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ON THE PREDUAL OF DUAL ALGEBRAS

ZHONG-JIN RUAN

1. INTRODUCTION

Let B(H) be the space of bounded linear operators on a Hilbert space H. A
dual algebra on'H is a o-weakly closed subalgebra of B(H) containing the identity
operator 1y (see details in [3]). It is clear that von Neumann algebras and H>®(D),
the algebra of all bounded analytic functions on the unit disc D, are dual algebras.

Grothendieck [17] has shown that L®(X,p), the commutative von Neumann
algebra of all essentially bounded measurable complex functions on an appropiate
measure space (X, ), has a unique predual L!(X,u). Generalizing Grothendieck’s
result to non-commutative (resp., commutative but non-self adjoint) case, Sakai [30],
(resp., Ando [2]) has shown that every von Neumann algebra (resp., H®(D)) has a
unique predual. The purpose of this paper is to study the predual of certain dual
algebras. We note that the operator space structure on preduals of dual algebras
plays an important role in this paper.

Given a Hilbert space H, it is known that there is a natural family of norms on the
n X n matrix spaces My, (B(H)) over B(H) by identifying My, (B(H)) with B(H™). We
call this family of norms the operator matrix norm on B(H). An (concrete) operator
space is a linear subspace of B(H), together with the operator matrix norm inherited
from B(H). For our convenience, we assume that every operator space E is complete,
i.e., M,(F) is a Banach space for each n € N.

Given operator spaces E and F', we let CB(E, F) denote the space of all com-
pletely bounded maps from E to F with the completely bounded norm. Using the
abstract matrix norm characterization for operator spaces in [28], we may regard
CB(E, F) as an operator space by identifying M,(CB(E, F)) with CB(E, M,(F))
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(see '8]). Let E be an operator space. Then E* = CB(E,C), the dual space of E,
with the operator matrix norm obtained by identifying M, (E*) with CB(E, M,) is
again an operator space, which is called the operator dual of E (cf. [5] and {10]). An
operator space F is called a dual operator space if there is an operator space E such
that F is completely isometric to E*. The operator space E is called an operator
predual of F'. Given a dual operator space F, the operator predual(s) of F can be
completely isometrically (canonically) embedded intc F*, and thus can be regarded as
norm closed subspace(s) of F*. We say that a dual operator space F has a (strongly)
uniguc operator predual if all of its operator preduals coincide in F*, i.e., the operator
preduals of I have a unique position in F*.

It is clear that every o-weakly closed subspace F' of B(H) is a dual operator
space with a canonical operator predual B{(H)./F., where B(H), is the space of
all bounded normal linear functionals on B(H), and F; is the preannihilator of F in
B(HT),.. We use the notation Flr, , or simply F, if there is no confusion, to indicate this
canonical operator predual B(H),/Fy. On the other hand, if F is a dual operator
space with a given operator predual #, there is a Hilbert space A such that F is
weak® homeomorphically completely isometric to a o-weakly closed subspace I7 of
B(IT) (see [8], [11] and also [4]). In this case, £ is completely isometric to Fyr. and
we may identify F with the o-weakly closed subspace I in B(H).

In general, dual operator spaces and dual algebras might have more than one
operator preduals. To see this, we note that the dual Banach space £1(N) possesses a
natural operator space structure by regarding it as the operator dual of the commu-
tative C*-algebra Co(N). The operator matrix norms on the preduals of £1(N) can
be obtained from that on their second dual £°(N). D. Westwood pointed out to the
author that £1(N) can be regarded as a og-weakly closed off-diagonal subspace of a
dual algebra. This can easily be derived from the following fact. If E is a o-weakly
closed subspace of B(H), we get a dual subalgebra C @ E of Ma(B(H)) by letting
¢ = C(ly & 1y) and by putting E on the upper right corner in the 2 x 2 matrix space
M,(B(IH)). This shows that for general dual algebras, we might have more than one
operator preduals.

