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FIELDS OF AF-ALGEBRAS

VICTOR NISTOR

1. INTRODUCTION

In a pioneering work J. Dixmier and A. Douady classified fields of elementary
C*-algebras [12]. Fields of AF-algebras were considered by several authors, {1, 2, 10,
12], but the classification problem has not been completely solved.

If X = §" then the isomorphism classes of homogeneous locally trivial fields of

C*-algebras on X with fiber A are in one-to-one correspondence with
Tn—1(Aut(A))/mo(Aut(A))

[15] and mi(Aut(A)) has been computed for a large class of AF-algebras [20, 26). A
similar device holds if (X, zo) is a pointed compact connected CW-complex. If we
denote by [X, Aut(A)] the set of homotopy classes of basepoint preserving mappings
X — Aut(A), Aut(A) being pointed by the identity automorphism, then isomorphism
classes of homogeneous locally trivial fields of C*-algebras with fiber A over SX are
in one-to-one correspondence with [X, Aut(A)] /mo(Aut(A)).

The main result of this paper is the determination of [X, Aut(A)] up to an ex-
tension of groups if A is an AF-algebra satisfying certain technical conditions as in
4.1. We also determine the operator kernel of this extension [18].

The technique of proof generalises the technique developed in [20] and the result-
ing exact sequence has close trends with the exact sequence of the Universal Coefficient
Theorem for Kasparov’s KK-groups [24].

An important device of the proof is that Aut’(A4) — End®(A) is a weak homotopy
equivalence [20].

Let us suppose that A is simple and (X, z¢) is a homotopy cogroup; then our
results are complete and give isomorphisms [X, Aut(A)] ~ KK° (4, Co(X \ {20}, 4))
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if 1 ¢ A and [X, Aut(4)] ~ KK (4’,Co(X \ {20}, 4)) if 1 € A (here A’ denotes the
mapping cone of the inclusion C — A).

The next section contains results about filtered modules, morphisms and exten-
sions of filtered modules. The definitions and the results of this section are in the
spirit of [20]. Their purpose is to give a framework for the next sections. The objects
we introduce and the theorem we prove reduce to well known ones if the filtrations
are trivial — and this indeed happens if A is simple. The reader interested only in
this case may very well skip this sections. Section three contains preliminary results
concerning cancellation and comparability of projections. The result we obtain are
crucial in turning K-theory data in homotopy information, they are in the spirit of
the programs of {4] and (23]. Sections four and five contain the exact sequence in the
general case and the determination of [X, Aut(A)] for A simple and X a homotopy
cogroup. The latest section contains a brief discussion of the Samelson product. It is
proved that in general there exists no natural group structure on the set of isomor-
phism classes of locally trivial fields of C*-algebras with fiber A. This contrasts with
the results of J. Dixmier and A. Douady [12].

2. FILTERED MODULES, MORPHISMS AND EXTENSIONS OF FILTERED MODULES

Let £2 be a complete lattice, R a commutative ring with unit.

DEFINITION 2.1. An 2-filtered module E over a ring R is a left R-module en-
dowed F with family of submodules (E,,)wen such that w — E, is a morphism of
lattices. An £2-filtered Z-module wili be called simply an §2-filtered abelian group.

2.2, Let E, F be f2-filtered R-modules. A morphism f : E — F such that
f(E,) C F, will be called compatible. The set of compatible morphisms f : E — F
will be denoted by Homp o(E, F).

2.3. Let 0 - E — F — G — 0 be an exact sequence of 2-filtered R-modules
with compatible morphisms.

DerFiNiTION. The above exact sequence will be called a compatible extension of
Gby FifE, = F,NFE and E,/F, — G, is an isomorphism.,

Two compatible extensions 0 - £ — F; — G — 0, j € {0,1} are called
equivalent if there exists a commutative diagram of compatible morphisms

0 — F — Fp — G —10

|

| |
0 — E — K — G —0
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A compatible extension 0 — E — F 4, ¢ — 0 will be called trivial if there exists
a compatible morphism fy : G — F such that fo f; = idg.

The pointed set of equivalence classes of compatible extensions of G by E will
be denoted by Extr (G, E).

2.4. We will show that Extg (G, E) is a group with the Baer sum as operation
and with the trivial extension as neutral element. The approach is standard [18].

Let g € G. Denote by 2, = {w € 2,9 € E,}. Then §2, is a complete sublattice
of £2. Denote by w(g) the least element of £2, and call it the support of g.

For z denoting the compatible extension 0 — E — F %G — 0 and g € G choose
£(9) € Fuggy such that p(f(9)) = g, £(0) = 0.

Let £(0) = 0, &(91,92) = f(91) + f(92) — Flg1 + 92), C(r,9) = rf(g) — F(rg).
Then (&,¢) € Z}lzyc(G, E) where by Z}z,c(G»F) we denote the group of pairs (£,(),
£:GxG— E,(:RxG — E satisfying:

(1) &(91, 92) +&(91 + 92, 93) = £(91,92 + 93) + (92, 93)

(2) €(91,92) = &(92,91)

© (3) €(0,9) =€(9,0) =0,¢(0,9) =¢(L,9) =0

(4) C(r172,9) = ((r1,m29) + r1{(r2, 9)

(8) r€(91,92) = §(rg1,792) +C(r, 91) +{(r, 92) — {(r, 91 + g2)

(6) £(91,92) € Eu, {(r,9) € E,, for any ¢1,92, €EGy, T ER
(9,91,92 €G, r,r1,72 € R).

A different choice of f will give a pair (£1,(;) such that (&,¢1) € (6,¢) +
+B} (G, E), where B} .(G,E) C Z} (G, E) is the group of those pairs (£,() €
€ Zh (G, E) such that

&(91,92) =e(g1) + e(g2) — e(g1 + g2),
¢(r,9) = — e(rg) + re(y)

for some function e : G — E, e(0) = 0, e(Gy) C E, (V)w € 2.

Moreover the class of (¢,() in Zj .(G, E)/ B}, (G, E) depends only on the equiv-
alence class of z in Extgr (G, E). This shows that we obtain a well defined function
¢: Extp (G, E) — Z}t’C(G’,E)/B}I,C(G,E).

