. For example the following result can be proven in a
usnal way by utilizing the identity:

(P-2)D(z)=1-1I(z), for z¢ U a(P,)

G#8max

and the holomorphic Fredholm alternative theorem (see [10}).

COROLLARY 2.2. Assume that there exists a smooth function f : R — [1, +oc]
such that tl_l.rg f(t) = oo and that f(|z®|)V, is Ps-bounded with relative bound zero.
Let HY . denote the local Sobolev spaces on X of order t € R. Assume that D(P,) C
C I3}, for some s > 0 and f(|z°{)Va, @ € A, maps continuously Hy, . to Hf, . and that
for all b € A, [Py, f(1z°])]Re(2)f(12%])~2, z & o(Ps), extends to a bounded operator
on L2(X). Let 2 be a connected component of C\ |J o(P,) such that there is at
least one z € 2 with z € o(P). Then oes5(P)N N2 ;6‘.11‘“

Note that if ¢ = aUb, then X, = X,NX; and we can show that [z%|+]|z®| > §|z¢|,
for some § > ( and for any * € X. Consequently, the assumptions in Corollary 2.2
imply that I(z) defined in (2.5) is compact and holomorphic in §2. Finally let us single
out that in Proposition 2.1, Py and V;, a € A, are not assumed to be symmetric, so
we can apply it to complex distorted N-body operators. Corollary 2.2 is a version of
the HVZ Theorem. See [3] for other proofs of the HVZ Theorem in selfadjoint case.

3. ANALYTICAL DISTORTION

Let P(B) be a generalized N-body Stark hamiltonian (cf. (2.2)), P = P(0) the
N-body operator. Let the potentials V, = V,(z®) satisfy the conditions stated at
the beginning of Section 2. Under additional analyticity on V;, we shall define the
analytical distortion of P(8). Let S9! be the unit spfere in X. For any w € S4-1, P¥
define by

PY=—A+ Y Vo(z%)

mow=0

is a subhamiltonian of P and under the assumptions on V,, one can prove as in [1]:
(3.1) Ooss(P) = [Z, +oo[, with & =minX, and &, =info(P¥).

Let X(x) be defined by:

S(2) = {Z‘w, ifz#0and z/jz]=w;

2, ifz=0.
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(See Agmon [1].) For Ag < X, let S(B) denote the distance from 0 € X to the set
I' = {2; X1 + Z£(z) = Ao} in the Agmon metric (8X; + Z(z) — Ao)+dz? (cf. [1]).
Here dz? is the metric on (X, ¢). A direct estimate gives the lower bound for S(g):

2T - Xo)?

38
For » > 0, put p(r) = weigf_l(,@r(e,w) + Zu — Ao)+. Let S1(B) denote the distance
from 0 to I' in the metric p(r)dz2. Let d(-; #) and d'(-; B) denote the distance from
z € X to 0 in the metric (8X; + X(z) — Ao)+dz? and p(r)dz?, respectively. Clearly
d(z; B) > d'(=; B), Yz € X and d'(z; B) is spherically symmetric (i.e., only depending
on |z|). The following result shows that we can choose a spherically symmetrical

(3.2) S(8) >

distortion, without losing signifiant information on the tunneling estimates.

LEMMA 3.1. There exists C > 0, independent of 8 > 0, such that d(z;3) >
> S(B) — C for all z with d'(z; B) = S1(8).

Proof. Since d(z; 8) > S1(B) on the sphere {d'(z; 8) = S1(B)}, we only need to
prove

(3.3) S(B) = S1(B) — C, for some C > 0 independent of 8.

Let S; = {w € 5% ';w € X, and for any b € B,, w € X3}. {S,} form a covering of
S4-1 and on S,, Z(z) is constant:

Z(z) = 2% = info(P,).
Note that Z(—z) = Z(x). We have:
34) p(r)= n}lin(ﬂrua + 2% — Xo)4, with g, =inf {{e,w);w € S, (e,w) < 0}.

This shows that there exist k¥ (k < |A|) points: ro = 0 < r1... < r; with r; the
radius (in the metric dz?) of the sphere {z;d'(z;8) = 51(B)} such that

(3.5) p(r) = (Brga; + 2% — M)y, forr€[rj,ripa], 5=0,1,..., k-1

Remark that p(ry) = 0 and the distance (in dz?) between I and the set {ryw;w € Sy, }
is zero. For any given ¢ > 0, take w; € S,; such that

(36) p(’l‘) < (ﬁr(e,wj) + Zw,' - A0)-4— < P(") + Eﬁ, forr e ['I'j, rj+1]-

Note that we can also choose wy € S,, such that the distance between zo = rywy
and I' is small: dist(zo,I') < €. Let v : [0,1] = X be a minimal geodesic in the
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metric p(r)dz?, joining 0 to z¢. v is Lipschitz continuous and is radial: v(t) = r(t)ws,
with r(0) = 0, 7(1) = r and 7'(t) > 0 a.e. Since d'(z;8) only depends on |z|, the
length |v|, of v in p(|z|)d2? is equal to S)(B). Making use of v, we can construct an
approximate minimal geodesic ¥’ in the metric (8X; + £(z) — Ag)4+dz?, joining 0 to
Zg, such that

