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TOEPLITZ OPERATORS ON DISCRETE GROUPS

MARCO PAVONE

1. INTRODUCTION

In this paper we present a generalization of the notion of Toeplitz operator and
Toeplitz algebra to arbitrary discrete groups, study the properties of the generalized
Toeplitz operators and discuss the extent to which they parallel the properties of
classical Toeplitz operators.

Toeplitz operators and Toeplitz algebras represent an important area of modern
mathematics. The theory of such operators has been looked at from many different
perspectives, giving rise, over the years, to various extensions of the original notions
to more general settings.

A Toeplitz operator T} is defined as the compression to H2(T) C £L%(T) of the
multiplication operator on £2(T) by a bounded measurable function f on the unit
circle T. The Toeplitz algebra 7 = T(Z) is the C*-algebra generated by all Toeplitz
operators Ty, f € C(T).

Equivalently, in the Fourier transform space, Toeplitz operators are obtained by
compressing to £2(N) the group von Neumann algebra of Z, and 7 is the C*-algebra
generated by the compression to £2(N) of the reduced C*-algebra of Z. On the other
hand, 7 is also the C*-algebra (up to *-isomorphisms) generated by a nonunitary
isometry [5].

Various authors have generalized the latter point of view, and have studied C”-
-algebras generated by a nonunitary semigroup of isometries [9], [16], C*-algebras gen-
erated by a commuting family of subnormal operators [2], and C*-algebras generated
by unilateral weighted shifts [20].

Taking another point of view, 7 is an extension of K(£2(N)) by C(T) [5]). This
raised the problem of determining all the extensions of the compact operators on a
separable infinite-dimensional Hilbert space by C(T), and, more generally, the exten-
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sion problem for C*-algebras (see chapter 7 in [11]).

In the previous kinds of generaiization of the notion of Toeplitz operator, the
algebra structure is paramount, apd the Hilbert space on which the operators act
in largely disregarded. Converscly, one canm emphasize the choice of the underlying
Hilbert space, and obtain generalizations by extending the notion of the Hardy space
I*(T). One finds, for example, Fardy spaccs defined fer a half-line, for finitely
connected regions of the plane with analytic boundary, and, more generally, {or regions
in C*. We refer to [10] and {11] for a bibliography on the vast literature on this kind
of generalization,
sibility is to regard Z as the dual group of T, and N as a semigroup

Another p
of Z. 'To generalize this approach, one cousiders an abelian locally compact group 6,

fixes a subsainigroup & of ¢, and defines the “Hardy space” H? to be the space of

all £2-functions on (7 whese Panchorel-Fourier transforms are supported on U {8l
As a speeial case, one can consider o compact abelian group G sach that G is a
) & o

pastially ordered group, and chouse & as the positive cone of G ({16], 17}, (18], [19)).
As one may cxpoet, the Toonlita algebre T7(G) is defined as the C*-algebra generated
by the compression to H? of the multiplication algebra of C(G). Equivalently, since
in this case (U is diserete, 77(€)) can be defined as the C-algebra generated by the
compression to £2(5) of ‘o reduced C*-algebra of G. If the order on G is toial,
then 77(C) is characterized by the mpiversal property of being isomorphic to any -
-algebra gencrated by o nonunitary sewaigrovy of isometries F : (GYF > B(H). Ia
this context, umech of the cassical Toeplits theory can be extended, because of the
richness of hormonic analysis on compact groups.

Our approach is to lock at N as a subset of Z with the property that all of its
translates, by the action of Z, 1ave the same “boundary at infinity”. In general,
for any infinite discrete group ¢, we consider all the infinite subsets of G with the
property that they coincide, up to finite sets, with all of their translates by the action
of G by left multiplication. We will call these sets almosi invariant (in G).

The paper is organized as follows. In Section 2 we point cut some of the significant
properties of almost invariant sets, and give some examples. In Section 3, given any
almost invariant set S, we define generalized Toeplitz operators by compressing to
the “Hardy space” £2(S) the operators in W*(G), the group von Neumann algebra of
(7. In Section 4 we study thc properties of such operators, and find that several basic
results for classical Toeplits operators ({14], [1], [4]) extend to the general setting.
The main results in this section are:

(1) the spectral inclusion theorem extends to discrete groups.

(ii) the cempression map from W*{G) into B2{S)) is isometric.

(iii) generalized Toeplitz ovecators can be characterized in terms of Teeplits
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matrices.

(iv) generalized Toeplitz operators are extremally noncompact.

In Section 5 we define a generalized Toeplitz algebra 7(G), and show that T(G)
is an extension of K(¢2(S)) by C;(G). For a class of groups which contains all torsion-
-free groups, we prove that 7(G) is the C*-algebra generated by the compression to
£3(S) of the reduced C*-algebra of G (as long as S # G). Under more restrictive
conditions, we are also able to describe the commutator ideal of 7(G). In Section 6
we generalize the notion of analytic Toeplitz operator, and extend Wintner’s theorem
on the spectra of analytic Toeplitz operators.

Related results can be found in earlier generalizations of the notion of Toeplitz
operator (see e.g. [3] and [16]). We believe, however, that ours are the first such
results in a non-commutative context and in such a great generality.

In Section 7 we conclude our study of Toeplitz operators by examining several
properties of classical Toeplitz operators which do not extend, in general, tc the setting
of almost invariant sets. This limitation in our generalization is unavoidable for those
parts of the classical theory which rest in an essential way on the commutativity
of Z or on the semigroup property of N (see also [22]), or or the fact that Z has a
connected dual (cf. [17] and [19]). On the other hand, the success of our generalization
in Sections 4, 5 and 6 shows us clearly that a large portion of the classical Teeplitz
theory depends entirely on the fact that N is almost invariant in Z.

2. ALMOST INVARIANT SETS

Let G be an infinite (discrete) group. We want to define a class of subsets of G,
which, roughly speaking, determines the possible “points at infinity” of G. For G = Z,
the two natural directions +oc0 and ~oco are related in an obvious way to the classes
of subsets of Z which differ from N and Z \ N, respectively, by a finite set. Moreover,
any such subset has the property that it changes only by a finite set when translated
by an element of Z. With this motivation in mind, one realizes what should be the
natural generalization to an arbitrary group G.

DEFINITION. Let G be an infinite group. We say that S C G is an almost
invariant (a.i.) set in G if S\ ¢S is finite (Vg € G).

Note that
S\ ghS C(S\gS)Ug(S\hS)

for all g,k in G. Hence, if H is a generating set for G, then S is a.i. in G if and only
if S\ hS and S\ h~1S are finite sets for all h in H.
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In particular, if G is finitely generated, this gives a useful way of checking whether
a given subset of G is almost invariant.

Also, note that any infinite aliost invariant set S generates G. In fact, G =
= {st7!;5,t € S}. Indeed, if g € G, then SNg~18 = S\ (S\ g~'S) is nonempty.
Hence t = g~ 1s, for some s,% € S, and thus g = st~1.

