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DIAGONALIZATION IN INDUCTIVE LIMITS
OF CIRCLE ALGEBRAS

KLAUS THOMSEN

0. INTRODUCTION

Recently there has been renewed interest for the C*-algebras that can build as
an inductive limit of C*-algebras that are (more or less) of the form C(X) ® My (C)
for certain compact spaces X. In particular the preprint [4] of Elliott provides new
tools and results that can be used for the study of such algebras. In fact Elliott
managed to extend the classification of AF-algebras in terms of K-theory to certain
of these C*-algebras by taking the K; group into account. In this paper we study
inductive limits of circle algebras, i.e. of C*-algebras of the form C(T)® M, (C). Some
of these C*-algebras, namely those of real rank zero, are subsumed under Elliott’s
classification result; however the main theme here is not the classification of these
inductive limits but rather their internal structure. We shall show that the process of
“diagonalization” which is known from the theory of AF-algebras can be carried out
in a C*-algebra B which is the inductive limit of a sequence of circle algebras with
unital connecting *-homomorphisms.

To be specific, we prove that B contains a unital abelian C*-subalgebra D which
admits a free action @ : G — Aut D of a countable abelian torsion group G and
a unitary 2-cocycl<;e u : G x G — D such that B is the (twisted) crossed product
Daqu. This is a generalization of a result of Takesaki [5] concerning UHF algebras.
By 'virtue of the fact that the action a is free, many properties of B are equivalent
to specific properties of this action. Since the property of having real rank zero has
been in focus in the last few years, let us mention that when B is simple, it has this
property if and only if the action on D only has one invariant state, i.e. is uniquely
ergadic.
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We also show that B has K,(B) = 0 if and only if B is the inductive limit
C*-algebra of a sequence of interval algebras C[0,1] ® M,(C) with unital connecting
*-homomorphisms. In this case the group G can be taken to be an infinite direct
sum of cyclic groups and the free action & can be taken to an ordinary (non-twisted)
action. Finally, we give examples of simple C*-algebras B of the above form with
K)(B) = 0 that are not subsumed under the classification result of Elliott [4], i.e. do
not have real rank 0.

I want to thank Michael Rgrdam, Henning Haahr Andersen and Iain Raecburn
for elucidating conversations during my investigations.

1. PRELIMINARY RESULTS ON CIRCLE ALGEBRAS

We shall write M,, for the n by » complex matrices and consider C(T) ® M,, as
a subalgebra of C[0,1] ® M, in the obvious way. Occasionally we will also identify
C(T)® M, with the 1-periodic continuous M,-valued functions on R.

DEFINITION 1.1. An abelian C*-subalgebra A of C(T)® M,, is called maximally
homogeneous when A contains the center C{(T) of C(T) @ M, and A(t) = {a(t) €
€M, : ¢ € A} has dimension n fer allt € 7.

By [8, Lemma 1.4] an abelian C*-subalgebra A of C{T) ® M, is maximaliy ho-
mogeneous if and only if it has the property that pure states of A extends uniquely to
a (pure) state of C(T) ® M,,. In particular, a maximally homogeneous C*-subalgebra
must be maximal abelian.

LEMMA 1.2. Let A be a maximally homogeneous abelian C*-subalgebra of
C(T)® M,,. There is then a set of matrix units { e;; } C C[0,1} ® M, such that
A={feC(T)® M, : f(t) € span{en1(t),e2(t),...,enn(t) }, 1 € [0,1]}
and there is a permutation o € X, so that
e,(,-),,(j)(O) =e;(1),4,7=123,...,n.

Furthermore, the functions e; : [0,1] — M, can be extended as continuous pro-
Jection valued maps e;; : R — M, such that e,(i)o(;)(t) = eii(t +1),t € R, i =
=1,2,3,...,n.

Proof. Consider C(T) ® M, as the subalgebra of the C*-algebra Cy(R, M,,)
of continuous bounded M,,-valued functions on R consisting of 1-periodic functions.
Using that dim A(t) = n for all ¢t € R as in the proof of {7}, Lemma 2, or by using
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that lemma on compact intervals and then patch unitaries together by using that
HY(R,U(d)) = 0 for all d, it follows that there is a unitary v € Cy(R, M,,) such that
vAv*(t) = D, for allt € R. Here D, denotes the standard diagonal in M,,. It follows
that we can find matrix units { fi; } € Co(R, M, ) such that

A= {fer(R,Mn) : f(t+1)=f(t) espan{fll(t)’f22(t)"")fnn(t)})tGR}'

Since { f11(), fo2(t), ..., fan() } = { fri(t + 1), faa(t + 1), ..., fan(t + 1) } there is a
permutation g; € X, such that fo,)e,¢)(t + 1) = fis(t), t € R. By continuity and
connectedness of R the map ¢ — o; must be constant. Let o be this constant value.
Since f,(i)o(1)(0) and fi1(1) have the same minimal projections in M, as range and
domain projections, there are scalars ¢; € T such that

Foyey(©) = i fin(1), i =1,2,3,...,n.

