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A MULTI-VARIABLE BERGER-SHAW THEOREM

R.G. DOUGLAS and KEREN YAN

0. INTRODUCTION

A Hilbert space operator that commutes with its adjoint is said to be normal. On
a finite dimensional space a normal operator can be diagonalized, while the spectral
theorem provides multiplication as a model in the general case. Since such operators
can be viewed as being reasonably well understood, it is natural to consider operators
which are “almost normal”. Many authors, including Livsitz ([12]), Carey and Pin-
cus ([4]), Brown-Douglas-Fillmore ([3]) and Helton—-Howe ([10]), sought a structure
theory for almost normal operators. Berger and Shaw, however, obtained a surprising
and unexpected result ([1]) which showed that a certain natural class of operators
consisted of almost normal operators.

For operators S and T we let [S,T] denote the commutator [S,T] = ST — TS
and [T*,T] the self-commutator of T". Since the operator T is normal if [T*,T] = 0,
one usually interprets “almost normal” to mean that [T™,T] is small in some sense.
In the work referred to above, [T, T] was finite rank, trace-class, or compact.

An operator T on H is said to be hyponormal if [T*, T is positive and subnormal
if T = N|M, where N is a normal operator on space KX which contains H. Moreover,
T is said to possess a finite rational cyclic set if there exist vectors vy, vg,...,v, in 'K
such that

n
{Z ri(T)v; : r; € Rat (a(T))}
i=1
is dense in . Here Rat (X)) denotes the rational functions with poles off X.
We can now state the theorem of Berger and Shaw.

THEOREM (Berger-Shaw). An operator which is hyponormal and possesses a
finite rational cyclic set has a trace-class self-commutator.
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Since much of the interest in almost normal operators concerned commuting N-
tuples, it was natural to look for a generalization of this theorem to the multi-variable
case. If we consider the N-tuple of coordinate multipliers on the Hardy space for the
polydisk, we see that no straightforward generalization is possible. In this paper we
show that the commutators are still trace-class for a commuting N-tuple if we assume
that the joint spectrum lies on an algebraic curve. The proof requires techniques from
commutative algebra. Before we can apply these, we must place the Berger-Shaw
‘Theorem in the more algebraic framework of Hilbert modules (cf. [8]).

If T' is an operator on the Hilbert space H, then H is a module over Rat (o(T))
with the multiplication defined by

r(z) x b = r(T)h.
Taking the norm closure of the operators defined by this module action we obtain a
commutative Banach algebra A and H is a Hilbert module over A. Moreover, A con-
tains a homomorphic image of Rat (0(T)) and if T is hyponormal, then multiplication
by z in Rat (o(T)) corresponds to a hyponormal operator. We capture this situation
in the following definition.

DEFINITION 1. Let A be a commutative Banach algebra containing a dense ho-
momorphic image B of Rat (X). A Hilbert module H over A is said to be hyponormal
if the operator corresponding to z in Rat (X) is hyponormal.

If an operator has a trace-class self-commutator, then commutators of rational
functions in the operator will also be trace-class. Thus it is possible to express the
conclusion of the Berger-Shaw Theorem more globally. To that end we introduce
another definition.

DEFINITION 2. Let A be a commutative Banach algebra and B be a dense
subalgebra. A Hilbert module H for A is said to be p-reductive for B if [b}, bs] is in
the Schatten p-class C, for by, b2 in B.

Thus we can restate the Berger-Shaw Theorem as follows:

THEGREM 1'. Let A be a commutative Banach algebra containing a dense sub-
algebra B which is a homomorphic image of Rat (§2) for the bounded planar domain
2. A finitely gencrated hyponormal module over A is 1-reductive for B.

Now we attempt analogous notions in the multivariate context. In the context
of operator N-tuples, the following seems a natural generalization of hyponormality

(cf. [6]).
DEeFINITION 3. The operator N-tuple T = (T3, Ts, . .., Tn) is hyponormal if the
operator defined by the matrix ([T}, T;]) is positive.
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We can now generalize the notion of hyponormal module.

DEFINITION 4. Let H be a Hilbert module over the Banach algebra A. Assume
there is a dense subalgebra B of A, such that B is Noetherian and that there exists a
set of generators (b1,b2,...,bn) for B which forms a hyponormal (joint subnormal)
N-tuple. Then H is said to be a hyponormal (subnormal) module over A.