Another important property, which we will tacitly use throughout the rest of the
paper, is that S\ F is almos$ invariant whenever § is a.i. and ¥ € G is finite.

For other properties of a.1. sats, and their relation with the space of “directiors
to infinity” in G, we refer the reader to [217 with no further comments.

For finitely generated groups, almost invariant sets are quite easy to describe. In
fact, given any finite generating set / for G, any a.i. set can be described geometri-
cally in terms of the Cayley graph of G with respect to H {21, Theorem 2.1.8]. Herc
we will not repeat the gencreal resuls, but simply give a description of a.d. sets for
some specific examples.

We also recall that any finitely generated group (& falis into one of the three
following categories:

(i) the only a.d. sets in G are the finite sets and their complements.
(ii) There exists an infinite set S C , with infinite complement, such that, up to

finite sets, G, @, S and G\ S are the only a.i. sets in G.

(iii) There exists a sequence {Sy }55; of a.i. subsets of (7 such that S, AS,,; is infinite

for all n # m, and any a.i. set § differs from S,, by a finite set for some n.

The first class of groups contains such groups as Z® {n > 2), the triangle groups

T(p,q,7) -}- + -1- + % < 1), the Heisenberg group, the group of dyadic rationals and

all discrete groups with Kazhdan’s property T. The second class consists of all groups
which are finite extensions of Z. The third class, which is the most interesting one for
our purposes, consists of certain amalgamated free products and H NN extensions of
groups, according to Stallings’s characterization [26, 5.A.9).

In the latter class, a.i. sets can be easily described algebraically, by means of
the normal form of the elements of G. The basic example is the free group on two
generators Fo. If a, b are the canonical generators of Fa, then any nontrivial element
# in Fy can be written uniquely as a reduced word in a,b,a1,b~!. For any nontrivial
x ¢ Fq, we let S; denote the set of all nontrivial elements of F2 whose reduced words
end in z. If S is an infinite almost invariant set in Fg, then there exist nontrivial
Z3,..., %, in Fg and a finite set F C Fy such that

(2.1) §$=FUS;,U...US,,

121, 2.1.8]. Similar descriptions can be given for such groups‘ as SL(2,7), PSL(2,Z)
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and gZ/QZ) *o ek (Z/2Zl (n 2> 3).

—

n times
In the case of groups which are not finitely generated, it is hard to find a general

algebraic or geometric characterization of a.i. sets. It seems to us that any such
characterization would not be more revealing or helpful than the definition itself.
Let us consider, for example, the free group Fo, with countably many generators
a1,as,0as,.... For any nontrivial £ in F, the set S, defined as above is almost
invariant. More generally, one can construct fairly complicated a.i. sets, as shown for

example by the a.i. set S defined by

o) n-1
S ={an}32, U | (s.,a ulJ (sa,.a” USa,.—xa,.)) .
n=1

=1

Note that S cannot be expressed as in (2.1) for some finite F C F,, and some
Z1,...,25 € Foo. ‘

More pathological situations can occur in F,. Indeed, one can construct an
infinite a.i. set S with the property that S does not contain any set S;, * € Fo. In
fact, & \ S is infinite for all .

Our final example is an infinitely generated abelian group. Let

>}
G=EP2/2Z={(no,n1,...,n,,0,...,0,..5;r €N, n; €Z/2Z, 0K i < 7}
=0
For all i € N, we define ¢; as the element {n;}§2, of G with n; =1 and n; =0
for j # ¢. For any positive integer n, let

2n-1
Sp = {ez,. + ean41 + Z Aigi ;5 A 6{0,1}, 0<i<2n—1}.

=0

o .
Then the set S = |J S, is an infinite almost invariant set in G, with infinite
n=1
complement.

3. PRELIMINARIES

If H is a Hilbert space, then we let B(¥), K(H) and (B/K)(H) denote respec-
tively the algebra of all bounded linear operators on H with the usual operator norm,
the ideal of all compact operators on H, and their quotient algebra (i.e. the Calkin
algebra of H). For any T in B(H),[T] will denote the equivalence class of T in
(B/K)(H).
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An operator T € B(H) is called a Fredholm operator if [T} is invertible in
(B/K)(H), or, equivalently, if T has closed range and finite-dimensional null and
defect spaces. For any Fredholm operator T, the integer dim ker T — dim R(T")! is
called the index of T" and shall be denoted by Ind(T’).

If A is a C*-algebra, we let K{A) denote its commutator ideal, i.e. the closed
two-sided ideal generated by all commutators [a,b] = ab — ba (a,b € A).

Let G be a discrete group, denoted multiplicatively and with identity element e.
We shall denote by ¢2(G) the Hilbert space of all square-summable complex-valued
functions on G, and shall denote by {é,;9 € G} its canonical orthonormal basis. For
every g in G we denote by L; and R, the unitary operators on £2(G) defined by

Lg(5h) = bgh

Rg(&h) = 6hg-n

for all k in G.

The von Neumann algebra generated by {L;;9 € G} is called the group von
Neumann algebra of G and is denoted by W*(G). The C*-algebra generated by
{L;; 9 € G} is called the reduced C*-algebra of G and is denoted by C;(G). It is a
well known fact that W*(G) is the commutant of the set {R,; g € G}.

For any S C G, we identify £2(S) in the ocbvious way with a closed linear subspace
of £2(G), and denote by Ps the orthogonal projection from £2(G) onto £2(S). If S is
an infinite almost invariant set in G, and T' € W*(G), we define the compression (5
of T' to £2(S) by letting

T(S) = PsT|E3(S).

We will refer to T(5) as a Toeplitz operator, and call T' the symbol of T(5), We
also define generalized “unilateral shifts” T, g € G, by letting
Ty = PsLyle*(S) (g €G).
Finally, we define a map & : C*(G) — (B/K)(£2(S)) by letting

#(T) = [T9)] (T € C}(G)).

Note that for G = Z and S = N the operators T are simply all powers of the
unilateral shift and of its adjoint. In this setting, the operators T(5), T € C;(G), are
precisely the Toeplitz operators with continuous symbols.

We refer the reader to [10] for an account of the classical theory of Toeplitz
operators.
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4. GENERALIZED TOEPLITZ OPERATORS

Throughout the rest of the paper, G will denote a countably infinite discrete
group, and S will be an infinite almost invariant set in G.

We begin our study of Toeplitz operators by considering some basic properties
of the mapping T+ T(5), T € W*(G). In the classical theory, the first systematic
study of Toeplitz operators, emphasizing the mapping f — Ty, f € £L*°(T), was made
by Brown and Halmos in [1], built on some earlier work of Hartman and Wintner [14],
who had proved the spectral inclusion theorem.

LEMMA 4.1. Let G be a countably infinite group, let S = {s(n)}3%, be an infinite
almost invariant set in G, and let I be the identity of the algebra B(£2(G)). Then

R,(,,)PSR:(”) — I strongly as n — oo.