In section 2, we study the unique operator predual of certain dual algebras. Mo-
tivated by Ando [2] and Sakai [30], we prove in Theorem 2.5 that if A is a dual algebra
such that the subalgebra of compact operators in A is o-weakly dense in A, then A
has a unique operator predual. Therefore nest algebras, atomic CSL algebras, and
more generally, completely distributive CSL algebras have unique operator preduals
{(Theorem 2.7).

In section 3, we study the operator projective tensor product of operator preduals
of dual operator spaces and dual algebras. Given dual operator spaces E and F
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on Hilbert spaces H and K, respectively, we denote by EQF the o-weak closure
of EQ F in B(H ® K), where H ® K is the Hilbert space tensor product of H
and K. If A and B are dual algebras (resp., von Neumann algebras) on Hilbert
spaces H and K, respectively, then AQB is a dual algebra (resp., von Neumann
algebra) on H ® K. We show in Theorem 3.4 that there is a complete quotient map
§ from E, ®" F., the operator projective tensor product of E, and F., onto (EQF)..
Furthermore, we have the complete isometry E. ®* F. = (E®F). if and only if
E®QF = F(E,F;B(H), B(K)), where the latter is the Fubini product of E and F
with respect to B(H) and B(K) (Corollary 3.5). Finally we show in Theorem 3.8
that if A (resp., B) is a dual algebra such that the subalgebra of finite rank (resp.,
compact) operators in A (resp., in B) is o-weakly dense, then A®B has a unique
operator predual, which is completely isometric to A, ®"* B,. It follows that if 4; =
= Alg(L;:) (¢ = 1,...,n) are completely distributive CSL algebras, the dual algebra
Alg(L1)® - - -®Alg(L,) has a unique operator predual which is completely isometric
to Alg(L1)e @ --- @ Alg(Ln)x.

The author would like to express his sincere thanks to Alvaro Arias, Edward G.
Effros and Derek Westwood for many helpful discussions and to Hari Bercovici for
bringing [2] into his attention.

2. THE OPERATOR PREDUAL OF DUAL ALGEBRAS

Given a dual operator space F', the operator matrix norms on its operator dual
and operator predual(s) are uniquely determined by that on F. Thus to show that
F has a unique operator predual, it sufficies to show that, as Banach spaces, all of
its operator preduals coincide in F*. Owing to this fact, we, sometimes, only need to
consider the norm structure on the operator spaces in this section. First, let us recall
the definition of L-summands (resp., M-summands) and M-ideals for Banach spaces
introduced by Alfsen and Effros [1].

A closed subspace E; of a Banach space E is called an L-summand (resp., M-
-summand) in E if there is another norm closed subspace E; of E such that

E=E 0 E;
and
llz1 + z2|| = {lza]| + ||22]
(vesp.,
llz1 + 22|l = max{|jz1l, [l=2[})

for all z; € E;. We write E = E, ©r E, (resp., E = E; ®&m E2). A closed subspace
E, of E is called an M-ideal in E if Ell, the annihilator of E), is an L-summand in
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E*. Let Ey be an L-summand (resp., M-summand) in F with the complement E,.
‘There is a canonical bounded linear map P from F onto E; defined by

P(zy+z2) =23

for all z; € E;. The linear map P is contractive with P2 = P, and is called the L-
-projection (resp., M-projection) from E onto E;. In this case, I— P is an L-projection
(resp., M-projection) from E onto Es.

It is known that M-ideals in C*-algebras are just norm closed two-sided ideals
(see {1] and [31]). In particular, K(H), the space of compact operators on a Hilbert
space H, is an M-ideal in B(H). The space B(H). is an L-summand in B(H)*
with the complement B(H),, the space of all singular linear functionals on B(H).
It has been shown in [9] that for a unital (non-self adjoint) operator algebra A, a
closed subspace J is an M-ideal in A if and only if J is a two-sided ideal of A with a
contractive approximate identity. If J is separable, the standard argument shows that
the contractive approximate identity can be taken to be a sequence. This is, indeed,
a non-self adjoint generalization of C*-algebra results since every two-sided ideal of
a C*-algebra has a contractive approximate identity. If the operator algebra A is a
dual algebra and the subspace J is o-weakly closed, we have the following proposition

which follows immediately from the proof of [9] Theorem 2.2.