¥Y'(t) = r(t)w;, if r(t) €[0,ry — (U (U[r,- + 68,7541 — 6]) U [re—1+ 6, 7]

=2

and that the derivate of ' when t is such that r(t) € [r; — 6,r; + 6] is bounded.
Here 6 > 0 is a fixed small constant. Since the number k < |A| and the metrics are
uniformly bounded in {z;|X;| < C/B} for any C > 0, we can estimate the lenght |y’|
of v in the metric (8X; + Z(z) — Ao)+dz*:

I < 17lp + C1 = S1(8) + C1 and |y'| > d(zo; 8) 2 S(B) — Cs,

(since g is near I') for some Cy, C2 > 0 independent of 3. The lemma is proven. W

Let x be a smooth function on R, such that 0 € x £ 1, ¥’ 2 0 and suppx C
Cl1-n,00[,x=10n [l—g,oo[. Here 5 > 0 is sufficiently small but fixed. We denote

Tk
with r; given in (3.5). Clearly, |0%x(z;8)| < Co.f%, for all @ € N4, Put M =
= {z;|z| < (1 - 9)rs}. On M, x(z;B) = 0. By Lemma 3.1, one has:

&(n)
‘8 )
for z € 8M. Here and in the following, €(n) > 0 is some function of 7 > 0 and &(n)

tends to zero as n — 0. For 8 € R, |8] small, let U(6) denote the unitary operator on
L3(X), induced by the diffeomorphism on X : z — e?X(P)z, for > 0 small. Put:

by the same letter the function on X depending on 8 defined by: x(z;8) = x (M) ,

d(z;8) > $(8) -

P(B;6) =UO)P(AU(8)~", P(6) =U®B)PU®)™".

To study the analytical extension of P(#;6) in @ into a small complex neighbourhood
of zero, we make the following assumption on Vj;:

(3.7) There exists a smooth weight function f : R — [1,00[, f(t) = c0 ast — oc

and a small neighbourhood 2 of 0 € C such that as operators in £2(X), the

map 8 — F,;(0) = f(|z°|)Va(22(9)), a € A, defined for 6 real, extends to a —A-

bounded operator-valued holomorphic function of § € £, and that F,(f) and

s F4(8), 0 € 12, have relative bound zero and for each fixed z,, as operators in
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L2(X®), F(-,z,;8) is —A°® compact. Here z%(8) = X2, which also depends
on zg.

REMARKS. a. The assumptions on V; allow singularities and slow decay of the
potentials. For example, the potentials of the form:

Va(z?) = % 0<r®<min (2, n2_a) , ca €R,

Ixa'ra b
(here ny, = dim X% > 3), and

ca(lz?| = 1)°
((1+ |z2[?) log |#))’

satisfy (3.7). If @ = @max, the singularities of V; local in X are also allowed. In

Va(e*) =

¢ €R,

particular, the N-body Schrédinger operator with Stark effect obtained by removing
the mass center from the regular N-body Scrédinger operator with Coulomb potentials
is included.

b. If @ # Gmax, z%(8) = e®z° for all z® € X, when |z,| is large enough. The
assumption (3.7) implies that V, is dilation analytical in the sense of Combes. We
shall use this point in the proofs.

By (3.7), P(B8,8) can naturally be defined for 6 € 2. Put By = {z;|z] <
< g0 and Imz > 0} for €9 <  small enough so that By C £2.

LemMA 3.2. Let Po(B,6) be the distorted free Stark Hamiltonian. Then the
following holds:

(a) Po(B,0), 8 € By, defined on D = D(—A) N D(X,) is closed and is a holo-
morphic family of type (A),

(b) Let €9 < n, where n > 0 is the small constant used in the definition of x.
There exist C > 0 and By > 0 such that for 0 < 8 < By and 6 € B,, the numerical
range of Py(f3,0) is contained in {z;R;eie“’z >N+ %} Here X = inf{B8X;;|z| <
< eks

(c) The spectrum of Po(B,0), 6 € By, is empty: o(Po(B,0)) =@ and for any
E €R,

(3.8) sup ||Po(B,8 — z)7 || < +oo.
Reie~9z2<E

Proof. 1t is the same as the usual case. See Section 2 in [12]. Note that the
spherical choice of x is used in estimating the imaginary part of the symbol and the
numerical range of Py(8,6). The details are omitted. See [12]. a

Remark that the bound in (3.8) may depend on § > 0, but (b) of Lemma 3.2
assures that if E < X, then the sup in (3.8) is independent of 3.
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CroPosiTiox 8.3. Let (3.7) be satisfied. Then P(B,6), € By, defined on D
i civsed and is o holomorphic family of type (A). For any opea set O C By, there
¢ %> L such that for 0 < 3 < By, P(B,0) — z is invertible for § € O, Rez <

/)W

ek Imz > R and the resolvent is jointly analytical there.