Let w; : [0,1] — T be continuous functions with w;(0) = 1 and w;(1) = ¢; and define
ei;(t) = wi(t)w; (1) fij (2), t €[0,1), 4,5 = 1,2,3,...,n.

Then {e;; } will be a set of matrix units in C[0,1]® M,, with the stated properties.ll

When A is as in Lemma 1.2, we cali 0 € 2, the characteristic permutation of A.
Although ¢ is not itself uniquely determined by A, it’s conjugation class in X, is and
this is all that matters to us. A choice of matrix units { e;; } C C[0, 1] ® M;, with the
properties described in Lemma 1.2 will be called a matrix system for the position of
AinC(T)® M,.

LEmMMA 1.3. Let A C C(T) ® M, be a unital abelian C*-subalgebra. Then the
following conditions are equivalent

(i) A is maximally homogeneous and the centralizer {o}’ of it’s characteristic
permutation ¢ acts transitively on {1,2,3,...,n},

(if) A is maximally homogeneous and there is an abelian subgroup in the central-
izer {o}’ of it’s characteristic permutation which acts transitively on {1,2,...,n},

(iit) There are natural numbers, k, m, with km = n and a free action a : Ly x
xZ,n — Aut A such that the pair A C C(T) ® M, is isomorphic to the pair A C
- AX(Zk X Zm),

?iv) There is (discrete) group G and a free action a : G — Aut A such that the
pair A C C(T) ® M, is isomorphic to the pair A C Aﬁ G.

Proof. (iii)=>(iv) is trivial.
(iv)=(i): If a discrete group acts freely on a unital abelian C*-algebra A, then the
image of A in the crossed product has the extension property of pure states by [1].
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So by [8], Lemma 1.4, A must he maximally homogeneous. Let ¢ € 32, be the
characteristic permutation of A and let {e;; } € C[0,1] ® M,, be a matrix system
for the position of 4 in C(T) ® M,. For every clement u € {¢}' we can define
U, € C(T)@ My, by

Uult) = Y euii®) t € [0,1].

(This is an element of C(T) & M, only because g commutes with ¢.) In this way we
obtain a unitary representation of {¢}’ such that Uyeis Uy = eugyu@), ¢ = 1,2,3,...,n.
It is straightforward to describe the structure of the group of unitary normalizers of
A in C(T) @ My, as a semi-direct product of the unitary group of A and {¢}’. In
particular, this group of unitary normalizers generate C{T) ® M, if and only if {c}
acts transitively on {1,2,3,...,n}. But AxG is certainly generated by the unitary A
normalizers, so we conclude that {s}' mu:t act transitively on {1,2,...,n}.
(1)=>(ii): Because {c}’ acts transitively on {1,2,...,%} it follows that all ¢’s orbits
are of the same lenght. Thus ¢ is the product of a number, m say, of disjoint cycles
of the same length, k say. Then km = n and it is clear that {¢}’ contains a subgroup
isomorphic to Z;; x Z, which acts Sransitively on {1,2,3,...,n}.

(ii)=>(iii): From the preceding we know that there is a subgroup G C {¢}’, isomorphic
to Zx xZn, which acts transitively on {1,2,3,...,n}. Then p — AdU,, ¢ € G, defines
an action of G on A. Because G acts transitively on {1,2,3,...,n}, a simple partition
of unity argument shows that C(T) ® M, is generated by A and {U, : p € G}.
Let us show that 3 = AdU gives a free action of G on A. So let w be a pure
state of A. We must show that w o AdU, # w when p # 0. Let & be the state
extension of w to C(T) ® M,. Since A has the extension property in C(T) & M,,
w is pure, and we must show that & 0 AdU, # & as states on C(T) ® M. Since &
is pure there is a t € [0,1] and a pure state A of M, such that @(f) = A(f(1)). f €
€ C(T)® M;. Thus & o AdUL(f) = AU @) f@®UL(@)*), f € C(T) ® M,. Note
that A(f(t)g(2)) = &(fg) = w(fiw(s) = MFE)A(g(1)) for all f,g € A, showing that
A is a pure state on A{2) C M,. Since A(t) = span{e;{t)} and AdU,(t){ei(t)) =
= eu(i)u(s)(t), we sce that AdU,(t) is a free automorphism of A(¢) because p # 0. It
follows that AeAdU,(t) # A on A(t), and consequently also on My,. Thus @cAdU (i) #
# &. It is now easy to see that C(T) @ M, ~ A;G’, and in fact this follows from a

much more general result like Corollary 15 of [6]. Since G is isomorphic to Zz x Zi,
this completes the proof. |