Proof. Let F be a finite subset of G. Then there exists a positive integer ng such
that
Fs(n)CS (Vn 2 ng).

Indeed, if F = {z1,...,2mm}, then
{seS;FscS}y=5nz'Sn...nz,;'S=

= S\((S\27'9U...U(S\2519))

is the complement of a finite set in S.

Let f be a function in £2(G) supported on F, and let ng be as above. Then
Rin)f is supported on Fs(n) C S (n 2 no), a.m‘i thus PsR; .\ f = R:(n)f for all®
n 2 ng. Therefore

Rym)PsRyyf = f  (Vn 2 no),

from which the conclysion follows immediately. [ ]

If E is a subset of C, we let hull(E) denote the closed convex hull of E. If T is a
bounded linear operator on a Hilbert space H, we let ¢(T'), 0¢(T), 0ap(T) and W(T')
denote the spectrum, the essential spectrum, the approximate point spectrum and

the numerical range of T, respectively.

THEOREM 4.2. Let G be a countably infinite discrete group, and let S be an
infinite almost invariant set in G. Then
(}) The “symbol map” T+ T(5) is an isometric *-linear mapping from W*(G)
into B(£2(S)).
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(ii) (spectral inclusion) For all T in W*(G),
o(T) C o(T®)) and 04p(T) C ap(TS).

_ For all T in C}(G),
o(T) = ao(T™).

For all normal T in W*(G),

o(T®)) C hull(a(T)) = W(T) = W(T®).

(iii) T¢5) > 0 if and only if T' > 0.

Proof. (i) It is straightforward that T + T(5) is a *-linear mapping. Let T €
€ W*(G). In particular, T commutes with R, for all g in G. If § = {s(n)}%,,, then
Ry(n)PsT Ps Ry(ny = (Ro(n)Ps Ry(n)) T(Rs(n)Ps Ry(ny) = T

strongly as n — co, by Lemma 4.1. Hence

ITI| S Jim || ooy PsTPs Riguyll = IIPSTPs]| = T,

Since obviously ||T(9)|| < ||T|l, we have [|[T))] = ||T}.

(ii) It follows from the proof of Lemma 4.1 that for any finitely-supported function
f € £*(G) there exists s in S such that R!f is supported on S (this property is the
non-commutative version of the lemma in (3, Section 2] and of Lemma 3.1 in [16]).

Equivalently, if we let
V = {R,z;s € S, z € £4(S)},

then V is dense in £2(G).
Let T € W*(G), and suppose that, for some ¢ > 0,

IT®z]| 2 cllzl] (V= € £(S)).

Then for any s in S, and any z in €2(S), we have (in what follows, all norms are
taken in £2(G))
ITRsz|| = |R,T2|| = ||Tz|| >

2 ||PsTz|| 2 cljz|| = ¢l|Rszl-

Hence ||Ty|| > elly|| for all y in £2(G), since V is dense in £2(G). It follows that
oap(T) C o'aP(T(S))'
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If T(5) is invertible, then T is invertible. Indeed, T¢5) is bounded below, and so
is T by the argument above. Similarly, 7* is bounded below, since (T*)(5) = (T(5))*
is also invertible, and thus T is invertible (see e.g. [10, 4.9]). Hence o(T) C o(T(%))
for all T in W*(G).

We will show in Theorem 5.3 that the map @ is a one-to-one *-homomorphism
on C}{(G). In particular, o(T) = ao(T) for T € C*(G).

Finally, let T be a normal operator in W*(G), and let A = C*(T',I). Then
N + NG5 is an isometric *-linear mapping from the abelian C*-algebra A into
B(£2(9)), and thus o(T¢5)) C hull(a(T)) (see e.g. [10, exercise 7.1, p. 203]).

Since T is normal, we have hull(o(T)) = W(T). If z € £2(S), then (TS)z,z) =
= (Tz, z); this proves that W(T(®)) C W(T), and hence W(T(5)) C W(T). For the
reverse inclusion, note that W(T(5)) includes o(T(5)), and therefore it includes o(T).
Since W(T() is convex, it follows that W(7T) = hull(e(T)) C W(T®)).

(i) If T > 0 in W*(G), then T(5) > 0, as (T®)z, z) = (T2, z) for all z in £2(S).
Conversely, if T(5) > 0, then PsT P is a positive operator in B(£3(G)). Hence T > 0,
since T is the strong limit of the sequence R,(,,)PSTPSR:(").

This completes the proof, which was inspired by the arguments in [1, Theorem
5], [3, Theorem 1] and [10, 7.6]. [ ]

A consequence of the previous theorem is that a Toeplitz operator with a normal
symbol and a real spectrum must be self-adjoint, because if the spectrum of T(5) is
real, then the same is true of T, and so T is self-adjoint.

We now want to give an intrinsic characterization of Toeplitz operators on £2(S).
A standard basic fact about classical Toeplitz operators is that an operator A €
€ B(£*(N)) is a Toeplitz operator if and only if the matrix {a;;}: >0 canonically
associated with A is a Toeplitz matrix, that is, a; j = @4 j+& [1, Theorem 4]. In
fact, for some authors, this is a definition.

In our setting, if SC G, T € W*(G), z,y€ S, g € G, and zg,yg € S, then

(T(S)éy’ 6z) = (Tby,8z) = (RyTRyby, 65) = (Tyq,6z9) = (T byg, 8zq)-

This motivates the definition of a Toeplitz matrix as a matrix {a; y}zyes such
that

Czy = Qzg,yg
forallz,y€ S, g € G, with zg,yg € S.

THEOREM 4.3. Let G be a countably infinite group, and let S be an infinite almost
invariant set in G. A necessary and sufficient condition that a bounded operator A
on £2(S) be a Toeplitz operator is that the matrix associated with A, with respect to
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the orthonormal basis {6,;s € S}, be a Toeplitz matrix. Moreover, if A is a Toeplitz
operator, then there exists a unique operator T € W*(G) such that A = T(5),

Proof. The proof of necessity was given in the remarks preceding the statement of
the theorem. The proof of sufficiency will be modeled after the proof in {1, Theorem 4].

Let A be a bounded operator on £2(S), such that the matrix {(A6y,6:)}z yes is
a Toeplitz matrix. Let S = {s(n)}3%,, and consider, for each positive integer n, the
bounded operator on £2(G) defined by

An = Ry(nyAPsR}yy.
Let z,y € G, and let ng € N be such that
zs(n),ys(n) € S (VYn 2= ny).
Then {(Abys(n), 0zs(n)) }n3n, is & constant sequence, and thus
(4.1) (Anby,62) = (APsbys(ny, bzs(n)) = (Abys(n); zs(n))

is independent of n for all n > ny. Therefore, if f, g are finitely supported functions
in £2(G), then the sequence {{A,f,g)}S%; is convergent.