As we stated earlier, a generalization of the Berger-Shaw Theorem to arbitrary
hyponormal modules is not possible. The example of the Hardy module H2(DV) over
A(D"V) with dense subalgebra C[zy, 2, . . ., zn] shows that the validity of the Berger-
Shaw Theorem depends on the algebraic properties of the Noetherian ring B. This
is the place where techniques from algebraic geometry and commutative ring theory
come in. For complete reference we refer to [11], [14].

We begin by recalling some of the definitions that will be used in stating our

generalization of the Berger-Shaw Theorem.

DEFINITON 5. For R a commutative ring, the Krull dimension of R, denoted
dim R, is defined to be the length of a maximal chain of prime ideals,

dim R = max{¢ |po Cp1 C---Cps C R, p; prime ideals}.

DEFINITION 6. A subset V of C” is said to be an algebraic closed set if V' is the set
of common zeroes of a set of polynomials. If I(V') denotes the set of polynomials that
vanish on V, then V is said to be an algebraic curve if dimClzy, ..., 2,]/I(V) = 1.

Noether’s normalization theorem enables one to treat an N-dimensional ring as
a polynomial ring in N-variables via a finite to one covering map.

In case dim B = 1, the normalization theorem enables us to “reduce” B to C[z],
where the Berger-Shaw Theorem is known to be true. In order to make this reduction
work, we have to modify and extend Noether’s theorem as follows.

THEOREM (Noether’s Normalization Theorem). Let R be a Noetherian ring over
the complex number field C having dim R = n with generators {zy,...,zm}.

1) Then there exists a complex n x m matrix A = (a;;) such that R is integral

m m
over C E @y, ..., E aniz;|.
j=1 '

i=1
2) If E is the linear span in C™ of the row vectors of those n x m matrix A = (a;;)

m m
such that R is integral over C Zaljxj, e ,Eanjxj , then dim E = m.
j=1 j=1

Proof. To prove this version of Noether’s theorem, we need to re-examine the
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proof of Noether’s original theorem as given in ([11], p.18), noting that the ground
field € in our case is infinite.

Let F be any nonzero polynomial in C[zy, ..., z,]. The crucial step in the proc®
of Noether’s normaliza ion theorem ({11], Lemma 1.6, p. 18) is to prove for any F
in €fz1,..., z,) one can find polynomials Yz, . .., Y, such that C[zy, ..., z,) is integral
over C[F,Y1,...,Y,]. When this is establiched, the normalization theorem follows by
induction on the number of generators of R over C and by the observation that such
an I 1s a quotient ring of a polynomial ring over C. In our case, the ground field is
C, the polynomials Y5, ...,Y,, mentioned above can be taken to be linear expressions
of X1,...,X,, and then the same proof in [11] will yield the above theorem. For
completeness we show below how the Y;’s can be replaced by linear expressions. If
we let Yo = Xy — a2 X;,...,Yn = X, — @, X1, then the polynomial

H(T)=F(T,Ya+a2T,...,Yo+ anT) — F is in C[Ys, ..., Y3}[T]
and H(X;) = 0. If we expand H(T) in powers of T, then
H(T) = p(aa, . ..,an)T® + lower order terms

where p is a nonzero polynomial. Since C is an infinite field, V' (p) is an exceptional sct
in C*~1, So we conclude that except for an exceptional set of (as,...,a,) in C*~2,
there exists a monic polynomial in C[Ya, ..., Y,][T] having X as its root.

In case dim R = 1, there exist a finite set of vectors (1 x m matrices), densted
by (el,...,ak),...,(ak,...,ak)), such that

1} R is integral over Claiz; + - - - + ai,2.,.] for each ¢ and 1 i<k, and

2) each z; is a linear combination of {Z a;-:c_;-}lB

1=1

I R is the coordinate ring €[z1,...,2,]/I, where VI = I(U), for U an algebraic
m

curve, then there exists (a,-,')fg‘l,j___l such that if ¢° = Za;jzj, t=1,...,k then
j=1
1) C{z1,. .., za] is integral over C{I, ¢*], and
2} each z; is a linear combination of the g'’s.