Conversely, given (¢, {) satisfying (1) to (6) then let G x E = F with the opera-

tions

(91,€1) + (92, €2) = (91 + 92, €1 + €2 + £(91, 92))
r(g,e) = (Tg,1'6+ C(r’g)): €,€1,€2 € E) 9,91,92 € G
and filtration F, = G, x E,. Note that F is an £2-filtered R-module due to (1)—(6),

satisfies an exact sequence 0 — E, — F, — G, — 0 for any w € £, and if we let
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f : G — F to be given by f(g9) = (g,0), then &(g1,92) = f(91) + f(g2) — f(g1 + g2)
and ((r, g) = rf(g) — f(rg). Since to the Baer sum of extensions corresponds the sum
of cycles we get that ¢ is an additive bijection and hence Extg (G, E) has a group
structure. It is obvious that Extg (G, E) ~ 0 if G is a free R-module.

2.5. Let v : Gy — G, ¥ : E — E1, be compatible morphisms, then we obtain
morphisms Z} (G, E) — Zk (G, E), By (G,E) — By (G1,E), Zk (G,E) —
— Z}l,c(G, Ey), B}Q,C(G, E)— B}t,c(G» E)) defined by € — £o(px ), ( — (o(idr X )
and é > Yo, ( — Yol

" We shall denote by ¢* : Extg (G, E) — Extgc(Gy, E) and ¢, : Extg (G, E) —
— Extr (G, E1) the morphisms defined by ¢ and .

LEMMA 2.6. Let F, E, be Q2-filtered R-modules, ¢, € Homp (Ey, En41), £ =
= lim(E,, ¢n). Then there exists an exact sequence

0 — lim! (Homp,c(En, F), ¢y) — Extr(E, F) — lim (Extr c(Eq, F), o5) — 0.

Proof. Let X, € Extgc(En, F) be such that ¢} (Xn41) = Xn. There exists an
infinite commutative diagram

..............................................

S

0 — F — Gpp1 — nt1 — 0

Il l !

such that 0 — F — G, — E, — 0 represents X, in Extg(E,, F). Let G =
= im(Gn, ¥n).

-.Then the image of the exact sequence 0 = F — Gn — En, — 0 in Extg c(En, F)
is Xn.

Let us identify the kernel of 7 : Extg o(E, F) -5 lim (Extg c(En, F), ¢4). To this
end, denote by x, : E, — E the obvious morphism.‘_Suppose that 0 - F - G —
— E — 0 defines an element X € Extgc(E, F) such that x;(X) = 0 for any n.
Then there exists a compatible morphism 7, : E,, — G making the following diagram

-

0 — F — G —

commutative

— 0

Let A = (Ap)neN € G)NHomR,C(E,,,F), An = Tn+1 © on — Tn. Denote by
ne

d : @ Hompc(En,F) — & Hompc(En, F) the morphism d((fn)nen) =
neN neN
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= (fn41 9 @n — fa)nen. The two different choices of 7, define sequences A differ-
ing by an element in Imd. This shows that there exists a well defined morphism
ker  — lim! (Hompg,c(En, F), ¢!,) which turns out to be an isomorphism.

2.7. We shall also need another group, the group of extensions with order unit.
It is defined as in [20] (see below).

Let E, G be filtered £2-filtered modules, u € G an element such that u € G, if
and only if w = sup £2 (where sup £2 is the largest element of £2). Such an element
will be called an order unit of G and will remain fixed in the following discussion.

By a compatible extension with order unit of G by E we shall mean a compatible
extension 0 — E — F % G — 0 for which an order unit of F is chosen such that
f(v) = u. We shall write in this case 0 — E — (F,v) — (G,u) — 0.

Two compatible extensions with order unit 0 — E — (Fj,v;) — (G,u) — 0,
j € {0,1} are said to be equivalent if and only if there exists a commutative diagram

0 — E — (Fo,v0) — (G,u) —0
|| f
0 — E — (Fo,v0) — (G,u) —0

such that f is a compatible morphism and f(vo) = v;.

A compatible extension with order unit 0 — E — (F,v) — (G,u) — 0 will be
called trivial if there exists a compatible morphism f, : G — F such that fi(u) = v
and fo f; =idg. "

We shall denote by Extf .(G, E) the set of equivalence classes of compatible
extensions with order unit of G by E. The unit of G will be clear from the context.
We shall omit R when R=1Z.

ProrosITION 2.8. a) Extg (G, ) is a covariant functor from the category of
2-filtered R-modules with compatible morphisms to abelian groups.

b) Extg .( , E) is a covariant functor from the category of £2-filtered R-modules
with unit preserving compatible morphism to abelian groups.

¢) There exists an exact sequence: 0 — Hom(G/Ru, E) N Homg (G, E) —
-» Hompg,c(G, E) — Homg(Ru, E) — Extk .(G, E) — Extg (G, E) — 0.

Proof. Let f : E — E; be a compatible morphism between the {2-filtered R-
-modules E and E;. Let 0 - E — (F,v) — (G,u) — 0 be a compatible exten-
sion with order unit. Denote by z its class in Extg .(G, E). There exists by 2.5 a
commutative diagram of compatible morphisms

0 — F — F — G —0

[l

0 — B — A — G —0
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Then f.(z) is defined to be the class of 0 — E — (Fy, f'(v)) — (G,u) — 0 in
Ext}‘{’c(G,El).

Let ¢ : (G1,u1) — (G, u) be a unit preserving compatible morphism, G, G
being f2-filtered R-modules with crder units. Let x € Extg (G, E) be represented
by 0 = E — (F,v) —h>(G, u) — 0. Denote F; C F & G; the submodule consisting of
those pairs (f, g1) such that h(f) == ©(g1). Let v; = (v,u1) be the order unit of F,
then *() is represented by 0 — E — (F1,v1) — (G1,u1) — 0.

Let 0 — E — (Fj,v;) — (G, u) — 0 represent z; € Exty (G, E), j € {0,1}.
Denote by dg : G — G x G the “diagonal” map: d2(g9) = (g,9), andby o2 : ExXE - E
the “addition” map: o3(e1,€2) = e1+ea. Let z € Exty (G xG, E x E) be represented
by

0— E x E — (Fy x F3,(v1,v2)) = (G x G, (u,u)) — 0.