ProprosITION 2.1. Let A be a dual algebra on H and let J be a o-weakly closed
subspace of A. Then J is an M-summand in A if and only if there is a central

projection p in A such that J = pA.
LEMMA 2.2. Let A be a dual algebra, E an operator predual of A and 7 the

complete contraction from A** onto A induced by the canonical embedding i : E —
— A*. Then w is a completely contractive homomorphism from A** onto A such that

n(azb) = an(z)d

for all ¢,b € A and x € A**, and the kernel of , denoted by kerw, is a o(A**, A*)-
-closed two-sided ideal of A**.

Proof. Let I(A) be the operator injective envelope of A (cf. [29] and [18]). Then
I{A) is a unital injective C*-algebra containing A as a unital subalgebra. By taking
the second duals, we may regard A** as a unital subalgebra of I(A)**. Hence 7 can
be extended to a complete contraction 7 from I(A)** into I(A). Since T | = id |,
and I(A) is the injective envelope of A, we must have 7 H = id ! 104y This shows
that 7 is a projection of norm one from the C*-algebra I(A)** onto C*-subalgebra
I{A). Hence we have

F(azd) = a7(x)b
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for all a,b € I(A) and z € I(A)**. This implies that
n(azd) = an(z)b

for all a,b € A and z € A**.
Given z,y € A**, there is a net (z4) in A which converges to z in (A**,o(A4A**,
A*)). We conclude that

(n(2y), () = (29, () = lim(zap, i(9)) =
= lim(r(zay), i(¢)) = lim(zar(y), i(¢)) =
= (am(y), i(p)) = (x(zm(y)), i(¢)) = (r(2)7(), i(%))

for all ¢ € E. This shows that 7 is a homomorphism from A** onto A, and thus
kerm = E*+ is a 0(A**, A*)-closed two-sided ideal in A**. .

DEFINITION 2.3. A dual algebra A on H is called compactly dense, or local as in
[14], (resp., finitely dense) if K(A) = ANK(H) (resp., F(A) = ANF(H)) is o-weakly
dense in A, where F(H) denote the algebra of finite rank operators on H. A dual
algebra A is called rank-one dense if R1(A), the linear span of rank-one operators in
A, is o-weakly dense in A.

REMARK 2.4. If A is a compactly dense dual algebra on H, then K(A4) is an
M-ideal in A (cf. [6] and [7]). Hence we may identify K(A)* as a subspace of A* such
that

A* = K(A) or K(A)*L.

On the other hand, if we let @ be the L-projection from B(H)* onto B(H). with the
kernel B(H), then Q maps AL into AL and thus we have

A'L =A,'f Dr A;L,

where A} = Q(A1) and A} = (I-Q)(A*) (see [6] and [7]). Since AL = AL NB(H).
and A} = AL N B(H),, it is a simple matter to check that

A* =A¢ &L Aa;

where A, = B(H)./A} and A, = B(H),/A}. Easy calculation shows that A4, =
= K(A)*, and thus we have that

A, = A* /KA = K(A)".

So compactly dense dual algebras A are the second duals of K(A), and thus the second
operator duals of K(A).
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THEOREM 2.5. Every compactly dense dual algebra has a (strongly) unique

operator predual.

Proof. Since
A® = As &L As,

we have
A™ = A} ou A
by Remark 2.4 and Alfsen and Effros [1], Part II, Proposition 2.5. It follows from

Proposition 2.1 that there is a central projection p in A** such that pA** = A} and
(1 p)A*™ = AL = K(A)*+. This implies that

Au = (A7) = (pA™)L = (1 - pA*

and
Ay =(AF)L = ((1 - p)A*)L = pA*.

Since pf € A, for every f € A*, it is easy to check that pz = 0 for all z € K(A4).

Suppose that E' is another operator predual of A. Then E can be regarded
as a subspace of A* by the standard embedding i. This induces, by Lemma 2.2, a
completely contractive homomorphism 7 from A** onto E* = A such that ker(w) is
a o(A**, A*)-weakly closed two-sided ideal of A**.