A unital abelian C*-subalgebra A of C(T)® M, will be called a normal diagonal
when it satisfies the equivalent conditions of Lemma 1.3. The justification for this
name comes from the fact that C(T) ® M, can be considered as an extension of
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Z;p x Z; by A. In this analogy with group extensions A plays the role of the normal
subgroup.
Now we turn the attention to *-homomorphisms between circle algebras.

DEFINITION 1.4. A unital x-homomorphism ¢ : C(T)®@ M, — C(T) ® M,
is called maximally homogeneous when (the vector space dimension ) dim¢(C(T)®
®M,)(t) = mn for allt € T.

Note that the dim¢(C(T) @ M,)(t) < mn for all t whenever ¢ is a unital -
homomorphism. Thus the requirement on a maximally homogeneous one is that the
dimension of the range is maximal in each simple quotient of C(T) ® M,,. Such
*-homomorphisms, for more general spaces in place of T, have been studied to some
extend before, cf. [7], [3].

‘The importance of the maximally homogeneous *-homomorphisms, in particular
for the study of inductive limit C*-algebras build from C*-algebras of the form C(T)®
®My,, comes from the following result of Elliott, cf. [4], Theorem 4.4.

THEOREM 1.5. (Elliott) The maximally homogeneous *-homomorphisms are
dense, in the topology of pointwise normconvergence, among the unital *-homomor-

phisms C(T) ® M, — C(T) ® Mp,.

As it follows from Elliott’s investigations in {4], one very important feature of a
maximally homogeneous *-homomorphism is the variation over T of the eigenvalues
of the image of the canonical unitary generator of the center of the domain algebra.
We introduce this in a way which is convenient for our present purposes.

DEFINITION 1.6. Let ¢ : C(T)®M,, — C(T)®M,, be a maximally homogeneous
*-homomorphism. By (7] there are then T continuous functions g; [0,1] = T and
a unitary U € C[0,1] ® M,, such that

fog 0 Ve 0
W) =U S S
0 0 .. foss
The functions ¢4, g2, ..., g= will be called the characteristic functions of ¢.

Let ¢ : C(T)®M,, — C(T)®M,, be a maximally homogeneous *-homomorphism
with characteristic functions g1,92,...,9=. There are then continuous functions

G1,Gs,...,G= : [0,1] — R such that

9; = exp(2miG;), j = 1,2,3,..., %
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Since the G;’s are only determined mod Z, we can assume that
(1. {G1(0),G>(0),...,G=(0)} C [0, 1]

After a renumbering we can furthermore assume that G;(0) < G2(0) < --- < G=(0).
Since g;(t) # 9:(t) for t € [0, 1}, i # j, it follows that

{1.2) Gi(t) < Gty <--- < G%a(t) for 2il ¢ € [0, 1].

We call G1,Gs,...,G 2, subject to both (1.1) and (1.2), for the characteristic real
valued functions for ¢. Since we have that

, m, . . m
{9; :]:1,2,3,.‘.,;;;:{exp(?mGj) : 321,2,3,..,,:},

there is a permutation o € X such that Gog)(0) — Gi(1) € Z. We call & for the
characteristic permutation of ¢.

For the formulation of the next lemma, which index the realvalued characteristic
functions of a maximally homogeneous *-homomorphism in a suitable way, we consider
Z,, as the subgroup of X, generated by the cyclic permutation in {1,2,3,...,n}.

LEMMA 1.7. Let G1,Gs,...,Gn : [0,1] — R be continuous functions and ¢ €
€ X, a permutation such that

(1) Gi(t) < Ga(t) < --- < Ga(1), t €]0,1],

(1) G1(0), G2(0), ..., Gx(0) € [0,1],

(iil) exp (27iG;(t)) # exp (27iGr(t)), t € [0,1}, § # &,

(iv) exp (27iGo(;)(0)) = exp (271G;(1)), § =1,2,3,...,n.

Then

(a) 0 € Z,.