Then z; + z3 is defined to be d5 (02.(z)) = 02, (d5(2)). (The last relation is
proved as in Lemma II1.1.6 of {18].) This proves a) and b).

The morphism € : Homg(Ru, E) — Exty (G, E) is defined as follows. Let
e € F and denote by f. the morphism fe(r) = re. Then £g(f.) is the class of 0 —
— E — (E x G,(—e¢,u)) = (G, u) — 0. The morphism Extg .(G, E) — Extg,(G, E)
is defined by “forgetting” the unit. The exactness is obvious.

3. PRELIMINARY RESULTS

We shall denote by U(A) the group of those unitaries u € M(A) such that
u—-1€A.

3.1. We shall fix from now on an AF-algebra A with the following properties:

a) For any ideals I C J C A, I # J, J/I is not type L.

b) Either 1 € A or A is completely nonunital in the sense that for any projection
e € A, (1 —e)A(1 —e) is a full corner in A.

DEFINITION 3.2. [20, Definition 2.2} Let (G, G4) be an ordered group. We shall
say that (G, G4) has large denominators if for any ¢ € G4+ and n € N there exists
¢1 € G+ and m € N such that ng; < g < mg;.

ProprosiTiON 3.3. Let A be an AF-algebra. Then A satisfies 3.1.a) if and only
if Ko(A) has large denominators.

Proof. Suppose that = : A — B(H) is an irreducible representation such that
K(H) € m(A) (K(H) denotes the algebra of compact operators on H).
Using L. Brown’s lifting projection theorem for AF-algebras [7, 13] we find a
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projection e € A such that n(e) is a rank one projection in K(H). Then g = [e] does
not satisfy the conditions of Definition 3.1.

Conversely, let e be a projection in My(A) for some ¢ € N. Denote by J’ the
ideal generated by e in M (A). Fix n € N and let J = eJ’e = UJ; with J; finite
dimensional. Denote by I the ideal of J; consisting of those factors of J; having
dimension > n. It follows that Iz C I;41 and hence I = Ul is an ideal of J. Denote as
in [11] by 7(n) the least integer m with the property that Z sgn(0)as1) -+ Go(m) =

OESm
= 0 for any ai,...,am € My(C) (Sm is the symmetric group of order m). It follows

that for any z1,...,2m € J/I, m 2 r(n), Z sgn(0)Zg(1) " To(m) = 0, since this
OCESm

is true for z; in the dense subalgebra Ji/Ix. The proof of [11, Proposition 3.6.3]
shows that J/I has only finite dimensional representations (of dimension € n). The
assumption on A shows that I = J and hence that e € J; for some large k. Choose
a minimal projection from each factor of J; and denote by p their sum. Then n[p] <
< [¢] € m[p] for some large m € N.

3.4. Let X be a locally compact space and B = (A(z),z € X, I") be a locally
trivial field of C*-algebras such that A(z) ~ A for any z € X, [11, Ch. X]. B may
be viewed as a fiber bundle with structure group Aut(A). Denote by Aut®(A) the
connected component of the identity in Aut(A4). Recall that Aut®(4) = Inn(4) [2].

Let £2 be the lattice of ideals of A. £ can be identified with the lattice of ideals
of A ® K, where K denotes the algebra of compact operators.

* Let ¢ € Aut®(A), then p(w) = w for any w € 2. Suppose that our bundle admits
a restriction of the structure group to Aut®(A) (this always happens is X is simply
connected). Denote by ¢ the associated Aut®(A4) principal bundle.

The Aut’(A)-equivariant inclusion w C A gives rise to an inclusion £[w] C £[A]
of fiber bundles. (Our notation and terminology are taken from [15).)

Denote by B(B,,) the C*-algebra of continuous sections of ¢[A] = B (£[w]) see [11,
Ch. X]. We obtain an £2-filtration of Ko(B) by Ko(B)w = Ran(Ko(B,) — Ko(B)).

The following proposition is the key for translating homotopy information into
K-theory language.

ProposITION 3.5. Let (X,zo) be a pointed compact connected CW-complex,
A, B, B, as above. Denote by n: Ko(B) — Ko(A) the “evaluation at zo” morphism.

a) If a,a’ € Ko(B), n(a’) > n(a) and m(n(a’) — n(a)) > n(a), for some m € N,
then a’ > a.

b) Let a,a’ € Ko(B), a = [e] for e a projection in a matrix algebra of B, n(a) =
1(a’). Denote by w the ideal generated by e(zq) in A® K. Then a' > 0 if and only if
&’ —a € Ko(By).
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¢) Suppose € is trivial, then B has the cancellation property for projections and
7;(U(B)) — K;4+1(B) is an isomorphism for any j > 0.

Proof. The idea of ihe proof is to identify elements b € B satisfying certain
properties with sections in an appropiately defined fiber bundle.

We may assume that B is stable (i.e. B~ B®KX).

a) Let €, ¢’ be projections in B representing a, a’ in Ko(B). We may assume that
e(zo) < €'(xo). Denote by V(z) = {v(z) € A(z), v*(z)v(z) = e(z), v(z)v(z)* <
< €(z)}. V(=) is a sort of “generalised Stieffel manifold”. Let V = zéJX V(z) C €[4]
with the induced topology, then V' becomes a locally trivial fiber bundle on X. It
is easy to prove that U (e(zo)Ae(zo)) O u — ue € V(zo) is locally trivial fiber
bundle with fiber U (€'(zo)Ae'(z0)) /U ((¢'(z0) — e(20)) A (¢'(z0) — e(z0))) (the proof
is similar to Lemma 1.2 of [20]). The hypothesis shows that the ideals generated by
€¢/(x0) and €'(zo) ~ e(zo) in A® K coincide. The exact sequence of homotopy groups
[27] and Proposition 2.4.b) of {20] show

U ((¢'(z0) — e(z0)) A(€'(z0) = e(20))) — U (€'(20) A€’ (o))

is weak homotopy equivalence and hence wx(V(z)) — m(V (o)) ~ {0} for any & > 0
and z € X. A standard argument [15, Theorem 7.1 p. 21} shows that V has a cross-
section. This cross-section defines a partial isometry from e to a subprojection of
e.