Proof. The fiest part of the Proposition is clear by the assumptions on V. To

show the second part, note that the (b) in Lemma 3.2 implies:
15.9) NPA(B3,6 = 2 ,'} d%j d(z) = dist (z; {iei‘ow;R;ew >N+ g;}) .

For Reg < M- mz > 1, one has: d(z) > i and by constructing a parametrix
for 2(3,9) -~ 2, we can show that |ﬁA(Po(ﬂ,ﬁ9) - zo) i< C(Imd) < C,if 8 € 0.
Seaee cach Vo (0) 3 V(24(8)) is —A-Bounded with relative bound zero, we have

19V Ralz; 8,00 < el ARo(z: B, 0)|| + Cel| Ro(z B,0)]| <

7o @y
A ) . CIZ_Z(]]) Ce
< O+ - ) I , fordeO.
< d(z) d(z)

vj Val0) and R@(w 8, 6) = (Po(B,0) — 2z)~*. Remark that in the region

QL;ﬁ

cRes <Ay ing > 0‘}

: e ) IS bounded (zp being ﬁxed) So when Imz > R,

v et urake the Pight hand side of (3:10) be bounded by c, by choosing £ > () small
o L weams 1203, 8) — z is invertible in the above region. The second part
o sHows. ]

»this work, the resonance of P{3) shall be defined as the discrete spectrum of
20005, for some 0 ¢ Bi. Sece the remark after Theorem 4.2. By Proposition 3.3,

soeon show that the discrete spectrum of P(8,0) in a proper region is essentially
racorndent of § € B and of the choice of x. See {57 and [9], for example.

DCASEINVERIIBILITY OF DISTORTED STARK HAMILTONIANS

‘T"he purpose of this section is to construct a good approximation of the resolvent
(2:9.0) = (P(8,8) — z)71, outside some compact set in X. This approximation
wortant in the construction of a parametrix of the Grushin problem for P(8, 6)
L Tn Section 5. We will prove that P(8,6) is quasi-invertible, i.e., modifying
{?(3.0) in » compact domain independent of @ yields an operator invertible in a
lerige complex domain containing Ag. To prove this, let ¢ be a smooth function on
8w g £ 1 and @) = 0 when |2] < 15 1, when [z} > 2. For R > 1, put
prla) = o ( ,J/ Let P = Py+ V', V' = pgrV.
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LEMMA 4.1. Let V, satisfy the assumption (3.7) (with 6 = 0). Let X(-) be
defined as in Section 2. Then for any € > 0 small, there exists Ry > 1 s.t. for R > Ry,

(4.1) (P'u,u) 2 (Z(z) —®)u,u), u€CP(X).

2
Proof. As in [1], we have for Ry > 1,(Pu,u) > <(S(z) - %) u,u> for any
u € C§°, suppun {|z| < Ro} =B. For R > Ry, put v’ = pru. Then

(P'u,u) = (P, v') + (Pou, u) — (Po/,v') >
2
>((5)- 5 ) ot ) + 190l - onTulP-
— (Ver)ul? — 2Re([V, prulu, prVY) >

>(5@) ~ S t) =0 () (all + 190l

(4.2)

2 2

Note that £(z) < 0, so <(Z‘(z) - %) u’,u'> > <(Z(z) - %) u,u> and by the
assumptions on V, we can derive that ||Vu|[> < 2(P'u,u) + C(u,u), for some C
independent of u. (4.1) follows from by choosing R > Rp and Rg > 1. n

By an argument of density, we can derive from Lemma 4.1
(4.3) o(P) C[Z —€% 400, X =infoes(P).

In the following, we shall take € = 5 and R > 1 is fixed such that Lemma 4.1 is valid.
Since P and P’ differ only in a compact set independent of 3, the distorted operator
P'(B,6) of P'(8) = P’ + X, can also be defined for # € By and § > 0 sufficiently
small, and has the similar properties as P(8,8). The following result is important in
this paper.

THEOREM 4.2. Fora,b € R, 8 € B,, define E(8,a,b) = {z,Rez < a, Reie~(1-"¢.