Since ||An|| < ||A|l, it follows by standard arguments that the sequence {A,}3%,
is weakly convergent to an operator T € B(£2(G)) (see e.g. [13]). By (4.1),

(4.2) (Téy, b2) = Nim (Abys(n); 8zs(n))

for all z,y in G (in particular, T is uniquely determined by A).
Fix z,y,g in G. Since S is almost invariant in G,

(4.3) (VN € N)EM € N)(Vm > M) gs(m) C {s(n)};ln-
Hence, by (4.2) and (4.3),
(RyTRyby, b:) = (Téyg, baq) = "}i_{‘go(A‘sygS(M)’ézyo(M)) =

= nl‘i_.nolo(A&ys(n)) 61:3(15)) = (Téy: 61:)

Therefore R,T = TR, for all g in G, and thus T' € W*(G). Using (4.2) again,
we get that A = T(5), and so A is a Toeplitz operator.
A similar argument shows that if T}, T € W*{G) and T = T8, then

(Ti6,,8.) = {T56,,65) for all z,yin G,
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and thus 71 = 7. B

Theorem 4.3 shows that for every bounded Toeplitz matrix A there exists a
unique T' € W*(G) such that T(5) = A. The matrix {{(T'6y,6:)}zyec canonically
associated with T can be recaptured from the matrix A by (4.2).

We also showed that T is the weak limit of the sequence A, = R,(W)APSR;(").
But APs = PsTPg, and so it follows from the proof of Theorem 4.2 that the weak
convergence of A, to T is, in fact, strong convergence.

Our next result establishes that there exist no nonzero compact Toeplitz opera-
tors (cf. [1, p. 94]).

PROPOSITION 4.4. Let G be a countably infinite discrete group, and let S be an

infinite almost invariant set in G. Then, for T in W*(G),

T € K(£4(S)) & T = 0.

Proof. Let S = {s(n)}2%,, and let T' € W*(G) be such that T(5) is compact. Fix
z,y in G, and let ng € N be such that zs(n), ys(n) € S for all n 2> ng. In particular,
the sequence {8ys(n)}n3n, converges weakly to 0 in £2(S), and thus 1 T8y myll — O

as n -- oo. Therefore
(T6y,65) = lim (T(s)‘sya(n)"sw(ﬂ)) =0
n—00
(see (4.2) in the proof of Theorem 4.3). It follows that (T'6,,6z) = 0 for all z,y in G,

and hence T = 0. ]
Following Coburn [4], we say that a bounded linear operator A on a Hilbert space
H is extremally noncompact if

lA+ K|l 2 llAll (VK € K(H)).

Coburn showed that Toeplitz operators are extremally noncompact 4, 4.2]. We
will now extend this result to arbitrary discrete groups, incidentally obtaining an
alternative way of proving the foregoing proposition.

PROPOSITION 4.5. Let G be a countably infinite discrete group, and let S be an
infinite almost invariant set in G. Then

TS + K| > |ITO)| (VT € W*(G)), (VK € K(£4(S))).

In particular, the map T + [T(5)] is an isometric *-linear map from W*(G) into

(B/K)(£(S)).
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Proof. Choose T € W*(G), K € K(¢€*(S)) and € > 0. Let S = {s(n)},, and
let Py, (m > 0) be orthogonal projection from £2(S) onto 8pan{fs(n);1 < n < m}.
‘Then K Py, — K in operator norm as ra — co. Therefore there exist K’ in K(£2(S))
-and a finite set F C S such that

Ir‘: a4 E
K - K'|| < 5

and, if welet ' =S\ F,
K'f=0 (Vfe(S)).

Now $' is an infinite almost invariant set in G, so |[TC)|| = |T|| = |7 by
Theorem 4.2. Hence there exists f € £2(S’) such that

($) ¢ S &
IS5 > (1) - 2) 1l
Therefore

1T + KOS > T + Kl = Sl = 1T - 5171 =

= IPsTAI = SIA1 > IPsTHI = Sifl = 1TSS = IR > ATl - )l

Hence ||T(5) + K| 2 ”T(S)”, since ¢ > O was arbitrary. The final statement of
the proposition now follows from part (i) of Theorem 4.2. [ |

5. TOEPLITZ OPERATORS WITH SYMBOLS IN C}(G) AND TOEPLITZ ALGEBRAS

What might be called the algebra approach to Toeplitz theory emphasizes the
view that Toeplitz operators are studied as elements of certain algebras of operators,
called Toeplitz algebras.

In this section we will generalize the notion of Toeplitz algebra and extend the
relevant theorems of this part of Toeplitz theory to our setting.

The basic theorems about the classical Toeplitz algebra T(Z) are contained in
Coburn’s papers [5], [6]. The main result is that 7(Z) contains the full algebra of
compact operators K and that 7(Z)/K is #-isomorphic to C(T), the algebra of all
complex-valued continuous function on the unit circle T.

In our context, we will define a C*-algebra 7(G) which contains K(£2(S)), and
show that T(G)/K(£2(S)) is #-isomorphic to C}(G). Under certain additional as-
sumptions, we will show that T(G) is the C*-subalgebra of B(£2(S)) generated by
all Tocplitz operators T(5), T' € C3(G), thereby generalizing the classical case com-

pletely.
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We first prove a preliminary result which is interesting in its own right, as it gives
an operator-theoretic characterization of almost invariant sets.
For any S C G, we will denote the cardinality of S by [S].

PROPOSITION 5.1. Let G be a discrete group, and S be a subset of G. Then the

following conditions are equivalent:

(i) S is an almost invariant set in G.

(i) TPs — PsT € K(£%(G)) (VT € C:(G)).
(iii) & : C}(G) — (B/K)(¢%(S)) is a unital *-homomorphism.
(iv) The map g v [T,] from G into (B/K)(¢£2(S)) is multiplicative.

(v) [T,] is a unitary element in (B/K)(¢2(S)) for all g in G.
(vi) T, is a Fredholm operator for all g in G.

Moreover, if the conditions above are satisfied, then

Ind(Ty) = |S\ g7'S| - |S \ gS| = Trace([Ty, Ty-1]) (Vg € G).

Proof. We will show that (vi)=>(i)=>(il)=>(iii)=>(iv)=>(v)=>(vi).
(vi)=>(i): Choose g in G. Then

S, ifhe(SNg-1S)
T,(6) = 7
o(8) {o ifhe(S\g~'9)

Therefore Ty is a partial isometry with initial space 22(SNg~18), and final space
£2(SNgS). Hence

ker(Ty) = £(S\ g715), R(T,)* = £(S\ ¢5).