b) Let e,e’ € B be projections such that e(zg) = €’(zg). Then e,¢' € B, and
hence [e] — [¢'] € Ko(B),. Conversely, suppose that ¢ = [e], a’ — a € Ko(B)w,
w being the ideal generated by e(zo) in A. Aut’(A) acts on wt = w + C1. Let
B, be the C*-algebra of continuous sections in &w*]. The split exact sequence
0 — B, — B, — C(X) — 0 shows that the element o’ = (a’ ~ a) + e of Ko(B,)
may be represented as [¢}] — [e1], e1 and e} being projections in B, ® K such that
x(€}) = x(e1) (x = xo®idx). Denote by x; : w(z)* ® K — K the quotient morphism
(w(z)* is the fiber of ¢[w*] at z). Define W(z) = {w(z) € w(z)t ® K, xz(w(z)) =
= .xx(ejl(z)) (= xz(e1(2))), w(z)w(z) = e1(z), w(z)w(z) < ej(z)}. It follows as
in b) that W, is homeomorphic to W, # @ and mx(W;) ~ {0}. This shows that
W = xéJX W: has a cross-section and that e; is equivalent to a subprojection of e;.
We obtain a’ > 0.

¢) The cancellation property follows from standard results in topology. Indeed,
suppose that e, e; are projections in My(B) such that [e;] = [e2] in Ko(B). We write
A = UA,, A, being finite dimensional C*-algebras. Let d denote the dimension of
X. We may suppose that e;,e; € C(X, A,) for some large n. Also, since Ko(A)
has large denominators we may suppose that the dimensions of the projections ey
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and ey in Ko(C(X, An)) are large enough (i.e. greater than g and that [e;] = [e;] in
Ko(C(X, A,))). This can be done by increasing n if necessary. But stable isomorphic
vector bundles of large dimension are isomorphic (see [15, Theorem 8.1.7, page 100]).

" Let us observe that s = tsr(C(X)) < oo (see [22] for definition and notations). It
follows that mo(U(My(C(X)))) is isomorphic to K1 (C(X)) for ¢ > s+2, [22, Theorem
10.12] and use also the fact that the topological stable rank and the Bass stable rank
coincide for C*-algebras [14]. This shows that 7;(U(B)) =~ li_rp‘lr_,-(U(C(X, Ag))) =~
~ litnmo(U(87C(X, An))) = limK;41(C(X, An)) = K;+1(B) since the A, may be
chosen such that the dimensions of the blocks of A, increase to oo (this is due to the
assumption that Ko(A) has large denominators).

Let A = UA,, with A, finite dimensional. Denote by imn the inclusion A4,, — Ay,
and by i, the inclusion A, — A. Let Hom®(A4,, A) denote the connected compo-
nent of i, in Hom(An,A). Let B = C(X,A), J = Co(X \ {z0}, A). Denote by
[X,Hom"(A,, A)] the homotopy classes of base-point preserving continuous functions
¢ : X — Hom"(An, A) the base-point of Hom®(Ay,, A) being i,. Such a continuous
function defines a morphism @, (¢) : A, — B. We shall denote by j,, : A, — B the
morphism &, () for ¢(z) =i, (V)z € X.

The following lemma shows the power of the previous proposition.

LEMMA 3.6. The map
[X, Hom®(An, 4)] 3 [¢] = Ko(Pn(#)) — Ko(jn) € Homc(Ko(4n), Ko(J))
is well defined and bijective if the filtration of Ko(J) is Ko(J)w = Ko(Co(X \{z0},w)),

the filtration of Ko(An) is Ko(An)w = Ko(in)~}(Ko(w)), and A is completely nonuni-
tal.

Proof. Let py,...,pr be the minimal projections of A,. Denote by w; the ideal
generated by p; in A. It follows from .Proposition 3.5 b) that Ko($(¢))([p1]) —
—Ko(in)([p1]) € Ko(J)w,. Conversely, suppose that f € Homc(Ko(An), Ko(J)).
It follows from Proposition 3.5 b) that there exists a projection e} € B such that
[e/] = [in(P1)] + F([p1]). Suppose that A, = AV @ -- & AL and A is a factor of
type Im,. Using Proposition 3.5 b) one obtaines by induction m; + ma + --- + my,
orthogonal projections e(u), . éﬁ,ﬂml,éﬁ), . éS,’f,Z,,.k € B such that [ES,] =ej. It

follows from Proposition 3.5 c) that é'gl) is equivalent to &Y. Choose e(l) such that

65.11)*69) = é'(l) and é '(1)"(1)' 59), r € {2,...,m}. Denote by e(;) = Esll) ('(1)) ,
g € {2,...,m1}, e(l) = E(l)*. Let qu), 1€{1,...,k}, r,q¢ € {1,...,m} denote a
matrix unit of A,. There exists ¢ : X — Hom%(A,, A), ¢» (eslq)) = erq)(z:) More-

over, any map X — Hom®(4,, A) is homotopic to a base point preserving map. This
shows the surjectivity of [X, Hom®(4,, A)] — Hom.(Ko(A,), Ko(J)).
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In order to prove that it is injective let us observe that if ¢, ¥ € Hom(A,, B)
have the property that Kq(p) = Ko(%) then it follows from Proposition 3.5 ¢) using a
standard trick of O. Bratteli that ¢ and i are unitary conjugated: ¢ = ad, 0 with
u € U(J). Let e € ¥(1). Then there exists a unitary v in U((1 — €)J(1 — €)) such
that uv is in the connected component of the identity (use Proposition 3.5 ¢) and 3.1
b)) and ¢ = ady, © . Hence ¢ is homotopic to .

Recall the pointed space (X, zg) is a homotopy-cogroup ([27] where the term of
H'-space is used) if there exists a homotopy associative comultiplication § : X —
X V X such that if ¢t : X — X is the constant map ct(z) = 29 and ¢; = id Vet :
XVX =X (g2=ctvid: X VX — X) then id, ¢1 08 and ¢z 0 § are homotopic.
Morcover it is supposed that exists 8 : X — X, “the inverse”, such that (8 Vid)o 6
and (id V B) o 6 are homotopic to the constant map (all maps and homotopies are ‘

understood to be base-point preserving).