(b) Let & be the order of ¢ and let p € £ be cyclic permutation. There Is
a bijection ¢ : {1,2,3,...,k} x {1,2,3,..., %} — {1,2,...,n} and a function f :
{1,2,3,...,k} — Z such that

Hugi)(0) = Hi,5y(1) — f(3),

where Hisj) = Gog iy (,7) € {1,2,3,..., B} x {1,2,..., 2}.

Proof. Since G,(0) ~ 1 < G1(0) < G2(0) < --- < Ga(0) by (ii), conditions (iii)
and (i) imply that G,(t) — 1 < G1(t) < Ga(t) < -+ < Gyr(t) for all t € [0,1]. Thus
the permutation o which satisfies (iv) must be some power of the cyclic permutatiion.
This proves (2). Furthermore it shows that if ¢ = g/, where j € {0,1,...,n ~ 1},
then there is an integer x such that

(;5(1) - Gﬂ(ﬁ)(o) = GG(]) - GB*’J(O) =z, = 1)?1 ceey js
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and
G,'(l) - G.,(,')(O) = G,’(l) - GH.J'_"(O) =z+1l,i=n—-j3+1,...,n.

Set g(¢) = Gi(1) = Go(1»(0), i = 1,2,3,...,n. The crucial observation is that g is
constant on the sets {1,2,3,. ..,-;-:-}, {% +1, % +2, ...,2%},...,{(k - 1)% +1, (k-

—1)% + 2,...,n}. This follows by noting that j = z-g# for some z € {1,2,...,k—1}
and that n—j=(k—z)%.
Define ¢ : {1,2,3,...,k}x{1,2,3,...,%}-—>{1,2,3,...,n} by

¥ d) = (= DF +i

Then ¢! o u¥ 0 ¢(3, j) = (u(i), j) and the value of g o 9(i,j) depends only on i. Let
g'(i) = goy(i, 1) and let H; ;y = Gy gy (ir5) € {1,2,..., k} x {1,2,3,...,%}. Then
H{yei7,)(0) = Gyur(),)(0) = Gooyii)(0) = Gy (1) —g09(i, 5) = H; (1) —9'(5)
for all 4,j. Since the order of u* is the order of o which is k, we conclude that
u® is conjugate in Iy to u. Let B € X such that 3~ o u? o B = p. Define ¢ :

{1,2,...,k} x {1,2,3,..., %} —{1,2,...,n} by ¢(3,5) = ¥(B(¢),j) and set H; ;) =

Heu.i)(0) = Hipou(i.5)(0) = Hiue (5.)(0) =
= H{g(iy,5)(1) — ¢'(B()) = H (1) = £(3)
for all 7, j when f is defined by f = ¢’ 0 8. |

The following proposition shows how maximally homogeneous abelian C*-subal-
gebras of circle algebras are related by maximally homogeneous *-homomorphisms.

It constitutes the crucial step in the proof of our main result.

ProposITION 1.8. Let ¢ : C(T) ® M, — C(T) ® M, be a maximally homo-
geneous x-homomorphism and A C C(T) ® M,, a maximally homogeneous abelian
C*-subalgebra. Let p € £, and 0 € Z'n be the characteristic permutations of A and
¢, respectively.

(i) There is a unique maximally homogeneous abelian C*-subalgebra B C C(T)®
®M,, such that ¢(A) C B. B is generated by ¢(A) and the center of C(T) ® My,.

(ii) If A is a normal diagonal, then so is B.

(iii) Let p be the order of o. The conjugacy class of the characteristic permutation
of B Is represented by the bijection ® of {1,2,...,n} x {1,2,...,p} x {1,2,...,%}

given by
m

(i, 5, k) = WDE), (), k), (5,5,k) €{1,2,...,n} x{1,2,...,p} x {1,2,...,—},

pn
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where ¢ is cyclic permutation and f is zn integer valued map.

Proos. Since ¢ is maximally homogeneous there are orthogonal projections
P1,p2, ..., pn € Cl0,1]® M. of sum 1 such that po(;)(0) = pi(1), i = 1,2,3,..., 2,
and

.