We claim that 7(p) = 0. It is clear that w(p) is a central projection of A such
that

n(p)z = n(pz) =0

for all z € K(A). Thus for every ¢ € A., we have

(m(p), ) = lim(zq, 7(p)p) = lim(z,7(p), ) =0

where zo € K(A) converges to (p) in the o(A, A,)-topology. This shows that p and
thus (A,)* = pA** are contained in ker(7) = E*. Hence E is contained in 4. and
thus we must have E = A, by the Hahn-Banach Theorem. ]

REMARK 2.6. After the first draft of this paper was completed and circulated, we
found that for dual algebras on separable Hilbert spaces Theorem 2.5 can be proved by
using the following recent results of G. Godefroy [15] Theorem V.3 and G. Godefroy
and D. Li [16] Proposition 5. We thank A. Arias for pointing this out to the author.

Let X be a Banach space. A sequence (z,) in X is called a weakly unconditionally
convergent series (w.u.c. series) if for every ¢ € X* we have

k
Z le(zn)] < oo.

n=0
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A Banach space Y is said to have property (X) if the following holds: z € Y** belongs
to Y if and only if for every w.u.c. series (y,) in Y*, we have

z (Z*yn) = z(yn)

where (Z*yn) denotes the limit of the sequence {s;c = Z y,,} in (Y*,o(Y*,Y)).

n=1
G. GODEFROY [15] THEOREM V.3. Let Y be a Banach space. IfY has property
(X), then Y is the (strongly) unique isometric predual of Y*.

G. GopEFROY and D. L1 [16] PROPOSITION 5. If a separable Banach space X
is an M-ideal in its second bidual, then X* has the property (X).

Finally let us recall the definitions for certain CSL algebras. The reader is referred
to Davidson [6] for the details. A subspace lattice £ on a separable Hilbert space H
is a collection of projections on H that is strongly closed, contains 0 and 1, and is
a lattice under the operations V (closed linear span) and A (intersection). We call
L a commutative subspace lattice (CSL) if the elements of £ commute. A nest is a
totally ordered subspace lattice. Hence every nest is a CSL. Given a subspace lattice
L, we let £ denote the double commutant of £. A CSL is called atomic if the von
Neumann algebra L£” is atomic. A subspace lattice is called a completely distributive
subspace lattice (CDSL) if it has a distributive law for arbitrary sets, i.e. for any

non-empty index sets I and J, we have

Aoer(Vpeseas) = V¢eJ'(AaeIea,v(a))

and its dual holds, where eq g € L foralla € I, B € J and J7 is the set of all functions
from I to J. The reader may find further details in [25]. We say that a subspace
lattice is a completely distributive CSL (CDCSL) if it is completely distributive and
commutative. It is known that every nest (resp., every atomic CSL) is a CDCSL.

If £ is a subspace lattice on H, we let Alg(L) denote the set of operators in
B(H) that leave the elements in £ invariant. It is easy to see that for every subspace
lattice £, Alg(L) is a dual algebra on H. We call Alg(L) a CSL algebra (resp., nest
algebra, atomic CSL algebra, CDSL algebra and CDCSL algebra) if the corresponding
subspace lattice £ is a CSL (resp., nest, atomic CSL, CDSL and CDCSL).

Since every finitely dense (resp., rank-one dense) dual algebra must be compactly
dense, every such dual algebra has a unique operator predual. It is clear that every
rank-one dense dual algebra is finitely dense. Conversely, there are examples of finitely
dense dual algebras which are not rank-one dense (see [24] and [22] example 2.4). But
if £ is a CSL, the CSL algebra A = Alg(L) is finitely dense if and only if A is rank-one
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dense (sce [20] and [6] Theorem 23.16) if and only if A is a CDCSL algebra (see [26]
and [27]). Since nest algebras and atomic CSL algebras are CDCSL algebras, we have

THEOREM 2.7. Nest algebras, atomic CSL algebras, and more generally, CDCSL
algebras have (strongly) unique operator preduals.