REMARK. If (X, 20) is a homotopy cogroup then [X, Hom®(A,, A)] is a group
[27] and [X, Hom®(A4n, A)] — Hom,(Ko(4n), Ko(J)) is actually a group-morphism.

4. THE EXACT SEQUENCE

Denote by Map(X, Aut®(A)) the space of base-point preserving continuous map-
pings X — Aut’(A4). Let B = C(X, A) be identified with C(X) ® A and let J C B,

4.1. There exists a commutative diagram

Map(X, Aut®(4))
&
Hom(A,B) —I—> End(B) = Hom(B,B).

The first vertical arrow associates to a continuous function z 3 z — ¢, € Aut(4)
the morphism ®() : A — B given by &(p)(a)(2) = ¢z(a). The horizontal arrow
assoclates to a morphism ¢ : A — B the morphism T(¢) : B=C(X)® A — B
dofined by T(¢)(f ® a) = f(a).

Passing to K-groups one obtaines the following commutative diagram

[X, Aut®°(A)]
La;/ &)
Hom(Ko(A4), Ko(B)) —H——>  Homg,(x)(Ko(B), Ko(B))
(=0if1¢ A, i=1if1€ A).

Since Ko(B) ~ K°(X) ® Ko(A) it follows that Ko(B) is a K’(X)-module. This

module structure can be described directly as follows: let [e] € Ko(B), [p] € K*(X)



FIELDS OF AF-ALGEBRAS 13

with e € My(B), p € M, (C(X)), then [p][e] is the class of (p ® I,)(I, ® €) € M,(B)
in Ko(B). This shows that a;([¢]) is indeed K°(X)-linear.

[X, Aut(A)] is a group with the law [¢][¢)] = [p o ¥]. It is clear from definition
that oi([p][¥]) = ai([p))a:i([#]). px can be described by px(f)(z ® 2) = zf(z) for
f € Hom(Ko(A), Ko(B)), z € K°(X), 2 € Ko(A).

Let us denote by G* (respectively G") the range of a; (respectively a}). Since

: Hom(Ko(A), Ko(B)) — HomKo(x)(Ko(B) Ko(B)) is bljectlve it follows that in
order to find G’ it is enough to determine G* .

Denote as before by £2 the lattice of ideals of A and observe that Ko(A), K;(B),

K;(J) have natural Q-filtrations (j € {0,1}):

Ko(A)w = Ko(w), K;(B)w = K;(C(X,w)) >~ K/ (X) ® Ko(w),
K;(7)w = K;(Co(X \ {z0},w)) =~ K (X) ® Ko(w).
If ¢ € Map(X, Aut(A)) is constant denote by ¢« = tx the embedding Ko(A) —

— Ko(B) defined by Ko(P(p)). It is equal to the composition of Ko(A) 3 [e] —
— [1] ® [¢] € K°(X) ® Ko(A) with the isomorphism K°(X) ® Ko(A) ~ Ko(B).

4.2. The following constructions are needed in order to determine the kernel of
o;.

Let ¢ € Map(X, Aut(A4)). Denote by E, C M, C C([0,1] x X, A) the C*-
-algebras defined by E, = {f, (3)a € A such that f(0,z) = a, f(t,z0) = a, f(l,2) =
= pz(a) for any ¢ € X, t € [0,1]}, M, = {f, f(1,z) = p-(f(0,z)) for any z € X}.
M, is the mapping torus of $ = T o &(¢) € End(B) [5].

Let p: E, — A, p(f) = f(0,20), x : M, — B, x(f) = fl{0} x X. Then there
exists a commutative diagram with exact rows: '

0 — 8§ — E, — A —0
0——»513——*1\}‘,——»£—>0.

Let us recall that the connecting morphisms of the K-theory exact sequence
of the bottom row are the composition of id — K;(#) : K;(B) — K;(B) and of
K;(B) — K;-1(SB) {5, Proposition 10.4.1].

Observe that if we denote by K.(¢) = Ko(@) ® Ki(@) : Ku(B) = Ko(B) &
®K1(B) — K.(B) then K.(@) is the unique K*(X) = K°(X)®K*(X)-linear extension
of Ko(¢). Thus, if Ko(@) = idk,(s), then also K, () = idk,(p).

We obtain for any ¢ € Map(X, Aut(A)) such that o;([¢]) = idk,(p) a commuta-
tive diagram with exact rows:

n 0 — Ki(J) — Ko(E,) — Ko(4) —0
o~ 13

(2) 0 — Kl(B) g Ko(M<p) — Ko(B) — 0.
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If we denote E, ., = E, NC([0,1] x X,w), My, = My, NC([0,1] x X,w) then
Ko(E,) and Ko(M,) are natural equipped with £2-filtration. Moreover there exists
an obvious morphism of C(X) into the center of M(M,) giving a K°(X)-module
structure on Ko(M,).

Let us denote by y4(y) the class of (1) in Extc.(Ko(A), K1(J)) and by 7o(¢) the
class of (2) in Extgo(x)(Ko(B), Ko(B)) for [¢] € kerap. If A has a unit then E,
and M, are also unital and the quotient morphisms p and x are unit preserving.
Note also that Ko(E,) and Ko(M,) have order units given by the classes of the
units. This shows that if ¢ € Map(X, Aut(A)), e1([¢]) = idk,(a) then we can define
7(0) € Extito ) o(Ko(B), Ko(B)) and 7i(p) € Ext2(Ko(4), Ko(J)) by regarding (1)
and (2) as compatible extensions with order unit.

Let v, € Map(X,Aut(A4)), 3 = T o d(p), ¢ = T o &(p). Denote by o, the

composition of SB @ SB ~ () ((0,-;—) ,B) @ Cy ((%,1) ,B) — SB. Then, if

we denote by D = {f € C([0,2], B), (1) = %(f(0)), £(2) = 3(f(1))}, we obtain a

commutative diagram with exact rows:

0 — SBeSB — MyeM, — B®B — 0

| T e

0 — SB®SB — D — B — 0

| l |

0 — SB — My — B — 0.