-z < b}. Let P'(§3,6) be defined as above. Then for § € By and fy small enough,
there is C > 0 such that

(4.3) o(P'(8,8)) N E(8, Ao + % Z-Cn=0, 0<pB<po,
and
(4.9) (18X11%3 + (1 - A))R'(z8,0)l < C

for z € E(8, X0 + %, X ~Cn) and 0 < B < Po. Here R'(z;P,0) is the resolvent of
P'(B,6).
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REMARKS. (a) Since P(3,40) differs from P’(#,6) in a compact in X, it follows
from Theorem 4.2 that the spectrum of P(ﬂ, 6) in E(9, X0 + Z" X — Chn) is discrete.
The resonances of P(B) in E(6, A¢ + -C—, X — Cp) is defined to be the eigenvalues
of P(B,0) in this region. Concerning the relation between different definitions of
resonances, we refer to [5].

(b) The resolvent estimates (4.4) is useful in establishing the expcnential decay
of resonant states (i.e., the eigenfunctions of P(f,6) and the later will be important
for estimating the number of resonances of P(f) in E(8, Aq +2 ol 2 —Cn). See Section

6.
b] s —_— A - n - A
ProPOSITION 4.3. Let M; = {z,d (z;8) < (1 - §) r;-} and My ={z;d'(z; ) >

> (1 - g) rk}. (See Section 3 for the definition of r). Let L denote the square root
of the selfadjoint realization of —A + (8X,). Then we have:

(a) There exists ¢ > 0 such that |j(P'(8,0) — 2)u| > ¢||Lu||, for v € CF(X),
suppu C My and for Rez < Ag + — D and g € B,.

(b) For any 6 € By, there is ¢’ such tbat [|(P'(B,8) — 2)u|| > ¢||Lu|, for u in
C§°(X), suppu C M, and for z € E(9, 1\0-5 X —~Cn). Here ¢ and ¢/ are independent
of 8 when B > 0 is small enough.

Cl
Admitting for the moment Proposition 4.3, we first give the proof for Theorem

4.32.

Proof of Theorem 4.2. Let p;, j = 1,2,3, be smooth functions on X, such that
(i) 8°pi(z) = 0(81°1);
(i) suppp; C M;, 0K p; < 1for j=1,2,and p? +p2=10n X and
(iil) supp ps C My, ps =1 on supp p1(1 — p1).
Put u; = p;u, u € C§°, j = 1,2,3. By Proposition 4.3, there exists ¢ > 0,

(4.5) W(P'(8,6) - 2)ysl* > ellLull®, §=1,2,
uniformly in 2 € E (= E(0, \o + 1’—, X — Cn)). We compute:
2
> _lIP'(B,6) — 2)u;I* = I(P(B,0) — 2)ul*+

(4.6) i=1
+ Z@Rﬂ(IPo(ﬂ, 8), pjlu, p; (P'(B, 6) - 2)u) + [[[Po(B, 0), p;]ull?).

By the choice of p;, j =1,2;

zpj[PO(ﬁ! 9), pj] =e ¥ Z Iij’z = O(ﬂz)
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and

> _ P8, ), psull® < 0(B)(llusl® + (| Vus] ).
J
As in the proof of (a) of proposition 4.3, we have:
| Vus||* = (~Aus, us) < cRe{(P'(B,6) — 2)us,us), z€E,

< C{IP'(8,6) — z)ull llull + 0(B)(IIVusl® + [[ul|)}-

Therefore for § > 0 small, we obtain:

wn |20 ReUPH(B,0) pilups(P(8,6) = =) + [Fo8,),piJelP) | <
2

SOB)(IVII + [lall)-
From (4.5), (4.6) and (4.7), it follows that
(4.8) I(P'(8,6) — 2)ull® > || Lu|?,
for some ¢ > 0 independent of z € E, u € C§?(X) and § > 0 small. (4.8) shows
that P'(8,6) : D — L2(X) is injective. Note that P’(8, 6)* differs from P'(3,8) by a
first order differential operator with smooth coefficients of order O(8). By studying
P'(3,0) for Im@ < 0, we can prove that (4.8) is also valid for P'(8,60)* — Z with

Im6@ > 0 and z € E. This proves P’(8,8) — z is invertible for z € E and Theorem 4.2
follows from (4.8). u

Remark that the constants appeared in the above results may depend on Imé,
but it is easy to prove that the dependence is locally uniform in 8 € B,. Now we
want to give the proof for Proposition 4.3.

Proof of Proposition 4.3. (a) Remark first that V] = prV, still satisfies (3.7).
Applying Lemma 4.1, we obtain for § > 0 small

(P'u,u) = (1 — 8){(P'u,u) + 6(P'u,u) >
>(1+ e(O)(E () = 1), u) + 6(—Au, u),

for u € D. Here ¢(6) | 0 when § — 0. By (3.7), 8sV’(6) is —A-bounded with relative
bound zero. Comparing P’(6) with p’, we obtain

(4.9)

(4.10) [Re((P'(6) — P')u, u)| < CIOI(~Au,u) + |u]]?),

for 8 € B, (= {2z;Imz > 0 and |z| < &0}. If 6 and €9 < & are chosen to be sufficiently
small, from (4.9) and (4.10), it results

Re (P'(8)u,u) > ((Z(z) — 20%)u, u) + g(—Au, u).
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Now if suppu C M;, we have

Re((P(8,8) — 2)u, u) > Re((BX1e™ + £(z) — 0% — z2)u, u) + g(—Au, u) >
Z 62((—A + l)us u):

(4.11)

ifRez < Ag+ % for C > 0 large enough. We have used inf{8X; + Z(z);z € M} >
= Ao + C'n for some C’ > 0. (See the choice of M;). This proves (a) of Proposition
4.3.