For any Z C S, let I denote the identity operator on £%(S), and let Pz denote
the orthogonal projection from £2(S) onto £2(Z). Then, for all g in G,
[Ty, Ty-1] = Psngs — Psng-15 =
=1 — Pgng-15 — (I = Psnys) = Ps\g-15 = Ps\ys.
The desired implication is now immediate, as well as the formula for the index.
(i)=+(ii): Since PsLy = LyPy-1g, then

L_qps - PSLg = Lg(Ps - Pg—xs) = Lg(Ps\g—ls - Pg-ls\s).

Hence Ly, Ps — PsL, is compact if S is almost invariant, so that (i)=>(ii) follows

by a standard density argument.
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(ii)=>(ii1): If (ii) holds, then it is immediate that & is a *-homomorphism, since
H(T)H(T') = [PsTI(SNPsT'1*(S)] = [PsTPsT'|€(S)} =

= [PsTT’ Ps|63(S)] = [PsTT’|€%(S)] = &(TT'),

for all T,T" in C}(G).
(iii)=>(iv): If @ is a homomorphism, then

[Th][Tg] = Q(Lh)di(l'g) = O(LaLg) = Q(L;.g) = [Thy]

for all h,g in G.
(iv)=>(v): If g — [T,) is multiplicative, then

[TQE‘[T;?] = [Tg-l][Tyﬁ = [Tl =[1]

for all g in G, and similarly [T,}[T,]* = {I], that is, [T}] is unitary (Vg € G).
(v)=>(vi): If [T,] is unitary, then it is invertible in (B/K)(¢2(5)), so T, is a Fredholm
operator.

This completes the proof. [ ]

REMARK. The same proof as above shows that
[PsTIE(S)[PsT'[€%(S)] = [PsTT'|€4(S)]

(VT € C;(G)), (VT € W*(G)). This generalizes the fact that Ty Ty, — T}y is compact
(Vf € C(T)), (V¢ € L=(T)) (cf. [10, 7.22]). However, the obvious extension of & to
W*(G) is not necessarily a homomorphism. In the classical case, this amounts to the
fact that T;Ty, — Ty, is not compact for a suitable choice of f, 9 in L®(T) (cf. [11,
Theorem 7] and [25)).

COROLLARY 5.2. Let G be a finitely generated group, and let S be an a.i. set
in G. If G is generated by gi,...,gn, then the set {Ind(Ty);g € G} is completely
determined by the n-tuple

(Ind(T,), - .., Ind(Ty,)).

Proof. For all g in G, Ind(T)-:) = Ind(T}) = ~Ind(T;). Moreover, [Ty,) =
= [T,Th] (Vg,h € G) by Proposision 5.1. Now we simply use the fact that the

Fredholm index is multiplicative, and invariant under compact perturbations. ]

DEFINITIONS. In analogy with the classical case G = Z, § = N, we define
T7(G), the reduced Toeplitz algebra of G with respect to the a.i. set S, to be the
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C*-subalgebra of B(¢2(S)) generated by the operators Ty, g € G (or, equivalently,
generated by all operators 7¢5), T € C*(G)). Moreover, we define 7(G), the Toeplitz
algebra of G with respect to S, to be the C*-subaigebra of B(¢£2(S)) defined by

T(G) = {T € B(¢*(S));[T] € #(C}(G))}-
It is clear that 77(G) C 7(G) = T7(G) + K(¢%(S)), and that
T7(G) = T(G) & K(£%(8)) S T"(G)

(this is the case for the classical Toeplitz algebra).

We will show that 77(G) = T(G) for 2 class of groups containing all torsion-free
groups, as long as S # G (Theorem 5.7).

If A is a separable unital C*-algebra, by an extension of A we mean a unital

one-to-one *-homomorphism
o:A— (B/K)H)
from A into the Calkin algebra of a separable infinite-dimensional Hilbert space M.

THEOREM 5.3. Let G be a countably infinite discrete group, and let S be an
infinite almost invariant set in G. Then & : C(G) — (B/K)(£2(S)) is a unital one-
-to-one *-homomorphism.

In particular, & is an extension of C;(G), and there exists a *~-homomorphism
p: T(G) — C:(G), with continuous cross section T — T(5), such that

0 — K(£(8)) = T(G) > C}(G) — 0

is a short exact sequence of C*-algebras. If A is a C*-algebra, then the sequence of

spatial tensor products
0—K(2(S) @A TG A’E CH(G)®A— 0
is short exact.

Proof. By Proposition 5.1, @ is a unital *-homomorphism, and by Proposition
4.4, @ is one-to-one. Therefore C*(G) ~ &(C;(G)) =~ T(G)/K(¢%(S)), by definition
of T(G). As the map T — T(5) is completely positive, it extends to a bounded map
from C}(G) ® A to T(G) ® A for every C*-algebra A. Then the proof of the final
statement is the same as that of Proposition 2 in [7]. [ |

COROLLARY 5.4. Let S be an infinite almost invariant set in G. Then for any A
in T(G) there exist unique T € C}{G), K € K(¢2(S)) such that

A=T® 1+ K.
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In particular, the class of Fredholm operators in T(G) consists of all operators
of the form T(S) 4 K, with T invertible in C(G).

By the previous corollary all operators T¢5), with T invertible in C}(G), are
Fredholm Toeplitz operators in 77(5). Moreover, if $ # G, then 77(G) contains
non-invertible Fredholm Toeplitz operators, as in the classical theory. Indeed, let ¢
be any element of G such that S\ g~1S #@; then T, is a Fredholm Toeplitz operator
with nontrivial kernel £2(S\ g=*S).

This is different from the situation that presents itself in some other generalized
Toeplitz theories, where the ordinary Fredholm theory does not help in understanding
any near-invertibility of Toeplits operators. Indeed, in the case of Toeplitz operators
on the torus ([12], Corollary 2) or on non-cyclic ordered subgroups of the reals [18],
a Toeplitz operator with never-vanishing continuous symbol is Fredholm if and orly
if it is invertible.

COROLLARY 5.5. If S is an infinite almost invariant set in G, then the map
g [Ta]

is a faithful unitary representation of G on the Calkin algebra of £2(S).

Proof. The result follows immediately from Theorem 5.3, together with condi-
tions (iv), (v) of Proposition 5.1. .

In the classical case, this gives the well-known isomorphism Z ~ A/ Ag, where A is
the group of invertible elements in (8/K)(£2(N)), and 4 is the connected component
of A containing [I].

The commutator ideal of the classical Toeplitz algebra on £2(N) coincides with
the algebra of compact operators on £2(N) (cf. [10, 7.23]. The result is implicit in
{5],{6]). This cannot be generalized to arbitrary discrete groups, as shown by the

following result.

PROPOSITION 5.6. Let G be a countably infinite discrete group, and let S be an
infinite almost invariant set in G. Then K(T7(G)) € K(£2(S)) if and only if G is
abelian. In fact, [T,, T is compact if and only if gk = hg.

Proof. By Corollary 5.5, [T,,T}) is compact (g, h € G) & [T,)[Th] = [Tn)[T] &
<> [Ton] = [Thy] < gh = hg. In particular, if K(77(G)) C K(£%(S)), then G is
abelian.