If Ko(@) = Ko(wlj) = idp then the corresponding diagram of Ky-groups shows
that ¥ (¢ o ¥) = %(p) + 7(¥), i € {0,1}. It is obvious that if ¢ is homotopic to
the constant map £ — id4 then ¥;(p) = 0. Also observe that there exists obvious

morphisms

ro : Extygocx),c(Ko(B), Ki(B)) — Extc(Ko(4), K1(J))

and

To : Exti“(n(x)'c(Ko(B),Kl(B)) — Extg(Ko(A), Ky (J))

obtained by composing the “forgetfull” morphism Extgocx)yc(-,-) — Exte(-,:)
(Extgo(xy,c(,-) = Extc(+,+)) with ¢* and using the isomorphism K;(J) ~ K;(B).
It follows that v{ = r; o 9; is also a morphism. It also follows that yo,v4, 71 and v}
depend only on the class of ¢ in [X, Aut(4)].

The preceding discussion is partially included in the following lemma:

LEmMMA 4.3. a) There exist commutative diagram of morphisms:
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kerag
Yo Y6

Ext xox),c(Ko(B), K1(B)) -—" Extc(Ko(A4), K1(J))

for A non unital, and

kera;
i) i

Extyocx)(Ko(B),Ki(B)) —" Extc(Ko(A),Ki1(J))
for A unital. r; is an isomorphism i € {0, 1}.
" b) %[ Y = ai([¥])* Ka($)a (1:(€)) for ¥ € Map(X, Aut(A)), £ € kera;.
Proof. Let A = UA,, with A,, finite dimensional.
Let us observe that there exists by Lemma 2.6 a commutative diagram

Extyo(x).c(Ko(B), K1(B)) BN Extc(Ko(A), K1(J))

~ ~

~

lim ' Homgo(x),o(K’(X) ® Ko(4s), K1(B)) = lim*Home(Ko(An), K1(J))
fror which it follows that rg is also an isomorphism.

Using Lemma 2.8 we get a commutative diagram with exact rows:

— Hom(Ko(A), Ky (J)) — Hom(Z, K,(J)) —

— Homyo(xy (Ko(B),Ki(B)) — Homgo(xy(K*(X),Ki(B)) —
b Extz(Ko(A), Kl(.])) e EXtC(Ko(A), Kl(J)) — 0

1 To
—  Extio(x)(Ko(B),Ki(B)) — Extgoxy(K°(B),Ki(B)) — 0.
From the Five Lemma we obtain that r; is also an isomorphism. The equality of
b)-follows from the commutative diagram

0 — SB — M — B — 0

s T T
0 — SB — M — B
Yoyt

— 0
if [p] = €.
PROPOSITION 4.4. G'° = ¢ + Hom¢(Ko(A), Ko(J)) and 7} is an isomorphism.

Proof. Let A = UA, with A, finite dimensional. Denote as before by im n :
: A, — A,, the inclusion of A, in A,, and by i, the inclusion of 4, in A. It is
proved in {20], Lemma 1.2-that the restriction in, , : Hom’(A.,, A) — Hom®(A,, A)
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is a fibration, and hence Map(X, Hom®(Am, A)) — Map(X, Hom®(4,, A)) is also a
fibration [27, Theorem 7.10, p. 31].

. Let End(A) denote the space Hom(A4, A) pointed by id4 and End®(A) denote the
connected component of id4 in End(A). Then [20, Lemma 1.4] Map(X, Aut®(4)) —
—  Map(X,End°(4)) is a weak homotopy equivalence. It is obvious that
Map(X, End°(A)) is homeomorphic to the inverse limit lim Map(X, Hom®(A,, A)).

The proof of (27, Theorem 4.8, p. 433] shows that -

H= l'gnl‘irl(Map(X, Hom’(A,, A)))
acts free on the pointed set mo(Map(X, End®(A))) and that
mo(Map(X, End’(A4)) — limmo(Map(X, Hom’(4x, 4)))
gives a bijection
mo(Map(X, End°(A))/H — lim mo(Map(X, Hom®(4,, A))).
Let us observe that 7;(Map(X, Hom®(A,, A))) is naturally isomorphic to
[SX, Hom®(An, A)] ~ Homc(Ko(4n), K1(J))

by Lemma 3.6 (use also Remark 3.7). It follows also from Lemma 3.6 that there exists

a commutative diagram
(X, End®(A)] —s  limm(Map(X, Hom®(4,, 4)))

aog—1¢

HOIIIC(K()(A),KQ(J)) -— lgﬂHOInc(Ko(An),Ko(J))

in which the bottom arrow is an isomorphism and the right vertical arrow is a bijection.

We obtain the following diagram:

0 — ﬁianomc(I(o(An),Kl(J)) — [X,End®(4)] — ¢+ Homc(Ko(A),Ko(J)) — 0

Extc(Ko(A),K1(J)) &  kerag
in which the first vertical arrow is an isomorphism by Lemma 2.6 and the top hori-
zontal line is an exact sequence of pointed sets.
The proof of this proposition will be concluded if we show that this diagram is

comrmutative,
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Let ¢ € Map(X, Aut’(A)), [¢] € keray. Our assumption shows that ¢[A, €
€ Map(X, Homo(An,A)) is homotopic to the function £ — i,, via a homotopy ¥, €
€ Map([0,1] x X|[0,1] x {zo}, Hom®(4,, A)) i.e. ¥u|{1} x X = p|An, ¥.(0,2) =
= i, - Y defines a morphism f, : A, — E, such that po f, = i, (p is the
quotient map E, — A). It follows from Lemma 2.6 that v{([¢]) is represented
in limHomc(Ko(An), K1(J)) by the sequence (An)nen. = (ko(fas1) © Ko(ins1,n) —
—Koffa))nen (we identify Ko(SJ) with Ky(J) by Bott periodicity).