To prove (b), let P?(3,0) = e~ A + Be? X, + Z Vo(e?2%), a # amax- PY(8,6)
bEA,
is well defined for 6 € B} (see Remark (b) after (3.7)). If u € D, suppu C Mo, one

has:
(412) PL/(8,0)u = P.(8,0)u.

Let {xa,a € A} be a partition of the unity such that

€

p
= {z;|z®| > 6|z|, Vb € B,}, 6§ > 0 is a fixed small constant.;

(i) Y xa(z)*=1on My;

a
(iil) 10%xq| = 0(8*). Put ug = xgu. By IMS formula (cf. [3]), one has:

(1) xa is smooth on X, 0 < xs < 1 and suppxs C Jaﬂ{lzl > }, where J, =

ICP(8,6) — 2)ull? = S(ICP'(B,6) — 2)uall® — llixes Po(ENull2—
—4Re(e™? [Vxal’u, (P'(8,0) - 2)u)).

We write P'(8,8) = P.(8,6) + 1,(8). By (4.12) and the assumption (3.7), we have:

(4.13)

(P'(8,6) — P5'(B,0))uall = [l 1a(O)uall < e(B)(1Aus]| + l|ual))-
From (4.13), it results:

(4.19) JI(P'(8,6) = 2)ull* > D (1 - e(B)II(P2'(B, 6) = =)ual® = e(B)I(L ~ A)ual|*).

Here ¢(B) is some positive function of 3, tending to zero with 8. The spectrum
properties of the dilated Stark Hamiltonians P”(3,0) can be analyzed as in [6]). In
particular, making use of the generalized Weinberg — van Winter equation and the
methods of [7] and [6], we can prove by an induction on N(a), @ # @maz, that for
0 € B,

(4.15) o(P!(8,0)) C {z;Reie™?z > Z, - Cn},
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and

C

) .
(4.16) 1Ra(=: 800l S Reie=rs — ol

for 8 > 0 small enough and for some C > 0 independent of z with Reie~%2 < £,~Chp

and B €]0,8]. Here R}(z;f,0) is the resolvent of PJ(8,0) and X, = info(P,).

(Compare with Theorem 3. in [8]). The upper bound in (4.16) follows from the
||

|Reie=? — X3 + Cn)|

X — Cn). From (4.16) we obtain:

semi-group arguments used in [7]. Note that is bounded for

E(6, )
z € E( o+C,

1(8X1]+1 - A)RI(2;8,0)]| <C, forz€ E and > 0 small.
This means:
(P28, 6) — 2)uall 2 C"~YI(1BX1|+ 1~ A)ugll, for z€ E.

(b) of Proposition 4.3 follows from (4.14) by taking 3 €]0, o] with 8y > 0 sufficiently
small. m

5. EXPONENTIAL ESTIMATES ON RESONANCES AND RESONANT STATES

Seeing the results in Section 4, we can proceed as in [6] and [12] to obtain precise
estimates on the resonances of P(8) generated by the discrete spectrum of P(0). We
only give a sketch for the proofs. Let ¥ = infoess(P) and Ag < £. Let P(3,0)
be defined in Section 3 By Theorem 4.2, for § € By and for # > 0 small enough,
a(P(S, 9)) NE(D, Ao + C" 2 — Cn) =0, for some C > 0. Take n > 0 small enough so

that Ag + — < X — Cn. Then the spectrum of P(, ) near Xg is discrete, or in other
words, the resonances of P(f8) near Ag is well defined. We shall study in detail these
resonances.

Let M = {z;]z| < (1 — n)ri}. Let PP(B) denote the Dirichlet realization of
P(B,8) over M. As in [1], for any € > 0, there exists R > 0 s.t. for any u € C§°(M)
with supp u N {|z| < R} =0,

(PD(ﬂ)u, u) = (PD(O)u,u) + (ﬂxlua u) =

5.1
61) (P(O)u, u)+{BX u,u) > ((Z(z) + BX1 — €)u, u) 2> (4 —€)(u, u).

Here A = 1&& F@)+BX1 2 X+ 2 for some C > 0. Since € > 0 is arbitrary, by
x

C
an argument of density, we derive from (5.1) that cess(P?(B)) C [4,+00[ and the
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spectrum of PP(B) below A is discrete. The following result on the stability of the
cigenvalues of P under the perturbation of the homogeneous field can be proven as

in [12].