REMARK 2.8. It follows from Theorem 2.7 that every isometric linear isomor-
phism between CDCSL algebras must be o-weakly continuous. Hence every unital
tsometric isomorphism between nest algebras is o-weakly continuous and thus com-
pletely isometric by [6] Corollary 20.17.

3. THE TENSOR PRODUCT OF OPERATOR PREDUALS

In this section, we study the tensor product of operator preduals of dual operator
spaces and dual algebras. First let us recall the definition of the operator projective
tensor product of operator spaces, which was discovered independently in [5] and {10]
(see also [11)).

Let ¥ and F be two operator spaces. Given z = [z;;] € Mp(E) and y = [y1] €
€ M, (F), we define the pg x pg matrix 2 @ y € Mp,(E ® F) by

(2@ Y k)G = i @ Ur s

where ¢,k and (¢, k) indicate the row indices, and j,[ and (j,!) indicate the column
indices. The operator projective tensor norm || |{a on E @ F is defined as follows.
Given u € M, (E ® F), we let

lfulla = inf{|le|| li] 1311 1|51}

where the infimum is taken over all possible representations u = a(z @ y)@ with
& € Mppq, £ € Mp(E), y € My(F), and B € My, for any p,q € N. By using the
abstract L°°-matrix norm characterization for operator spaces in [28] Theorem 3.1, it
is casy to check that this gives an operator space structure on EQ F. We let E&p F
denote the algebraic tensor product of E and F with the operator projective tensor
norm. We let E @* F denote its completion and call E ®”* F the operator projective
tensor product of £ and F.

The operator projective tensor product is commutative and for any given operator
spaces E and F we have the complete isometries (cf. [5] and [10])

(E®" F)* 2 CB(E,F*)= CB(F,E*).

A complete quotient map from one operator space E onto another operator space
F is a complete contraction which maps the open unit balis of M, (E) onto those of
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M, (F) for all n € N. If 7 is a complete quotient map from E onto F, the adjoint map
7* of 7 gives a complete injection from F* into E*. It is known by Effros and Ruan
[12] that the operator projective tensor product preserves complete quotient maps in

the following sense.

PRrOPOSITION 3.1. Let Ey and Fy be closed subspaces of operator spaces E and
F. Then the corresponding map

E®A F——*E/E()@A F/Fo

is a complete quotient map.

Another remarkable property of the operator projective tensor product is the
following result, which is a special case of Effros and Ruan [11] Theorem 3.2.

ProPOSITION 3.2. Let H and K be Hilbert spaces. We have the complete
isometry

B(H). &" B(K). = (B(H)®B(K))x.

In fact this result can be proved directly by using [12] Corollary 4.4. To see this,
we note that
B(H)®B(K) = B(H ® K)

and thus we have

B(H), ®" B(K). = H; @" H.®" K; ®" K. =
Z(HOK); " (HRK). =
= B(H ® K). = (B(H)®B(K))+.

We need the notion of slice maps, which was first introduced by Tomiyama {32] to
study the tensor product of von Neumann algebras. The slice maps for dual operator
spaces, i.e. o-weakly closed subspaces of operators on Hilbert spaces, were studied by
Jon Kraus [21], [22] and [23]. Let us recall these definitions.

If ¢ € B(H)., there is a unique o-weakly continuous linear map R, : B(H)®
®B(K) — B(K) defined by

(Rp(u), ¥) = (u, p ® ¥)

for all ¥ € B(K).. Similarly, for each ¢ € B(K)., there is a unique o-weakly
continuous map Ly : B(H)®B(K) — B(H) defined by

(Ly(u),¢) = (v, 9 @ Y)
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for all ¢ € B(H)..

Let E and F be dual operator spaces with operator preduals £, and F,. If we
identify E and F with the o-weakly closed subspaces of B(H) and B(K) for some
Hilbert space H and K, respectively, the Fubini product of E and F with respect to
B(H) and B(K) is defined by

F(E,F,B(H), B(K)) = {v € B(H ® K); Ry(v) € F and Ly (v) € E}

for all ¢ € B(H), and ¢ € B(K).. It is easy to see that F(E, F; B(H), B(K)) is a
o-weakly closed subspace of B(H ® K), which is the closure of E ® F with respect to
the topology determined by the algebraic tensor product B(H)« ® B(K)..