Let us define g, : [0,1] x X — Hom’(A,, A) by ni,(t,2) = $n41(2t, z)|An for

0,5] and by 1 62) = n(2 ~ 21,2) for ¢ € [ 3,1 then 7 (0,2) = mit,20) =
= n:,,.(l, z) = i, and thus 7/, factors to a mapping 7, : SX — Hom’(A,, A) of pointed
spaces. Then [27, Theorem 4.8, p. 433] ¢ is represented in lim ![SX, Hom°(A4,,, A)] by
the sequence ([7n])nen. Since [n,] is sent to A, € Home(Ko(Ap), Ki1(J)) under the

isomorphism of Lemma 3.6 (see also 3.7) the commutativity of the diagram follows.

te

We now turn to the case A is unital.

Let us first note that A ® K is completely non unital and that there exists a
morphism Aut(A) — Aut(A4 ® K) given by n — n ® idx. We have denoted as usual
by X, the C*-algebra of compact operators on a separable Hilbert space.

Denote by o : [X, Aut(A)] — [X, Aut(A ® K)] the corresponding morphism. The
following lemma is folklore and identifies the range of this morphism. We sketch its
proof for the convenience of the reader.

LEMMA 4.5. Let ¢ € Map(X, Aut(A ® K)) then [¢] is in the range of o if and
only if Ko([¢])([1]) = [1].

Proof. One implication is obvious.

Let (€n,m)n,meN denote a matrix unit of K. Denote as before B = C(X, A) and
let 9 : B® K — B ® K be the morphism defined by 1, fmn=1Qenm € BQK.
I ¥(fmn) = fmn for any n,m then it follows that there exists ¢ € Map(X, Aut(A))
such that ¥ = @ ® idc (& is the morphism B| — B defined by ¢). We obtain
that ¢ is in the range of Map(X, Aut(A)) — Map(X,Aut(A ® K)). In general,
thé assumption that Ko(¥)([1]) = ao([#])([1]) = [1] shows that (foo) is equivalent
to foo (use Proposition 3.5). (If we identify Ko(A) with Ko(A ® K) by stability,
then [1] = [foo).) Let v € B ® K be such that v*v = foo, vv* = ¥(foo). Let

u= Z (fn0)vfno, the convergence being in the strict topology of M (B®K), then
neN
u is a unitary in M(B ® K) and ady(fam) = ¥(fa,m). Since the unitary group of

M (DQK) is contractible for any C*-algebra D [9, 19] it follows that there exists a path
of unitaries u; € M(B®K') connecting u to 1 € M(B®K) and such that the value of u,
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in 2¢ s a multiple of the identity of M(A®K) (use the fact that U(M(A®K)) is a direct
summand of U(M(BQ®KY)). Then t — ad,, o9 is a homotopy of ¢ in Map(X, Aut(A®
®K)) to a mapping in the range of Map(X, Aut(A4)) — Map(X, Aut(4 ® K)).

We get the following corollary:
. COROLLARY 4.6. a) G’ = G¥ N {¢ € Hom(Ko(A), Ko(B)), a1 (€)([1]) = [1]}.

b) The restriction of o to kera; maps keray onto kerayg.
Proof. Use Proposition 4.1 and Lemma 4.5.
LEMMA 4.7. 41 is an isomorphism.

Proof. We first prove that v, is injective.

Suppose that there exists 7 € Homc(Ko(A),Ko(E,)) such that Ko(p) o 7 =
= idg,(4) and 7([1]) = [1], this means precisely that 7 is a unital splitting of v} ([¢}) =
== the class of 0 — Ko(S7) — Ko(£,) *% Kq(4) — 0.

Let A = UA, with A, finite dimensional and let imm, in have the same mean-
ing as in the discussion preceding Lemma 3.6. It is an immediate consequence of
Proposition 3.5 that there exists a morphism 7, : A, — E, such that pon, = i,
and Ko(7n) = 7 0 Ko(in), moreover any two such morphisms are unitary conjugated.
Using induction on n one can define morphisms 7, : Ay — E, as above such that
NDm|An = 7, for any m > n. This can be done at follows. Suppose that we have defined
M,---,7Mn as above. Choose 7} 4 : An41 — E,, arbitrarily such that ponp,y = 41
and Ko(77,41) = 70Ko(in). Then there exists u € U(A) such that 5, ,;|A, = adyo7,.
Let fa41 = ad;' 0 7%4;. The sequence (7)n)nen defines a lifting 9 : A — E,, for
p pon =ids. The map 7 defines by evaluating at (¢,z) € [0,1] x X a mapping
¥ :[0,1] x X — End®(A). Then ¢ defines a path connecting ¢ to the constant map-
ping in Map(X, End’(A)). Using the isomorphism [X, Aut®(A)] ~ [X, End°(A)] [20,
Lemma 1.4) we obtain that keryj ~ {0}.

To prove the surjectivity of 4} consider the diagram

K1(J) 24, kerery — kerag — 0

Hom(Z,K,(J)) — Extg(Ko(A)‘,Kl(J)) — Extc(Ko(zlfl),Kl(J)) — 0

The bottom line is exact by 2.8 ¢). Ad is defined as follows, let u € U(J), u
being represented by a function u : X — U(A) such that u(zo) = 1. Let Ad([u]) be
the class of z — ady(;) € Aut(A). It follows that the diagram is commutative and

hence v} is onto (a simple diagram chase).

We put together the results of this section in the following theorem.
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4.8. Let (X,z0) be a pointed compact connected CW-complex and A an AF-
-algebra which satisfies 3.1 a) and b). Let i=0if 1¢€ A,i=1if 1 € A.

Denote by §2 the lattice of ideals of A, let B = C(X,A), J = Co(X \ {z0}, A).
The groups K;(B) and K;(J) are £2-filtered K°(X)-modules (j € {0,1}).

THEOREM. The range of ag is G® = idg,(By + Homgo(x) (Ko(B), Ko(J)) and
the range of oy is G* = {n € G°, n([1]) = [1]}-

The product in G* is the composition of morphisms. Moreover
7o : kerag — Extygo(x) (Ko(B), K1(B))
and
7 : keray — Extyo xy . (Ko(B), K1(B))

are jsomorphisms. We obtain exact sequences

0 — Extygox) c(Ko(B), K1(B)) — [X, Aut(A)] - G° -0
if'l ¢ A, and

0 — Extgo(x) o(Ko(B), K1(B)) — [X, Aut(4)] — G — 0

if 1 € A. These exact sequences are natural in (X, 2o); the kernels are determined by
Lernma 4.3 b).