THEOREM 5.1. Let Ay, ..., A be the eigenvalues of PP(8) in I = ]-oo, Ao+ ;g- [
repeated according to the multiplicity. Then for > 0 small enough, there are exactly
m eigenvalues of P?(3) in I. Let y1,(8), ..., #m(8) denote these eigenvalues of PP(g)
and u1(B),...,um(B) the associated orthonormalized eigenfunctions. Then after a

suitable rearrangement, we have:
#i(8) = A; +0(8) and for any ¢ > 0,
sup

0<B<Bo

Here d;(z) denotes the distance from z to 0 in the metric (X, + Z(z) — A;)+dz? on
M.

The proof of Theorem 5.1 is based on the exponential decay of the eigenfunctions
of PP(B3) and P(0). See [1]. The details are omitted (cf. [12] for similar results).
From now on, we assume that Ay < X is an eigenvalue of P and we want to study

e(l—s)d,'uj (ﬂ)”Hl(M) <+4oc, j=1,...,m.

the resonances of P(f) near Ag. The main result is the following

THEOREM 5.2. Let {V,,a € A} satisfy the assumption (3.7). Let Ao < 0 be
an eigenvalue of P with multiplicity m. Let p;(8), j = 1,...,m be the eigenvalues
of PP(B) such that p;j(B) = Ao + 0(8). For # € By, let 2 be a small complex
neighbourhood of Ay, contained in E(6, Ao+%, X —Ch). Then for 8 > 0 small enough,
there are exactly m resonances (counted according to the algebraic multiplicity) of
P(B) in 2. Let z;(B), j = 1,...,m denote these resonances. Then after a suitable
rearrangement, we have for some C > 0 independent of 3,

—25(8) + ¢

j=1,...,m,

14(8) - mi(B) < C

for 3 > 0 small enough. Here €(n) is some positive constant tending to zero with 7).
In particular we have the bound on the width of the resonances:

[Im 2; (8)| = O (e—QS(ﬂ) + %) , foranye>0.

S(B) is the tunneling factor defined through the Agmon metric (8X) +Z(z)—Xo)+dz?
in Section 3.

Proof. The result of Theorem 5.2 follows from a parametrix for a Grushin problem
of P(3,0), 0 € B;. The details are similar to [6] and [12]. We only give a sketch.
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Let uj(B), j = 1,...,m be the orthonormalized eigenfunctions of PP(3) asso-
clated to p; %), j = 1,...,m. For § € By fixed, let £2 be a small neighbourheod of
Ao, 0 CE(6, o+ %, X--Cn) and 2ne(P) = {A¢}. For z € £2, consider the Grushin
problem for (8, 6’5?

P(B,6y—z R”

P(z) = :DeC™ = LAX)eC™,
@=(""07" T )ipecn— e

Here R* : £? — C™ is defined by :(Rtu); = {puj,u), j=1,...,m, u€ L2 and p is
. . 2
a cutt-off function with compac~ support in M and p(z) = 1 if d(z; 8) < S(B) — Fn

R~ : O™ — D is the adjoint of Rt. Applying Theorem 4.2, we can construct a
precise parametrix for P(z). Let ¢ be a cut-off function such that :

S@B) -3
L if d(z; B) < Esiﬁi—;;
0, ifd(z;8) > T".
Define () : £2& C™ — D & C™ by:
p(z)(P'P(B) — 2)~'¢ + (P'(B,6) — )7 (1 — ¢) R~
T Ry’ Diag(z — ;(8))

where P'P(B8) = I PP(B)II, IT being the orthogonal projection in £? onto the or-
thogonal complement of the span {u1(8),...,um(0)}, and P'(3,0) is the operator
constructed in Section 4. In particular P’(3,6) differs from P(8, 8) only in a compact
set independent of 3. Note that (P'?(8) — 2)~! is holomorphic in z € £2, so is F(z).
M Making use of Theorem 4.2, we can prove as in [12] that

(5.2) P(z)f(.zj =I+0 (e-_SZ(E) + ﬂﬁﬂ)

in the no.m of bounded operators on £2(X) @ C™. This proves the right inverse of
P(>) exists when § > 0 is small enough. Similarly we can prove that the left inverse
of (z) also exists. So P(z), z € £2, is iavertible. Let S(z) denote the inverse of P(z).
Utiliz'ng (5.2) and the Neumann series for the inverse, we can approximate S(z) up
o v etnonentially small order. In particular, if S(z) is written in the matrix form,

5= (1) poaeh)
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then by a detailed calculus as done in [6] and [12], we can show
- ()
(5.3) E~*(z) = Diag(z — p;(8)) + O (e 25(8) + =5 ) .