ProrosiTION 3.3. Let E and F be dual operator spaces with operator preduals
E. and F.. If we identify E and F with the o-weakly closed subspaces of B(H) and
B(K), respectively, we have the complete isometry

(E. @" F.)* = F(E, F; B(H), B(K)).

Proof. By the hypothesis, we may assume that the dual operator spaces E and
F have the canonical operator preduals E, = Eg. and F, = Fk., respectively. Thus
E. ®" F. is a complete quotient of B(H ® K). = B(H). ®" B(K). by Proposition
3.1 and Proposition 3.2. It follows that (E. ®" F.)* can be regarded as a o-weakly
closed subspace of B(H @ K), which contains the algebraic tensor product E & F.

Since we have the complete isometries
(E. ®" F,)* = CB(FE,,F)= CB(F.,E),

for every u € (E, ®" F,)*, it is easy to see that Ry(u) € F and Ly(u) € E for all
¢ € B(H), and ¥ € B(K).. Hence (E,@" F,)* is contained in ¥(E, F; B(H), B(K)).
On the other hand, we show that F(F, F; B(H), B(K)) C (E. ®" F.)*. To this
end, given an element v € F(E, F; B(H), B(K)), it follows from Proposition 3.2 that
v € CB(B(H)., F). We claim that R,(u) = 0 for all ¢ € E. To see this, we have

(Ro(u), ¥) = (v, p @ %) =
= (Ly(u),0) =0
since Ly(u) € E for all ¢y € B(K).. This shows that E; C keru. Since E, =

= B(H)+/F, u induces a map % from E, into F such that ||@]||cs = ||u||cs. Hence u
can be regarded as an element in CB(E,, F) = (E. " F.)*. ]

Proposition 3.3 shows that the Fubini product of dual operator spaces E and F
is, in fact, independent to the choice of Hilbert spaces H and K. This fact has also
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been observed by Jon Kraus [21] Remark 1.2. For our convenience, we may simply
write the Fubini product of F and F as F(E, F).

THEOREM 3.4. Let E; be o-weakly closed subspaces of B(H;) for i = 1,2. The
map 0 : E1. @ Ey. — (E1®E3). defined by

f(wr,w2) = wy Qus

is a complete quotient map.

Proof. First we prove that 6 is a well defined complete contraction. Given
w; € Ej. with ||lwi|| < 1, there are extensions 7; € B(H;). of w; such that ||r|| < 1.
Since 1y ® 73 € B(H1)x " B(H2)« = B(H; ® Hz). by Proposition 3.2, we have

w1 ®w2 =71 @72 |p 5y € (E18E2)..
If 7; are any other extensions of w;, we also have
W Quwz=T1 QT2 |E1§E2 .

Hence 6 is a well defined map from E. @4 E2. into (E1®E3)..

Given w1 € My(E1.) and wa € M,(Ea.) with |lw;i|| < 1, there are extensions 7; of
w; with ||7|| < 1, respectively, such that 7 ® 7, is a contraction in Mp,(B(H1® H2).).
Hence Opq(w1,w2) = w1 Q@wz = 11 @75 IE@Ez is a contraction in Mpq((E1®FE32)«). This
shows that 0 is a complete contraction from E1.« ®a E2. into (E1®F2)«. Therefore 6
can be extended to a complete contraction from E;, ®* E, into (E1®E5)s.

Finally we show that § maps the open unit balls of M, (E1. ®" E2.) onto those
of M, ((E1®FE2).). For any w € M,((E1®E>).) with ||w|| < 1, there is an extension
T € M, (B(H, ® Hj),) such that [|7|| < 1. Then we can represent 7 as 7 = a(r; ®
®72)B € Mn(B(H1)« ®" B(H3).) for some o € My 003, i € Koo(B(H;)s) and B €
Myo3 5, with norms less than one (cf. Effros and Ruan [11]). Let wi = 7 | By We have
that & = a(w1 ® w2)B € M,(E1. " E3.) with |[@]| < 1 such that ,(@) = w. Hence
6 is a complete quotient map from Ey. ®* E3. onto (E1QFE2)x. (]

We note that given o-weakly closed subspaces E and F of B(H) and B(K),
respectively, we have

ESF C F(E, F).