1. MAIN RESULT

THEOREM 1. Let H be a finitely generated hyponormal Hilbert module over A
with the dense subalgera B. If the Krull dimension dim B = 1, then H is 1-reductive
for B.

This theorem has many corollaries.
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THEOREM 2. Let T' = (11,...,T,) be a joint hyponormal N-tuple of operators
on the Hilbert space H, and I be the ideal of C[z1, ..., z,] defined by

I={p|p(Ti,...,Tn) = 0}.
If H is finitely generated over T' and C[z1,...,2,)/I has Krull dimension 1, then
[T}, T;) is trace class for all i, j.

If we assume in the above theorem that T is jointly subnormal, then the condition
on the vanishing ideal I is precisely that the Taylor spectrum of T is contained in
an algebraic curve. This is because if T is subnormal, then p(T) is subnormal for
all polynomials p. If the spectrum of T is contained in an algebraic curve U, then
for any p in I(U), o(p(T)) = p(e(T)) = {0}, and hence p(T’) = 0. So the vanishing
ideal I of T' contains I(U) and dimClzy,...,2,]/I <dimClzy,...,2,])/I(U) = 1. On
the other hand, if dimC[zy, ..., z,]/I<1 since v/T = I, it follows that there is an
algebraic closed set U, dimU < 1, such that I = I(U). For any X in Sp(7T’) and p in
I(U), we have p(}) in o(p(T)) = {0}. Hence by the Hilbert Nullstellen Satz we have
Ain U, and hence Sp(T") C U. Thus we obtain the following:

THEOREM 3. Let S = (Si,...,Sn) be a joint subnormal n-tuple on H. If H is
finitely generated over S and the Taylor spectrum of S is contained in an algebraic
curve, then (S}, S;] is trace class for all i, j.

To prove Theorem 1, we must make several reductions. We begin by reducing
the proof of the main theorem to that of Theorem 2.

Suppose ‘H, A and B are as in Theorem 1. Since B is a Noetherian ring, by
definition we can select a set of generators (by,...,b,) acting as a joint hyponor-
mal operator n-tuple on H. It is easily seen that H is still finitely generated over
(b1,...,bs). Let X be the homomorphism:

X :Cl21,...,24] = B

defined by X(z;) = b;, ¢ = 1,...,n. Then X is surjective and if we denote ker X by
I, then I is just the vanishing ideal of (b;,...,b,) and

Clz,. .., 20)/I = B.

By assumption, dimB = dimC[z,...,2,]/I = 1 and thus we have reduced the
proof of the main theorem to that of Theorem 2. To accomplish this we need some

elementary lemmas:
n
LemMa 1. If T = (Ty,...,T,) is jointly and g(T) = > _ayT;, i = 1,...,m,
i=1

where the a;;’s are complex scalars, then (g1(T), . . ., gm(T)) is also a jointly hyponor-
mal m-tuple.
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Proof. We first determine a new product on B(H). For A, B in B(H), define
Ao B = [B,A] = BA — AB. 1t is easy to see that the product o is bilinear,

(X+Y)oZ=Xo0Z+YoZ
(aX)oY =a(X oY)
XoY=-YoX.

We can extend this binary operation to the matrix algebra over B(#):
o mek(B(H)) X kan(B(H)) - men(B(H)).

Then the condition for T' = (T3, ...,T,) to be hyponormal is simply
I
o(Ty,...,T;) 20.

We now prove that (g:(T'),...,9m(7T)) is also a jointly hyponormal m-tuple.

Since
a(T) T

= (ai)
gm(T) T,
(01(T), .., gm(T)) = (T7, .-, T )(as5)",
it follows that
91(T) /31
o(i(T)"s- ., gm(T)") = (ai5) | : | o(T7s---, T5)(@ij)" 20,
9m(T) Tn

by the hyponormality of T'. This proves that (¢1(T), ..., gm(T)) is a joint hyponormal
m-tuple. ]

LemMmA 2. fT = (T3, ...,Ty) is a jointly hyponormal n-tuple and [T}, T}] is in
Cy forsomep andi=1,2,...,n, then [T}, T;] is in C, for all i, j.

Proof. By the hyponormality of T = (T, . ..,Th),
(g7, T]) > 0.