As in [6], the resonances of P(8) (i.e., the eigenvalues of P(8,0) in £ are precisely
the zeros of det E~*(z) in £2. (5.3) yields the results of Theorem 5.2. ]

Our method for proving Theorem 5.2 also gives precise information on the reso-
nant states (i.e., the eigenfunctions of P(f,6)). For € > 0 small, define I by

o= —Z%i) / (P(8,8) - z)"dz.

|z=Xo|=¢

By Theorem 5.2, Rank IT = m for 8 > 0 small enough. Let p be the cut-off function
used in the proof of Theorem 5.2. Put u}(8,8) = I(pu;(8)), j =1,...,m. By the

construction of the parametrix for P(z), we have:
(P(B3,8) ~2)"! = E(z) — EY(2)E~*(2)"'E~(z), (see [6], Appendix).

By Theorem 4.2, we see that |{(P(8,6) — z)"Y|| = 0(1), for |z — Ag| =€ and 8> 0
‘ . ‘ 8N =0 (=SB + 52 :
small. From the estimate (P(8,6) — z;(8))(pu;(8)) =0 | e A ], we obtain
the following

‘THEOREM 5.3. For § > 0 small, {u;(8,6); j = 1,...,m} is a basis of Ran II
and

(5.4) (4;(8,6), ux(8,6)) = 6; + O (e_s(ﬂ) + ‘(‘pﬂ)
(5.5) lfui (8, 8) — ux(B)|| = O (e“s(ﬁ) + iﬁﬂ) L k=1,...,m.

Remark that if Ag is simple (m = 1), then u;(8, 6) is an eigenfunction of P(83,8)
and (5.5) says that the eigenfunction of PP(g) gives good approximation for the

resonant state.
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6. AN ESTIMATE ON THE NUMBER OF RESONANCES

Theorem 4.2 is global in the sense that it implies the spectrum of P(8,6) is
discrete in a large complex domain E = E(6, Ao + %, X — Cpn), for some C > 0 large
enough. In this Section, we propose to study the number of eigenvalues of P(3,6) in
E. Let Ay < X and let > 0 be small enough so that Aq + —g— < X~ Cn. We assume:

Ao + % & o(P). The number of eigenvalues of P below Aq + % is finite.

THEOREM 6.1. Let N denote the number of eigenvalues of P in ]-—-oo, Ao + %[
Under the assumption (3.7), for § € B, and for 8 > 0 small enough, there are exactly
N resonances (counted with their algebraic multiplicity) of P() inside E.

REMARK. According to Theorem 5.2, there are at least N resonances of P(8) in
E, which are exponentially close to the real axis. Theorem 6.1 says that these are the
only resonances of P(3) inside E.

To prove Theorem 6.1, we shall need the following a priori energy estimate which

implies the exponential decay of the resonant states.

TEOREM 6.2. Put b= 83, For 6 € By, there exists C > 0 and By > 0 such that
(6.1) e ullmxy < (Il (P(B,8) — 2)ull + [IxVul))

for u € CP(X), 0 < B < Po and z € E. Here x is a cut-off function with support
contained in a compact set independent of z and p.

Proof. Let P'(f3,6) be the operator introduced in Section 4. Then
(6.2) fullrxy < CNI(P'(B,6) — 2)ulf, forallu€ Dandz€E.

Put Pj(B,0) = =) P'(B,6)e~*=). Then P}(B,6) = P'(3,6) + Q, where Q is a first
order operator with coefficients of the order 0(b). So (6.2) is still valid for P;(8,6),
so long as b > 0 is small enough:

(6.3) Nullzrxy < C'||(P§(B,6) — 2)ul], forallu€ D andz€E.
Now for u € C§°(X), replacing u by e*®)y in (6.3), we obtain
¥} ul| 13 x) < C'|[e*N(P'(B, 6) — 2)ul| <

< C'(J|e* (P(B,6) — 2)ull + [|(1 - pr)Vul)
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twhere pg is the cut-off function used in Section 4. Theorem 6.2 is proven. a

By an argument of density, we see that Theorem 6.2 remains true for « € D such
that =) (P(8, 8) — z)u € L£2. This will be used in the proof of the following corollary:

COROLLARY 6.3. There exists C > 0 such that if u is a normalized eigenfunction
of P(3,0) : P(B,0)u = zu, z € E, then one has for 8 > 0 small enough,

¥ )| < C(2).

Proof. By the assumptions on V, one has for any € > 0,
IVwl € ellAwl] + Cellwl] < 2¢|(Po(B, 6) — 2)w]| + C'(||BX1w]] + |2 | w]}).
The above estimates yield:
(6.4) [|Vw|| < 4li(P(8,0) — 2)w|i + Cjl((X1) + (z))w]], forallw e Dandz€E.

Now let u be a normalized eigenfunction of P(8,6) associated with eigenvalue z € E.
Applying Theorem 6.2 and (6.4) w = (1 — pr)u, we obtain:

le”ullir < 0EIILPo(B, 6), prlull + C(2) < 0 () llullar + C(2).