This is because that F(E, F) is a g-weakly closed subspace of B(H ® K) containing
E®F, thus it contains EQF. The equality is always true when both E and F are von
Neumann algebras (cf. Tomiyama [32]), but if may fail in general (cf. Kraus [23]).
Following the definition in [21], a dual operator space E has Property S, if we have
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for every dual operator space F'.

COROLLARY 3.5. Let E' and F be dual operator spaces with operator preduals
F. and F,. Then the following are equivalent where we identify E and F with the
o-weakly closed subspaces of B(H) and B(K), respectively:

(1) We have the complete isometry F(E, F) 2 EF

(2) We have the complete isometry E, @ F, & (EQF)..

Preof. (2) implies (1) followed easily from Proposition 3.3. (1) implies (2) by
Theorem 3.4 and the Hahn-Banach Theorem. ]

The following result is the Theorem 3.2 in [11], which can be regarded as a
consequence of Corollary 3.5 and the Tomiyama’s Fubini Theorem for von Neumann

algebras.

CoROLLARY 3.6. Let R and S be von Neumann algebras with the unique operator
preduals R, and S., respectively. We have the complete isometry

R.@" S, = (R®S)x.

COROLLARY 3.7. Let E be a dual operator space with an operator predual E,.
Then the following are equivalent

(1) E has Property S,

(2) We have the complete isometry E, ®" F, = (E®F), for every dual operator
space F'.

THEOREM 3.8. Let A and B be finitely dense dual algebras (resp., let B be a
compactly dense dual algebra). Then A®B is finitely dense (resp., compactly dense)
with a unique operator predual, which is completely isometric to A. " B..

Proof. It has been discussed in section 2 that if B is a compactly dense dual
algebra, then B is the second operator dual of K(B). Hence the unit balls of M, (K(B))
are o-weakly dense in those of M, (B). Similarly, if B is finitely dense, it is easy
to show that the unit balls of M, (F(B)) are norm dense in those of M,(K(B))
and thus are o-weakly dense in those of M,(B). Hence A®B must be a finitely
dense (resp., compactly dense) dual algebra if A and B are finitely dense (resp., B
is compactly dense). It follows from Theorem 2.5 that A, B and A®B have unique
operator preduals. Finally since A has Property S, by [22] Theorem 2.1, the operator
predual (A®B). is completely isometric to A, ®”* B.. =

REMARK 3.9. Theorem 3.8 can be generalized to the multi-tensor product case.
If A; (i = 1,...,n) are finitely dense dual algebras, then A;® - - - @Ay, is finitely dense
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and thus has a unique operator predual, which is completely isometric to Ay, @" ---
@ An.. Especially if 4; = Alg(L;) (i = 1,...,n) are CDCSL algebras, it is known
by [19] that the dual algebra 41®---®A, = Alg(L; ® ---® L,) is again a CDCSL
algebra. Since each A; is finitely dense, the dual algebra A;® - -®A, has a unique

operator predual, which is completely isometric to A, @ -+ Q" Ap..

REMARK 3.10. There are examples of CSL algebras which contain no non-zero
compact operators (cf. [6] Example 23.14). At this time, we do not know if CSL
algebras, or more generally, reflexive algebras have unique operator preduals or not.

We also do not know if compactly dense CSL algebras have Property S, or not.

Added in proofs: After the first draft was completed and a number of preprints were
circulated, we received a preprint from David Blecher entitled: Tensor products of operator
spaces II. The proof of Theorem 2.5 in Blecher’s preprint coincides with our Proposition 3.2,
Proposition 3.3 and Corollary 3.6.

We also note that in a recent paper (January 1992) of Edward G. Effros, Jon Kraus
and the author entitled: On two quantized temsor products, we have shown many other
equivalent conditions related to those in Corollary 3.7.

This research was partially suported by the National Science Foundaticn.
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