$(R)(1) =) _ hogi(t) & pi(t), h € C(T)® My, t €[0,1],
izl
where g; = exp(27iG;) and G1,G3,...,Gz are the characteristic realvalued func-
tions for ¢. In fact we can be a little more specific. By Lemma 1.7 we can find
continuous functions H; iy : {0,1, — R and a function f: {1,2,...,p} — Z such that

He(i),6)(0) = Hs 2)(1) — f(5),

G.k) € {1,2,3,...,p} X {1,2,3,...,%}, and {exp (2riH;y) 1 7 = 1L,2,3,...,p,
£k=12,3,..., i—%} are the characteristic functions for ¢. Let p;i, j = 1,2,3,...,p,
k=1,2,..., En’ be an orthogonel set of projections in C[0,1] ® M= of sum 1 such
that pec;),1{0) = p;,x(1) for all j, k. Set

P 5. 1)(t) = e 0 Hej iy (t) ® ps 6(2), t € [0, 1],

(,5,k)e{1,2,...,n} x{1,2,...,p} x {1,2,..., %}, where {e;;} is a matrix system
p

for the position of A in C(T) ® M,. By viewing C(T) as consisting of 1-periodic
continuous functions on R, we can assume that ¢ is given by

$(F)t) = 3 F o H 1)) ® pja(t).

jlk
In this description it is clear that ¢ maps A into
B={feC(T)® My : f(t) espan{ Py ()}, t€[0,1]}.
By using the last statement of Lemma 1.2 we find that
Fla5,0)(1) = Prusois),e),h)(0), for all 4,4, k,

so that we can prove (i) and (iii) by showing that B is generated by ¢(A) and
C{T)® 1. By a partition of unity argument it suffices to fix t € [0, 1] and prove that
(A)t) =span{ P, ;) }. Fixie€ {1,2,...,n},5 € {1,2,3,...,p} and k € {1,2,
3,..., %} Since exp (2miH(; 1)(t)) # exp (2miH;, 1,)(1), (4, k) # (j1, k1), we can
find h in the center of C(T) ® M, such that h(exp(2miH(;)(t))) =1 and
hexp (27iH(;, ,3(2))) = 0, (j1, k1) # (J, k). Furthermore since A(exp (2miH(j1)(t))) =
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span {e:;(H(j )(t))}, we can find hy € A such that hi(exp (27iH(;1)(t))) =
= e,-.-(H(j,k)(t)). Then hh; € A and ¢(hh1)(t) = P(g’j’k)(t). Thus ¢(A) and C(T) ®1
generate B and (i) and (iii) are proved.

To prove (ii) assume that {u}’ contains a subgroup G which acts transitively on
{1,2,3,...,n}. For g € G, define g x id € I\, by

g x 1d(z, 5, k) = (9(3), 5, %),

(LLk)e{LZ””n}x{LZ”.m}x{LGwgg}]%rhelﬁ,mﬁmidxhe
€ X, in a similar way:

id x h(i, j, k) = (i, j, h(k)).

Let & C X, be the subgroup generated by {gxid: g € G}, {idx h: h € Zz}and®
Then H is an abelian subgroup of the centralizer of ® in X, which acts transitively on
{1,2,3,...,m} (identified with {1,2,...,n} x {1,2,...,p} x {1,2,...,%}). Conse-

quently B is a normal diagonal and (ii) is proved. |

2. INDUCTIVE LIMIT C*-ALGEBRAS OF SEQUENCES OF CIRCLE ALGEBRAS WITH UNI-
TAL CONNECTING *-HOMOMORPHISMS. '

In this section we study inductive limits of sequences
A8 4,844,845 ..

consisting of circle algebras A,, and unital connecting *-homomorphisms.

LEMMA 2.1. (Elliott) Let A be the inductive limit of a sequence of circle algebras
with unital connecting *-homomorphisms. The A is #-isomorphic to the inductive

limit C*-algebra of a sequence
L8408 4845. .

of circle algebras A; = C(T) ® M,, with maximally homogeneous connecting *-
homomorphisms ¥y,.

Proof. By Theorem 2.1 of [4] we can exchange the given connecting *-homomor-
phisms with others that approximate the original ones sufficiently closely without
changing the isomorphism class of the direct limit C*-algebra. By Theorem 1.5 we
can therefore exchange them with maximally homogeneous ones. ]

THEOREM 2.2. Let B be the inductive limit C*-algebra of a sequence of circle
algebras with unital connecting *-homomorphisms.
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There is then a unital abelian C*-subalgebra D C B, & countabl abeliz ) torsion

group (G and a free twisted action (o, u) of G on 1D such that B =~ D x (3,
@0

Proof. By Lemma 2.1, we can assutne that B = EﬁmA is the inductive iimit
of a sequence of circle algebras with maximally hom%encmms connecting x-homomor-
phisms ¢,. So by Proposition 1.8 we can find a sequerce 2, € Ay of normal diagonals
such that ¢,(A,) C Aper. Let p; : A; — B be the cancnical *-homornorphisms
and set D = Upn(l)r,) Let o; € L, be the characteristic permutation of D; C
CC(T)@M,,,,, i=1,2,3,.