Corolarry 6.3 follows if we take ¢ > 0 sufficiently small (or R > 1 sufficiently large).
|

Remark that the result in Corollary 6.3 is not optimal, but it is sufficient for
obtaining Theorem 6.1. In two-body case more precise results on the decay of resonant
states have been obtained in [13].

Proof of Theorem 6.1. By computing the numerical range of P(8,6), we can
show as in [12) that o(P(8,0)) C {z € C;z = e’t + 5, t € R, s > —C}, for some
C > 0. See Proposition 3.1 in [12]. Note that in [12], some particular structure
of Po(B3,8) was used in order to simplify the computation of the numerical range of
distorted Stark Hamiltonian. In the present work, Po(f, 0) has the similar structure,
due to the choice of x (see Section 3). So we only have to estimate the number of
the eigenvalues in region By = EN(C\{z = et +s; t € R, s > —C}), which
is a compact independent of 3 > 0, due to the choice of E. Let B(e) denote an
e-neighbourhood of ¢(P) N ]—oo, Ao+ % [ in C. By Theorem 5.2, if ¢ > 0 is small
enough and 0 < f < B, there are exactly N resonances of P(8) in B(c). We want to
show that in E» = E, \ B(e), there is no resonance of P(f), provided 8 > 0 is small
enough. Assume there were 29 € E3 and u € D, ||uj| = 1, such that P(8,8)u = zpu.
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Take a cut-off function 9 such that suppyp C M, 0 < ¢ < 1, ¥(z) =1 for |z| < %,

for some £g > 0 and the derivatives of ¥ are of order 0(3). Put w = ¢u. By Corollary
5.3,

lwl|=1+ O(e:bc_), and since P(3,0) = P(B) on M,

(P — z0)w = 0(b), where b= 83,

for some ¢ > 0. This means there exists C’ > 0 such that o(P) N {z;3z € Ey,s.t.
|z — 20| < C'd} is nonvoid. This is impossible if G > 0 is small enough s.t. C'b < ¢
for B < Bo, because dist(a(P), E2) > . This proves Theorem 6.1. |

Acknowledgements. The main part of this work was carried out, while the author
was visiting Institute of Mathematics, University of Lund. The author takes the
opportunity to thank Professors L. Hormander and A. Melin for their hospitality
during the visit. He also thanks Dr. M. Klein and Prof. R. Seiler for their hospitality
in Berlin.

REFERENCES

1. AGMON, 8., Lectures on exponential decay of solutions of second order elliptic equations,
Math. Notes., Princeton Univ. Press, No. 29, (1982).
2. CoMBES, J. M.; DucLos, P.; KLEIN, M.; SEILER, R., The shape resonances, Comm.
Math. Phys., 110(1987), 215-236.
3. Cycon, H. L.; Froesk, R.; KirscH, W.; SIMON, B., Schrédinger operators, Berlin,
Springer Verlag, 1987.
4. FrROESE, R.; HERBST, . W., A new proof of the Mourre estimate, Duke Math. J.,
49(1982), 1075-1085.
5. HELFFER, R.; MARTINEZ, A., Sur les diverses notions de résonances, Helv. Phys. Acta,
60(1987), 992-1003.
6. HELFFER, B; SIOSTRAND, J., Résonances en limite semiclassique, Bull. Soc. Math.
France, Mémoire, 24/25(1986).
7. HERBST, I. W., Schrédinger operators with external homogeneous electric and magnetic
fields, Proc. Int. School Math. Phys., Erice, 1980, 131-183.
8. HErBsT, I. W.; S1MoON, B., Dilation analyticity in constant electric field, II. N-body
problem, Borel summability, Comm. Math. Phys., 80(1981), 181-216.
9. HUNZIKER, W., Notes on asymptotic perturbation theory for Schrédinger eigenvalue
problems, Helv. Phys. Acta, 1988, 257-304.
10. REED, M.; SIMON, B., Methods of modern mathematical physics, IV, New York, Acad.
Press, 1978.
11. S1GAL, I. M., Geometric theory of Stark resonances inmulti-electron systems, Comm:.
Math. Phys., 119(1988), 287-314.
12. WANG, X. P., Resonances of N-body Schrédinger operators with Stark effect, Ann. Inst.
H. Poincaré, 51(1989).



156

XUE-PING WANG

13. WANG, X. P., On the asymptotics of width of resonances of Schrodinger operators

with Stark effect, announced in the Conf. Topics on pseudodifferential o-
perators, Oberwolfach, June 1989.

XUE-PING WANG
Department of Mathematics,
Peking University,
100871 Beijing, China.

and,
FB Mathematik, MA 7-2,

Technische Universitat Berlin,
1000 Berlin 12, Germany.

Received March 15, 1990.




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 400
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [445.039 677.480]
>> setpagedevice