In the C*-algebra M, xn(B(H)), any nonnegative element can always be written in
the form X*X for some X = (z;;) in Myuxn(B(H)), or

X*Xx = (17, T,
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that is,
(1.1) )" XXy = [T}, T] for all 4, j.
k=1

When i = j, we have

D XpXej = [I7, T is in G,

k=1
by assumption, so X; is in Czp for all ¢ and k. Then we conclude from (1.1) that all
[T}, Ti]’s are C, elements. [ ]

Proof of Theorem 2. We will first prove for any linear homogeneous polyno-
mial g(21,...,2n) = @121 + -+ + @p2y, if C[z1,...,2,] is integral over C[I,g], then
[9(T)*, 9(T)] must be in C;.

Let vy, ..., v, be the vectors in H such that

{p1(T)v1 + - - + ps(T)vs I pi € Clz1,...,2zn]}

is dense in H. Since C[zy, ..., 2,] is integral over C[I,g], Clz1,...,2,) is a C[I, g}

module of finite dimension. Thus there are fi,..., f; in C[zy,...,2,] such that for
any polynomial p in C[2y, ..., z,], there are elements qi, . .., ¢;: from C[I, g] such that
(1.2) p=qfi+ - +aqf

Let C[g(T)] be the ring of operators which are polynomials of g(T'). For any ¢ in
ClI,g], it is not hard to see ¢(T') is in C[g(T)], because the ideal I annihilates the
operator n-tuple T.

If we can prove that the hyponormal operator g(T') is finitely cyclic on M, then
by the Berger-Shaw theorem we conclude that [¢*(T), 9(T")] is in C;. To see this, we
define vi; = f;(T)v; fori=1,...,8,j=1,...,t and claim that

{ Z C[g(T)]vij} is dense in H.

i=1, j=1

For polynomials p,,...,p, in C[z,...,2,) by (1.2) there are ¢;;’s in C[I,¢g], i =
1,...,8,5=1,...,t such that

t

pi=) aijfi, i=1,...,s

i=1
Then .
pi(T) =Y qi(Mfi(T), i=1,....s

j=1
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and

ZP,’(T)‘U,‘ = Z Z Qij(T)fj (T)’U,; =

=1 i=1j=1
= ZZ ¢:;(T)vi; € {ZC[!J(T)]%‘J'} .
i=1 j=1 (%)

The last inclusion is because ¢;;(T) is in C[g(T’)]. Thus we have

s
{ZP.‘(T)‘U.? | pi € Clz1,. --,zn]} - {Z C[g(T)]”i.‘i}
i=1 %)
and this completes the proof that [¢(T)*, g(T)] is in C;.

Since, by the discussion at the end of introduction, we can find linear homoge-
neous polynomials g1, ..., gm such that the z;’s are linear combinations of g1, ..., gm,
and Clz, ..., z,) is integral over C[I,g;] for i = 1,...,m, there exist (a;;) such that

m
Z; = E aijgj, i=1,...,n
j=1

Applying Lemma 1 to the operator m-tuple (91(T),...,9m(7T)), it follows that
(91(TY), ..., 9m(T)) is a jointly hyponormal m-tuple. By the first part of this proof
we know that [¢;(T)*,g:(T)] isin C; for all i = 1,...,m, and then by Lemma 2, the
[9:(T)*, 9;(T)]’s are in C; for all 4, j.

Since T; = Za.-jgj(T), i=1,...,m, we have

i=1
n * n
L) = [ (Z aikgk(T)) ) Z ajegg(T)} =
£=1
n n
E Girajelge(T)*, 9¢(T)) is in C;.
k=1 ¢£=1
This completes the proof. -

Our result can also be stated in the language of Helton-Howe [10] as follows.

THEOREM 4. Let M be a hyponormal finitely generated Hilbert module over A
having the dense subalgebra B with dim B = 1. If C*°(B) = {T | T is a C* function
of elements in B}, then C*(B) is a one-dimensional crypto integral algebra.

A consequence of this is that one can define naturally a cyclic cocycle ([5]) on
C*(B)/C; using the module H. We plan to study this cyclic cocycle in another paper.
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2. TRANSCENDENTAL CASE

The theorems we proved in the last section are very algebraic in nature. Besides
the hyponormality and finite rank assumptions, the essential geometric condition is
that the spectrum of the module be contained in an algebraic curve. A natural
question is what about analytic curves or even two-dimensional spaces? We begin
this section with an example.