Conversely, let G be abelian. Then [Ty, T} is compact for all g,k in G. Now
[AB,C] = A[B,C] + [A,C]B for 3ll A,B,C in B(¢?(S)), so one can easily see by
induetion that [S, T is compact for all S, T which are linear combinations of products
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T Ty .- Ty, (91,...,9n € G). But such linear combinations are dense in 77(G)
(since T; = Ty-: for all g), so [S,7] is compact for all $,T in T"(G). Hence
K(TT(@)) C K(€2(9)). ]

THEOREM 5.7. Let G be a countably infinite discrete group, and let S be an infi-
nite almost invariant proper subset of G. Suppose that G has no nontrivial elements
of order < n, where n is the smallest of all |S\ g7 'S|, g€ G, S\ g7 'S # @. Then

K((8) € K(T7(G)) S T'(G).

In particular, K(T"(G)) and T7(G) are irreducible on ¢2(S), T(G) = T7(G),
and one has a short exact sequence

0 — K{(S)) — T7(G) — CX(G) — 0.

If C}(G) is simple, then K(T7{(G)) = T7(G). If G is abelian, then K(T"(G)) =
= K{£3(S)).

Proof. Choose g in G so that |SY ¢g~'S| == n, and let Y = S\ g~!S. For any
subset F of S, let us denote by Pr the orthogonal projection from £2(S) onto £2(F).
Thern '

Te = Ty-1Ty = Ps — Pgng-15 = Py,

so Py- is a nonzero finite-dimensional projection in 7" (G). We will show that K(¢2(5))
is the (closed two-sided) ideal generated by Py in T"(G).

We claim that 77(G) contains a one-dimensional projection. If |Y| = 1, then
there is nothing to prove, so we may and will assume that |Y| > 2. For any subset
X CY, with | X| > 2, there exists h in G such that X N h~1X is a nonempty proper
subset of X. Indeed, if X = {z1,...,2m} C Y, m > 2, choose h = ;;23;1‘1; then
hzy = x5, and so X NA~1X # @. Also, X Nh~'X # X, since otherwise h"z, = z;
for some 2 < r < m < n, that is, A" =e.

Now choose any h in G such that Y Nh~Y = {t € Y;ht € Y} is a nonempty
proper subset of Y. We have

Th-: PyTh Py = Pynp-1y,

$0 Pynp-1y is a nonzero finite-rank projection in 77(G), with range £2(Y N h~1Y)
properly contained in £2(Y). If [Y NA~1Y| > 2, then we let X = Y Nh~1Y, we choose
k in G such that X N k~!X is a nonempty proper subset of X, and so on. After
iterating this process a sufficient number of times, we find some z in S (in fact, in Y)
such that Pj;); € 7"(G). Now we have

Tylz-—l P{@;}Txy—x = (-,6y)6yl (Vy, v € S)
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Therefore T7(G) contains all matrix units {-,6,)6y (y,¥ € S), and thus
K(€3(8)) € T7(G). In particalar, 77(G) is not commutative, and so K(77(G))
is 2 nonzero (closed two-sided) ideal in 77(G). Hence K(£3(S)) C K(T"(G)) (cf. [,
Propasition 1]).

Moreover, T(G) = T7(G) + K(£(S)) = T7(G), and we can replace T(G) by
77(G) in the exact sequence in Theoram 5.3.

If G is abelian, then K(T7(G)) € K(£2(S)) by Proposition 5.6, and thus
K(T"(G)) = K(£(5)).

Finally, suppose that C}(G) is simple. Then K{€?(S)) is a proper ideal in
K(T7(G)). Indeed, if K(£2(S)) = K(T7(G)), then C}(G) ~ T(G)/K(T"(G)) would
be abelian, hence G would be abeliar, and thus C?(G) ~ C(G) would not be simple.

Therefore K(T7(G))/K(£2(S)) is a nonzero ideal in 77(G)/K(€3(S)) ~ CG),
and thus K(77(G)) = 77(G), since C;{G) is simple. ]

CoROLLARY 5.8. Let G be a countably-infinite torsion-free discrete group. Then

there is a short exact sequence
0 — K(&(8)) - T7(G) = C}(G) = 0

for any infinite, almost invariant, proper subset S of G.

REMARKS. 1) Theorem 5.7 says that, under certain assumptions, the C*-algebra
T7(G) generated by the generalized unilateral shifts 7, ¢ € G, is an extension of
K(£2(S)) by Cr(G). Also, K(¢*(S)) G Z for any nontrivial (closed two-sided) ideal 7
in T7(G) (cf. {6, Proposition 1]). In particular, the structure of the ideals of 77(¢)
is determined, once the ideal theory for C}(G) is known. All of this completely
generalizes Theorems 1 and 2 in [5], which deal with the classical case G =2, S = N.

Moreover, any #-representation of 77(G) is equivalent to a direct sum 7, @ 7,
where 7; is (zero or) a multiple of the identity representation, and = is a represen-
tation that vanishes on K(£2(S)) and can therefore be regarded as a *-representation
of C7(G) (cf. [15, 10.4.7]). In particular, any nonzero irreducible representation of
T7(@) is either the identity represcntation or factors through a nonzero irreducible
representation of Cr(G). Therefore 77(G) is type I if and only if C;(G) is type 1.

Finally, by Corollary 5.8, 77(G) is nuclear if and only if C}(G) is nuclear if and
only if G is amenable.

2) If G is abelian, and G, § satisfy the hypotheses of Theorem 5.7, then

TG E(TT(G)) = CL(G).

The same conclusion holds in the setting of Toeplitz operators on abelian partiaily
ordered groups [3], [16], [22], where 77(G) is defined in a similar way.
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This is opposite to the case of groups ¢ which satisfy the hypotheses of Theorem
5.7, and are such that C(G) is simple, since in that case K(7T7(G)) actually coincides
with 77(G). The reader is referred to [8], {24], for a list of discrete groups whose
reduced C*-algebra is simple.

3) To see why the condition S # G is nocessary in Theorem 5.7, consider the case
S = G. Then T"(G) = C}(G) does not contain any nonzero compact operator. Also,
note that the hypotheses of the theorem can be satisfied even when S differs from G
by just one point (take G =Z, §=2Z\ {0}).

Let us now give an example of a pair G,S which satisfies the hypotheses of
Theorem 5.7 and Corollary 5.8. Let G = F and let S = S,U{e}. It is then immediate
that T}, is a unitary operator in B(¢2(S)), whereas T} is an isometry on £2(S) with one-
-dimensional defect space £2({e}). Following the prcof of Theorem 5.7, K(£2(S)) is the
ideal of 77(G) generated by Py = I — TyT3-1 = [T3-1, T3] (note that S\ bS = {e}).
Here T} plays the same role as the unilateral shift on £2(N).