We want to construct by induction an abelian subgroup G; of the centralizer
of o; in ¥,; acting transitively on {1,2,...,n:}, and & map V! : G; — A; of G;
into the unitary normalizers of IJ); such that Voi = 1 and for some matrix system
{e;} € C[0,1] @ M,,, for the position of D; in C(T) © M, we have

(2.1) VieisVy® == egtinasyy §=1,2,3,...,m, g € Gi,

Furthermore we want the sequence to be compatible with the ¢;’s in the sense that
there are injective group homomorphisms A; : G; — G4 such that Vitlo); = ¢;0V*
for all 7.

To start the induction we just repeat the construction in the proof of Lemma 1.3.
We proceed to the induction step. So assume that we have constructed everything
for i< k.

Let m = Eg;ii and let p be the order of the characteristic permutation of ¢,. By
Lemma 1.7, vf;.e have continuous functions Hy;ry: [0, 11-R,i=12,...,p,
k=1,2,. ,m, and a function f : {1,2,3,...,p} — Z such that Hy;), L)(O)
= H;, ;)(1) j"(j) for all j, k and such that ¢; is given by

6:(0)E) = 390 Hosap(®) ©Py,0x(t), 9 € C(T)© Moy, € (0,1,

7.k
where piony, (6, 8) € {1,2,3,...,p) X {1,2,3,...,%% is a set of orthogonal projec-
tions in C[0, 1j® M, of sum 1 such that prej),»){0) = py,r)(1) for all j, k. By Proposi-
tion 1.8 we can identify {1.2,...,mp4:} with {1,2,3,...,n} x{1,2,3,...,p}x
x{1,2,3,..., ;T;}, where p is the order of the characteristic permutation of ¢;, in
such that way that the characteristic permutation o443 of Ar4y is given by
oresli, 3, k) = (e[, (), 1),

Let V% : G; — Ay be the unitary map of Dy normalizers and {e;;} 2 matrix system

for the position of Dy in Ap such that (2.1) holds for ¢ = &. There is then e matrix
systemn { Fig j 106,.51,80)1 € Cl0, 1] @€ My, for the position of Dy 41 in Apyy such that

Flo,5,036.5.0)(t) = ess © Hez iy (8) ® pis,5)(1)-
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Define Ay : Gy — Ly, ,, by
Ak(9)(3, 3, k) = (9(3), 5, k),

for (i,5,k) € {1,2,3,...,n} x {1,2,3,...,p} x {1,2,..., =}. As shown in the proof
p

of Proposition 1.8 (ii) there is an abelian subgroup Gg41 of the centralizer of ok in

Znars: Which acts transitively on {1,2,...,n;} and contains Ax(Gk).
Define Wy, g € Gi41, by 4
D P k)i
5.5,k

Then g — W, is a representation of Gy as unitary Dgy; normalizers in Ag4i.
Furthermore,

W Fim)Ga )Wy = Fyligk)eG.ik);
9 € Gryr, (5, k) € {1,2,3,...,m} x {1,2,3,...,p} x {1,2,...,%}. Note that

Addr(V*9)(Fli ,)6,7,0)) () = €9(i)g() © Hij 1) (2) ® p(spy(t) =
= F3,(9)(,5,0)Me(9)( 5. k) () = AW, () (F(s.5,63G.5,8)) (@), t € [0,1], g € G,
for all i, j, k. Now define VZ‘H, g € Gi41, by
V:+1 = ¢k(V,\k;l(g)) for g€ ’\k(Gk)

and
V= W, for g & M(G).

It is straightforward to check that with these definitions we have completed the in-
duction step.

‘We need three observations:

(i) For each i € N and g, h € Gi, we have Vi ViViy, € D;.

(ii) For each i € N, the action g — AdV} of G; on D; is free.

(iii) D; and { V] : g € G;} generate A;.
(i) follows from (2.1) and the fact that D; is maximal abelian in A;. Thus AdV}
does indeed define an action of G; on D;. Note next that every abelian subgroup
of X, which acts transitively must also act freely. Thus in particular, G; acts freely
on {1,2,3,...,n;}. Then (ii) follows as in the proof of (ii)=-(iii) in Lemma 1.3. (iii)
follows from a partition of unity argument and the fact that G; acts transitively on
{1,2,...,n;} upon using (2.1) again.