Consider the pair of analytic Toeplitz operators 7, and T acting on HZ(D),
where 8 is the singular inner function with unit mass at 1. We make H2(D) into
a contractive Hilbert module over A(D?) using (7},T3). An easy calculation shows
that the module spectrum is the closure in C? of the graph

{(2,0(2)) : z € D},

which has Hausdorff dimension two and is analytic except for a singularity at (1,1).
Finally, one can show that the self-commutator [Ty, Ty] is not even compact.

This example shows that no generalization of the Berger-Shaw theorem is pos-
sible under the hypothesis that the module spectrum has two-dimensional Hausdorff
measure. Such a result might hold, however, if one assumes that the module spectrum
is contained in a compact two-dimensional manifold. The example above shows also
that the appropriate notion of analyticity for the theorem to hold might be subtle.
In what follows we obtain a generalization of the Berger-Shaw theorem by assuming

that the module spectrum is a compact subset of an analytic curve.

DEFINITION 7 ([9]). An analytic space is a topological ringed space (X, @), that
is, a structure sheaf O on a topological space X, such that locally it is isomorphic to
the ringed space for an analytic set in a polydisk.

A one-dimensional analytic space is called an analytic curve.

Let (X, 0) be an analytic space. We can naturally construct a sheaf @ on X so
that each stalk @, at a point z is the quotient field on @,. A function on X is called
meromorphic if it is a global cross section of @, or an element of 3(X). It is easy to
define poles and zeroes of a meromorphic function by checking the valuation in the
local rings O,.

One important theorem about analytic spaces is:

ProrosITION ([9]). Let (X, Q) be a compact analytic space of dimension n and
M(X) be the field of all meromorphic functions on X. Then M(X) is a field of
algebraic functions and the transcendental degree of M (X) is less than or equal to n.

It is known that any compact analytic curve is the analytic space of an algebraic
curve. If X is a compact analytic curve, then M(X) is a field of transcendental degree
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1 over C. That is, for any nonalgebraic element z in M (X), C(z) is a subfield of M (X)
which is isomorphic to the field of rational functions in one variable, and M(X) is
a finite dimensional vector space over C(z). M(X) is an algebraic extension of C(z)
and by the primitive element theorem, there exists an element f in M(X) such that

M(X) = C(2)(f)

where f is algebraic over C(z). The point of using an analytic curve is that the
definition of these spaces is coordinate-free.

Now we will define modules with spectrum contained in an analytic curve. There
is a coordinate-free definition of the spectrum of a Hilbert module over A, [8], but
the inclusion of this module spectrum in an analytic curve is not simply a topological
embedding. Rather it must be consistent with the ringed structure of the spaces. We
will see that it is the Hilbert module language that makes possible this coordinate-free

version.

DEeFINITION 8. Let H be a Hilbert module over A. If there exists an analytic
space (X, 0), a compact subset Y C X, and an injection

i:0(X)NOY)— A

such that B = {(O(X) N O(Y)) is dense in A, then we say that M has spectrum

contained in X.

The algebra O(X) N O(Y) in the above definition is the ring of meromorphic
functions which are holomorphic on Y. When X is an analytic curve. O(X) is a field
of algebraic functions and is of transcendental degree 1, but the subring O(X)NO(Y)
of @(X) may not be a ring of Krull dimension 1. An example of this is the following:
if X is the projective plane CP! and Y be an annulus on C considered as a subset
of CP, then (X) ~ O(z), H(X)NOY) = {f- |f.geClz),g|Y # 0}. Thus the
hypothesis in Theorem 1 is not satisfied in this tianscendental case, but we still have

the following:

THEOREM 5. Let H be a Hilbert module over A which is finitely generated and
subnormal. If the spectrum of M is contained in a compact analytic curve, then [b3, ba]
is trace class for by, b2 in B, where B is given in Definition 8.