We are also able to compute the indices of all the Fredholm operators Ty, g € F3.
Indeed, Ind(7,) = 0, Ind(T3) = —1, and thus, by Corollary 5.5,

Ind(Ty) = —n(g) for all g in Fy,

where n(g) denotes the arithmetic sum of the exponents of b in the reduced word of
g. This index formula generalizes the familiar equality Ind(T;») = —n, where T;n is
the Toeplitz operator with symbol z” (2 € T, n € Z). Note that, unlike in the case
G = 1, it is possible that g # e, and Ind(T}) = 0.

We may also choose S as the set of all those elements of F» whose reduced words
end in either a or b. In this case S\ aS = {a}, S\ bS = {b}, and so K(£%(S)) is the
ideal of 77(G) generated by either P,} or P(s} by Theorem 5.7. Moreover,

Ind(7,) = -m(g) forall ginF,,

where m(g) denotes the arithmetic sum of the exponents of a and b in the reduced
word of g.

We refer the reader to [21], [23] for a complete discussion on Toeplitz operators
on free groups, where we let S range over all possible infinite a.i. sets, and we
characterize, in terms of the Fredholm index, the pairs S, S’ which determine, in an

appropriate sense, the same Toeplitz theory.

6. ANALYTIC TOEPLITZ OPERATORS

In this section we extend the notion of analytic Toeplitz operator to the setting of
almost invariant sets. We recall that a Toeplitz operator Ty, f € L(T), is analytic
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if f € H(T), that is, if f has an analytic Fourier series. Equivalently, Ty is analytic
if fH?(T) C H3(T) (in particular, 7} is a subnormal cperator).

Let S be an infinite a.i. subsct of a group G. We define H*® to be the Banach
algebra

H> = {7 € W) : T(¢3(S)) C ££(S)},

and we say that A € B(€2(S)) is ax analytic Toeplitz operator if A = T(5) for some
T in H®.

As in the classical case, o product Ay Ag of Toeplitz operators is again a Toeplitz
operator if either A» or A} is analytic. A “generalized unilateral shift” T}, g € G, is
analytic if and only it L, € 1™, that is, if and only if gs € S for all s in S. This
leads us to define the set

Gt={geG:¢SCS)

Note that G* is a semigroup containing the identity of the group, and that
7* = S if and only if S is a semigroup and ¢ € S (this is what happens in the
clessical case G = &, S = N). If G = F3 and § = S,, then G* is the semigroup
generated by e,a,b and ™. Neither is Gt contained in S, nor is S contained in G+.
The Toeplitz operators T, and T; are analytic, whereas T34-134 is not.

The semigronp G* can be used to give an equivalent definition of analytic
Tocplitz operator, by generalizing the notion of analytic Fourier series. For any
T € W*(G) and g € G, let us set

ag = (1'6;,8,) (“g-th Fourier coefficient”).

‘Then one can formally write T = Z @gLg, in the sense that T(8) = z agbgn
9€eG g€EG

for all A in G. In particular, T € H* if and only if Z agbgs € L2(S) for all s in S
9€G
if and only if ay = 0 for g ¢ G*. Hence H* consists of those operators T in W*(G)

which can be written as a formal series

T= Y a,lL,

gEGT

(generalized analytic Fourier series).

What is interesting here is that G, and not S, is the set which plays the role of N.
However it is not true, in general, that G = Gt U(G*)~! or that G*N(G)~! = {e},
as one can see by taking G = F, and S = S, as ahove. It then follows that H* does
not exhibit an analytic-typc behaviour. In the classical case, if f and f are in H™
tnen fis constant, but for G, S as above we see that T'= Ly + Ly-» = T* isin H®,

but is not constant.
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We are now able to extend Wintner’s theorem on the invertibility of analytic
Tocplitz operators (¢f. [10], Theorem 7.21, and [16], Theorem 3.12). For such oper-
ators, we get a more precise version of the spectral inclusion in Theorem 4.2.

ProprositTioN 6.1. Let G be a countably inhnite group, and let S be an infinite
almost invariant set in G. If T is an operator in H®, then

(T = oy (7).
Equivalently, T(5) is invertible if and only if T is invertible in H*.

Proof. The map T +— T(5) is unital and multiplicative on H®, so, if T is
invertible in %, then T(5) is invertible.

Conversely, if T' is in H® and T®) is invertible, then T is invertible in W*(G),
since o(T) G o(T¢®)) by Theorem 4.2. But if T7(5) = T'[¢2(S) is invertible in B(¢2(S)),
then T', as an operator on £2(S), is one-to-one and onto £2(S), and thus the inverse of
T in W*(G) belongs to H*. In other words, T is invertible in H*°, and this completes
the proof. |

7. CLOSING REMARKS

In the setting of classical Toeplitz operators (G = Z, S = N) the commutativity
of G is crucial for the development of the theory. In the general case, where G is
an arbitrary group and S is an infinite almost invariant set in G, the operators in
W*(G) commute with all right-translation operators R;, g € G, and this property is
sufficient to make up for the commutativity of G and extend the basic theorems of
Toeplitz theory to the general setting, as shown by the foregoing results.

However, there are several properties of classical Toeplitz operators which do not
carry over to our general setting, as we shall see presently. For such properties, a
suitable gencralization can be found, instead, in the context of Toeplitz operators on
partially ordered abelian groups (cf. [16], [17], [18], [19] and [22]). In that context,
the conmutativity of G and the semigroup property of S turn out to be essential.
Moreover, when the order is total, a key role is played by the fact that an ordered
abelian group G has a connected Pontryagin dual G.

One of the hardest and deepest results of the classical theory is Widom’s theo-
rem on the connectedness of the spectra of Toeplitz operators. This result has been
extended to ordered abelian groups, in the case of Toeplitz operators with continuous
symbols ({17], Theorem 2.3), and to partially ordered abelian groups, in the case of
analytic Toeplitz operators ([16], Theorem 3.12). In the general setting of almost
invariant sets in discrete groups, we will now show that there exist Toeplitz operators
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with disconnected spectra, even if we only restrict our attontion to the case of analytic
Toeplitz operators.

Lot G = Fg and § = S;. Then £2{S) is an invariant subspace for both I; and
Ly = Lg-1, and hence, if W*(L;) denotes the von Neumaun algebra generated by Ly
in B(£2{G)), then

WL C H®.

Moreover, W*(Ly) o~ L®(T). Indeed, £2(G) can he decomposed as a dircet sum
of invariant subspaces for Ly in such a way that Ly becomes unitarily equivalent te an
infinite direct sum of countably meuy copies of the bilateral shift on £2(Z). Therefore
H® contains a copy of L®(T). In particular, % contains a nontrivial idempotent
T, and thus og<(T) = {0,1} is not connected (moreover, H® is not an integral
domain). But o(T1%)) = oy=(T) by Proposition 6.1, and hence T(5) is an analytic
Toeplitz operator with disconnected spectrum. The previous argument is essentially
due to Steve Power.