Let G be the inductive limit group of the sequence A; : G; — Gi4; and let g; :
G -+ G be the canonical embeddings. We have then a welldefined map U : G — B
given by

U(pi(9)) = pi(Vy), 9 € Gs,i=1,2,3, ...
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By construction cach U{g), ¢ € (7, is 2 unitary ) normalizer and by (i) above we
have that w,; = U{g)UR) (g -+ k) € D for all g h € G. Thue AdU(g) gives
us an action of (G on I? and u is clearly a 2-cocycle with respect te this action.
Furthermore, by (iii) above, D 2nd {U(g) : ¢ € G} together gencrate B. If w is
a pure state of DD and g & {J; satisfies thet w o AdU{p;(g)) = w, then wo p; is a
pure state of Dy which is fixed urder the (dual of the) action of AdV]. Hence from
(ii) above we conclude that g = 0. This shows that oy = AdU{g) defines a free
action of G on D. It follows in particular from this that D has the extension property
(of pure states) in B. (If this is not wellknown, it can be proved as Proposition 4
of [6]). Thus there is a conditional expectation P : B —» D given by requirering
w(P(d)) to equal w(d), b € B, for any pure state w of D with pure state extersion
w. As it follows from the proof of the Proposition 4 in {6]), we have P{aU(g)) = 0
foralla € D,g € G\ {0}. By the universal property of the twisted crossed product,

cf.[9], there is a s-homomerphism « : D x G — B which is surjective because D
o,

and {U(g) : 9 € G} generate B and which is obviously injective on the canonical

image of D in D x G. Since G is abelian and therefore in particular amenable, we
o,u

can identity D x G with the corresponding reduced crossed product so that we have
o,u

a faithful conditional expectation P, : D x G — D, cf.[9]. From our observations on
o,U

the conditional expectation P : B — D i’é follows immediately that Por = 7o .
Using this identity the faithfulness of 7 on all of B follows from the faithfulness of Py
and the faithfulness of # on 1. [ |

Many of the important properties of B can be read off from the free action
G — Aut D described in Theorem 3.2. For example, by [9), there are bijective corre-
spondences between G-invarient ideals in D and ideals in B and between (F-invariant
states on J) and finite traces ou B. So B is simple if and only if the action of G cn the
pure statc space of [J is minimal, and B has a unique tracial state if and only if the
action only has one invariant state. It is easy to see that any pair of tracial states on
an inductive limit C*-algebra of the type we consider here must agree on projections.
Consequently such a C®-algebra is, provided it is simple, of real rank zero if and only
it it only has one tracial state by Theorem 1.3 of {2]. Thus such a B is of real rank

zero if and only if the action of & on D only has one invariant state.

It must also be remarked, that the abelian C*-subalgebra which can serve as D
in Theorem 2.2 is not unique. For example, in a given Bunce-Deddens algebra, the
process in the proof of Theorem 2.2 can be applied to many non-isomorphic abelian

C*-subalgebras.

We next turn to the case where X is zero.
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LemMma 2.3. Let ¢ : C(T)® M, — C(T) ® My, be a maximally homogeneous
x-homomorphism. Then ¢, = 0 on K; if and only if the realvalued characteristic

functions of v are l-periodic.

Proof. The generator of K1(C(T) ® M,) ~ Z is represented by the unitary
u(t) = diag (e, 1,1,....1), t € [0,1].

So ¥, = 0 on K, if and only if ¥(u) represents 0 in K1(C(T) ® My,). This happens if
and only if the loop ¢t — det (4(u)(t)) in T is homotopic to the constant loop. Since

det ¥(u)(t) = exp (2Wii G;(1)),
i=1

where {G1,G3,...,G = } are the realvalued characteristic functions of ¢, this happens

if and only if
=
D (G;(1) - G;(0)) = 0.
i=1

But from the proof of Lemma 1.7 we know that there is an integer z and a j € {0, 1,
2,...,%—1} such that

m
= m .
> (G5(1) = G5(0) = (= — i)z + iz +1).
=1
This expression is 0 if and only if ¢ = 0 and j = 0. This happens precisely if
Gi(1)=Gi(0) foralli =1,2,..., -—:;—l, cf. the proof of Lemma 1.7. [ |

LEMMA 2.4. Let ¢ : C(T)® M,, — C(T) @ My, be a maximally homogeneous *-
homomorphism such that ¥. = 0 on K. There is then a unital injection ¢; : C(T)®
®M,, — C[0,1]® M, and a unital x-homomorphism ¢, : C[0,1}® M, — C(T) ® M»
such that ¢ = ¢ 0 ¢;.