Proof. Since for any pair b = (b;, b2), b is a jointly subnormal pair, to prove that
(b, b;] is in trace c'ass, by Lemma 2, we only need to prove that

[63, 1] is trace class for each b in B.
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Let b be an element of B. If b is an algebraic element, that is, p(b) = 0 for
some polynomial, then b must be normal. So we consider only the case when b is
not algebraic. In that case, let z in B = O(X) N O(Y) be such that i(z) = b. Then
z is not algebraic in B so M(X) = O(X) is algebraic over C(z). Consequently the
quotient field B of B is also an algebraic extension of C(z), and by the primitive
element theorem [13], there is an element g in B such that:

B = C(2)(9)-
If p is the minimal polynomial of g in C(z)[z] with degp = k, then
N k=1
B = C(2)(9)/(p(2)) ~ {Z aig' | a; € C(z)} .
i=0

Since B C 5 , then for any element w in B there are polynomials p;, ¢;, i =1,...,k—1,
in C[z] such that

i=0 1
Thus we can conclude that for any w in B there are polynomials p, go,...,qk-1 in
C[z] such that

k—1
p(2)w=>_ au(z)d"
1=0

By applying ¢ to both sides of the above equation, we have that for any f in B
there exist polynomials p, o, . .., gx—1 such that

p(0)f = qo(b)go + - - - + qi—1(b)gr -1,

where g; = i(¢?) for j = 0,...,k—1.
With the above preparations in algebra, we can prove that [b*,b)] is trace class
by proving that the subnormal operator b on H is effectually finite cyclic.

Since H is finitely cyclic over A, so is H over B. Let w1, ..., w, be the generators.
Then
s
H = {Efiwi | fi € B}
i=1
is dense in H. If we define wi; = gjw; fori =1,...,s,7=0,...,k— 1, then for any

s
element Z fiw; in the dense subspace H’, there exist polynomials p,¢;;, ¢ =1,...,s,
i=1

J=0,...,k -1 such that

p(b) (i f.'w.-) =3 @i (Bwi;.
i=1 ij
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‘This shows that b is effectually finite cyclic and we can conclude our result hy applying
the following theorem of Berger and Shaw.

THEOREM (Berger-Shaw [2]). Lct A be a hyponormal operator such that A is
offectually rational cyclic. That is, such that there exist wy, ..., w, in ‘H for which

L= {f €EH H there exists r,r1,...,r, € Rat(c(A)),r(A)f = Zm(A)w;}
f=1

is dense 12 M. Then
A", A1 < Zma(o(4)).

3. EXAMPLES

The most natural examples arise from multiplication operators acting on the

Hardy or Bergman space of an algebraic or analytic curve.

EXAMPLE 1. Let V be an algebraic curve in C*, E be an algebraic vector bundle
over V and let
P(E,V) = {all algebraic cross sections of E}.

It is easy to see that P(FE,V) is a finitely generated module over Clzy,...,z,]. If,
in addition, we choose a Riemannian metric on E and a compactly supported finite
measure g on V, then there is a naturally defined L?(E, dy) space and we define the
Hardy space
PY(Edy) = L2-closure of P(E,V) in L}(E,dp).

Obviously, L2(E, dp) becomes a reductive module over Clx, ..., 7] and P?(E,dp)
hecomes a subnormal finitely cyclic module over C[z1, . ..,2a]. KM, =(M,,,...,M;,)
on P?(E,dp) where (M, f)(z) = %f(2), i = 1,...,n for f in P%(E,dpu), then our
result shows that [M, M. ] is a trace class operator for all ¢, j.

EXAMPLE 2. Let X be a compact analytic curve and g be a probability measure
on a proper closed subset Y of X. If # is the closure of O(X)NO(Y) in L(dy), then
for meromorphic functions f,¢g on X with poles off Y, the multiplication operators
Ty,T, on 'H have the property that [T}, T,] is trace class.

For a special case of Example 2, let X be a compact Riemann surface, Y be X\D
(X with a unit disk deleted) and dp be the area measure on Y. If H is defined to be as
above, we obtain a generalized Bergman space on the Riemann surface. If Z®(X\D)
is the operator algebra generated by the C®-functional calculus of the Ty’s with ¢ a
meromorphic function having poles outside of Y, then there is an exact sequence

0 — € —— I®(X\D) —s C=(6B) —s 0.
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This exact sequence will determine an element in Ext(0D) ~ Z. A careful computation
of the index of Toeplitz operators will show that this element in Ext(0D) is a generator
of Ext(dD) ~ Z.
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