A harder question to ask is whether there exist analytic Toeplitz operators with
disconnected spectra in the case where G = F3 and § = S; U S;.

Coburn [4, 4.1] showed that the specirum of any Toeplitz operator Ty, f €
€ L%™(T), coincides with the Weyl spectrum. KEquivalently, the only Fredholm
Toeplitz operators with index zero are the invertible ones. This is proved by showing
that if f is a nonzero function in L*°(T), then either Ty or T7 must have a trivial
kernel.

These properties cease to hold in the case of Toeplitz operators on free groups, as
shown by the next result and the following discussion. For simplicity, we will consider

the case of a free group on two generators.

ProrosITION 7.1. Let G = F3, and let S be an infinite almost invariant proper
subset of G. Then there exists T in W*(G) such that ker TC) £ (0) and ker (T(5))* +
# (0).

Proof. ¥ T = L,, g € G, then T(5) = Ty, and

ker TO9) = 2(5\ ¢718), ker(T19) = 2(S\ ¢3).

So it suffices to find ¢ in G such that S\ ¢~'S 5 @ and S\ gS # D.

Let us first consider the case where e € S. By Theorem 2.1.8 in [21], there oxists
2 4 e in Fg such that S contains S,,. Without loss of generality, we may assume that
« is the first letter in the reduced word for z. If we let g = 2 *bz, then g~* € S\ g™’ 8
and g € S\ ¢8S.

Heel let z ¢ G\S. Then 27’8 is ar iufinite ai. set in G, and ¢ ¢
¢ 2715, By the previous case, there exists i in G such that z7'S\ A7 2z718 £ &
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and z71S\ hz71S # 3. But

278\ h71z71S = 1S\ zh712718)

and

27 8\ keS8 = 7S\ 2h27LS),
and thus, if we let g = zhz~!, we have S\ g~1S # @ and S\ ¢S # Q. n

Now let G = Fy, S = Sy and g = b~lab. Then S\ g71S = {6~'a~1b}, and
S\ ¢S = {b~lab}. In particular, 7} is a non-invertible Fredholm Toeplitz operator
with index zero (see Proposition §.1), showing that Coburn’s theorem fails to hold.
This is analogous to the situation described in [7], where it is proved that there exist
Toeplitz operators on the quarter-plane which are Fredholm operators with index
zero, but which are not invertible,

For Toeplitz operators with continuous symbols, a more direct understanding of
Coburn’s theorem can be obtained by recalling that any invertible f in C(T) can be

written as
o)
f=e"2",

where ¢ is some function in C(T), and » is the winding number of f with respect to
the origin. This decomposition can be used to prove the Gohberg-Krein index formula
and Coburn’s result, by showing that a Toeplitz operator T}, f € C(T), is invertible if
and only if f = e? for some g in C(T) (¢f. [12], Scction 1). The same characterization
of invertible Toeplitz operators can be found in the context of Toeplitz operators on
ordered groups ([19], Theorem 2.2).

In our setting, given a fixed 2.i. § C G, one would wish to determine a necessary
and sufficient condition on T in C*(G) for which T(5) is invertible, and find an index
formula to compute Ind(7T(5)) for all invertible operators T in C#(G). This task turns
out to be more difficult than in the classical case, because in general it is not true
that if T € C}(G) and T(5) is invertible, then

T=e?

for some A € C?*(G); conversely, we do not know whether in general 7¢5) is invertible
if T = e# for some A € C;(G).

Indeed, consider the unitary operator T' = L, € Cy(F3). If S is defined as above,
then L™ is a unitary and thus invertible operator. If L, = e/ for some A in C*(F3),
then for any infinite a.i. set S C 2, the map t + (e*4)(5), ¢ € [0,1)], would be a
continuous path connecting I and L$%) in the set of Fredholm operators on £%(S), and
hence Ind(LsS)) = 0 for any infinite a.i. set S. But if $ = 5,, then Ind(Lf,s)) =-1
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by Proposition 5.1, and this gives the desired contradiction. Another way to see this
is to note that L, and e# belong to two different classes in K1(C(F2)).

The previous example shows us another irregular feature of generalized Toeplitz
operators. In the classical theory, and in the context of Toeplitz operators on a half
plane, the invertibility of T(°) (T invertible in C2(G)) only depends on the class [T],
of T in K1(C;(G)). More precisely, there is a subset 2 C K1(C?(G)) such that, for
any invertible T' in C?(G), T(5) is invertible if and only if [T}, € £ (cf. Theorem 6 in
{12]). This fails to be true for G = F3, S = S. Indeed, L, and I are in two differcnt
classes of K1(C2(F2)), but LS and I¢5) are both invertible, whereas L, and Ly-145
coincide in K;(C}(F3)), and yet Lg”; ap 18 Dot invertible.

The previous considerations show that, for such groups as free groups, a more
sensible problem to study would be to characterize those invertible operators T in
C*(G) for which T(5) is invertible for any infinite a.i. § C G, and not just for a given
S.

Now let us define, for general G and S,

Qe =TT - T.T; (z€S5).
With the same notation as in the proof of theorem 5.7, note that
Qz = Psng-15 — Psnzs = Ps\zs — Ps\z-1s,

and so Q. is a finite-rank operator on £2(S) for all z in S.

G =12Zand S =N, then {Qun}ny1 = {P0,1,.,n-1}}np1 IS an approximate
identity for K(£2(S)). As we will now show, this property does not extend to free
groups. Indeed, consider the case where G = Fj, and S = S = {z(n)}%,. It is easy
to verify that Qum = Pz, smy for ali m 2 1. If {@.(x)}5%, were an approximate
identity for K(£2(S)), we would have

QnK — K asm-—o0

in operator norm for all X in K(£2(S)). To get a contradiction, it now suffices to

choose K == P(a).
Finally, if G =2 and S =N, T € B(¢£%(S)) is a Toeplitz operator if and only if

TxTT, =T forallzinS.

In general, this is not necessarily true. Consider any group G such that there
exists an infinite a.i. set S and an element z € S such that S\ z71S # @ (see e.g.
the example following Proposition 7.1). Then the identity operator I € B(£2(S)) is a
Toeplitz operator, but T IT, = Pgne-15 # 1.
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We conclude our discussion by pointing out that, for a given group G, we always
worked with one almost invariant set at a time, and did not bother to establish the
relation between Toeplitz operators associated with different almost invariant sets
in G. This is done in the paper [23], where we study the class of extensions of the
compact operators by C}(G) associated with all infinite almost invariant sets in G.
Such class happens to be particularly interesting in the case of free groups, whereas
for such group as SL(2,Z), PSL(2,Z) and D (the infinite dihedral group) all the
extensions are trivial in an appropriate sense. In the latter case, there exists no
operator in C;(G) whose compression to £2(S) is a Fredholm Toeplitz operator with

nonzero index.
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