Proof. By Lemma 2.3, the characteristic realvalued functions of 1 are 1-periodic.
Therefore the characteristic permutation of ¥ is trivial and ¢ is inner equivalent to

the #-homomorphism

f—diag(fogi,fogs,...,fogm)

where g;(t) = exp (27iG;(t)), j = 1,2,..., 2 ,are the characteristic functions for ¢.
By identifying C(T) with the continuous l-periodic functions on R, we can thus
assume that

"/)(f)=diag(foGla.foGZ:”')foG'—:-))
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where Gy, Gs, ..., GG m are the realvalued characteristic functions of 3. Chocse p € N
so large that G;([0, 1]) C [—p, p] for 21l &. Under the present identification of C(T) we
can define an injection ¢, : C(T) ® M,, — C[—p, p] ® M,, by restriction. if we define
¢2 : Cl—p,p] ® My — C(T) & My, by

QZ(f) :diag(foGl,foGg,...,foG%),

then ¢ = ¢3 0¢;. The lemma follows by identifying C[—p, p] ® M,, with C[0, 1)® A,,.
|

THEOREM 2.5. Let B be the inductive limit of a sequence of circle algebras
with unital connecting x-homomorphisms. Then K:(B) = 0 if and only if B is
*-isomorphic to the inductive liinit of a sequence of interval algebras with unital
connecting *-homomorphisms, and in that case there is a unital abelian C*-subalgebra
A of B, a sequence {k;} C N and a free action « : dgél Z/kiZ —~ Aut A such that

o0
B~ Ax (Qﬁ 2/k52>.
Proof. Since an interval algebra has trivial K, the necessity of the condition is

clear. To prove that it is also suffcient, assume that
B B3B8 8B, 5.

is a sequence of circle algebras with B as inductive limit. Since A1(B) = 0 and
K, (B;) is singly generated, we can assume that ¢;. = § on K, for all i. By the result of
Ellictt, stated as Theorem 1.5 above, and using Theorem 2.1 of {4], we can furthermore
assume that each ¢; is maximally hormogeneous. But then an application of Letama
2.4 to each ¢;. gives that B is the inductive limit of a sequence of intcrval algebras
with unital connecting #-homomcrphisms. In fact, by construction the connecting
*-homomorphisms can be choosen to be standard in the sense of [8], so the statement
regarding the crossed product decomposition of B follows from Theorem 2.3 of [8].8

By [4] the only C*-algebras of real rank zero to which Theorem 2.5 applies are
the UHF algebras. It is therefore appropiate to show that the result has less trivial
applications, also to simple C*-algzbras.

ExaMPLE 2.6 In this example ,we exhibit some simple C*-algebras to whick The-
orem 2.5 applies, but which are not subsumed under the classification result of Elliott
4]. Let fn :[0,1] - [0,1],n = 1,2,3,..., be an arbitrary sequence of continuous

cC
maps, let ¢y, ¢, ¢3,... be a sequence in N such that Z ¢} < 0o and let 1,92, 93, - - -

n=1
be a dense sequence in [0,1]. Define m, &€ N inductively by my = 1,mp4; = n(en+
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+2)m,,, n > 1. We can then define a »-homomorphism ¢, : C[0,1]® Mp,, — C[0, 1}®
®Mm,,,, for each n > 1, as the standard homomorphism, in the sense of [8], Defini-
tion 1.11, given by the function f, repeated nc, times, the function ¢t — ¢ repeated
n times and the constant function ¢ — g, repeated n times. Then the resulting
inductive limit C*-algebra A has the following properties:

(i) A is simple.

(i) Ko(A) = Q; the scale being @ N[0, 11.

(iii) The space of extremal tracial states of A is homeomorphic, in the weak*

topology, to the inverse limit space X of the sequence
0, 1140, 110,12 [0,1] - -

(i) and (ii) are easily verified. To indicate how to prove (iii), let B be the inductive
limit C*-algebra of the sequence ¥, : C[0,1] ® My, — C[0,1] ® My,,,,,, where ¥, is

the standard homomorphism corresponding to the function f, repeated n(c, + 2)
(=<}

times. It is then easy to use the assumption Z ¢;! < oo to prove that the tracial

state spaces of A and B are homeomorphic. 'ﬁ—ult B ~ C(X) ® D, where D is the
universal UHF-algebra, so it is clear that the space of extremal tracial states on B is
as described under (iii).

It follows that the above construction gives us at least as many mutually non-
isomorphic simple C*-algebras with the same K-theory as there are homeomorphism
classes of inverse limit spaces of intervals. By [2] A is of real rank zero if and only if
X is a point, in which case it is the universal UHF-algebra, [4].
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