Here are some consequences of the naturality in X of the exact sequence.

CoOROLLARY 4.9. Let (X, z¢), (Y,yo) be pointed compact connected CW-comp-
lexes. Suppose f : (X,z0) — (Y,yo) induces an isomorphism of the K-groups then
f* [V, Aut(A)] — [X, Aut(A)] is an isomorphism. If K°(f) is an isomorphism and
K! (Y) = 0 then the exact sequences of the preceding theorem split.

Proof. Denote by G'(X) the range of a; : [X, Aut’(4)] — End(Ko(C(X, A))).

By the naturality of the exact sequences there exist commutative diagrams

0 — Ext.(Ko(A4),K}(Y)) — [V,Aut(4d)] — G°Y) — O
KY(/). A la°(n
0 — Ext(Ko(4),K'(X)) — [X,Aut(4) — G%(X) — 0
ifl¢g Aand
0 — Ext!(Ko(4),K'(Y)) — [V,Aut(4)] — GY(Y) — 0
() | |e*
0 — Ext!(Ko(4),K}(X)) — [X,Aut(4)] — GY{X) — 0
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ifl1e€A.

G°(f) is obtained from the commutative diagram

ty + Home(Ko(A), Ko(Co(Y \ {w0}, 4))) 5> Go(Y)
Ko(£). lG"(f)

tx + Home(Ko(A), Ko(Co(X \ {0}, 4))) 5 Go(X)

tx,ty, pbx, y have the same meaning as in 5.1 and f* : Co(Y \ {%0},4) —
— Co(X \ {z0}, A) is given by b — bo f.

" 'The first part of the corollary is a consequence of the Five Lemma. The second
part follows from the fact that ; : [Y, Aut(A)] — G¥(Y) and Gi(f) : G}(Y) — Gi(X)
are isomorphisms and hence f* oa; ! oG¥(f)! is well defined and gives the described

splitting.

5. THE CASE A SIMPLE AND X A HOMOTOPY COGROUP

Let A be a simple AF-C*-algebra not stably isomorphic to X, (X, zo) a pointed
compact connected CW complex which is also a homotopy cogroup (see 3.7 for defi-
nition and notation).

Let B and J be as in the preceding sections and denote by A’ the mapping cone of
the inclusion C — A if 1 € A. We shall prove that [X, Aut(A)] is naturally isomorphic
to KK%(A,J)if 1 ¢ A or to KK*(A',ST)if 1 € A.

For the definition and the basic properties of the KK-bifunctor the reader is
referred to the original papers of G. G. Kasparov [16, 17] or to the book of B. Blackadar
[5]. Our approach uses Cuntz’s “quasihomomorphism picture” of KK®-groups [5, 8].

We shall first define natural transformations ¢g : [X, Aut(A)] — KK°(4,J) if
1¢ Aand ¢ : [X,Aut(4)] - KK*(A,87) if L € A. :

Let o € Map(X, Aut(A)) denote the constant function. For ¢ € Map(X, Aut(A))
we shall denote by &(p) € End(B) the morphism defined by ¢, i.e. B(p)(a)(z) =
= pg(a) for any a € A, z € X. It follows that &(p)(a) — P(po)(a) € J for any a € A
and hence the pair (®(y), ®(p0)) is a quasihomomorphism from A to J. We shall
denote by co([¢]) the corresponding element in KK°(A4, J) [5, 8]. If A is unital denote
by ¥,%0 : A — C([0,1] x X, A) C M(SJ) the morphism defined as follows. Recall
first that A’ = {f : [0,1] = A, f(0) =0, f(1) € C}. Then ¢(f)(t,z) = @ (f(t)),
Yo(f)(t,z) = f(t) for any f € A’. It follows that ¥(f) — ¢o(f) € SJ for any
f € A’. We shall define ¢;([¢]) to be the class of the quasihomomorphism (¥, ¢g) in
KK°(A', SJ) [5, 8].

LEMMA 5.1. ¢; is a morphism (i € {0,1}).
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Proof. We shall prove the lemma for i = 0, for i = 1 the proof is similar.
" It is a well known fact that the multiplication in [X, Aut(A)] may be defined also
by [@][¥] = [(¢ V ¥) 0 0] (8 is the comultiplicator of X). There exists a commutative

diagram
0 — JoJ — C(XvX,4) — A — 0

v . e
0 — JoJ — CXVX,A) — A — 0.
The quotient maps are obtained by evaluation at the base point.
It follows from the assumptions on (X, zo) that v is a homotopy equivalence
on each direct summand. This shows that if (¢,{) € KK°(4,J) ® KK°(4,J) ~
~ KK°(A,J ® J) then v.(£,{) = € + ¢. It follows from the definitions that

ve(co([e]), co([#])) = co(((¢ V ¥) 0 6])

and hence co([¢][¥]) = co([e]) + co([¥]).

THEOREM 5.2. Suppose A # K is simple. The maps ¢o : [X,Aut(A)] —
— KK°(A,J) if 1 ¢ A and ¢; : [X, Aut(A)] — KK (A',J) if 1 € A are isomorphisms
for X a homotopy cogroup.

. Proof. Let ¢ be the composition Ko(A4) 3 € — [1]®¢ € K®(X) ®Ko(4) =~ Ko(B).
There exists a commutative diagram for 1 ¢ A:

0 — Extc(Ko(A),K1(V)) — [X,Aut(A)] — ¢+ Home(Ko(A), Ko(J)) — 0
o id—.

0 — Ext(Ko(A),K1(J)) — KK(A,J) —  Hom(Ko(A),Ko(J)) — 0

in which the top line is exact by Proposition 4.4 and the bottom line is exact by the
Universal Coefficient Theorem [24]. The first vertical arrow is a morphism since it is
the restriction of ¢g. The third vertical arrow is also a morphism. This can be viewed
as follows. Let Fy, F; € Hom(Ko(A), Ko(J)),

p#x : Hom(Ko(A), Ko(B)) — Homgo(x)(Ko(B), Ko(B))
be as in 5.1, then
- px (e + Fj)(e(a) + bo) = 1(a) + Fj(a) + bo
for any a € Ko(A), bo € Ko(J) since I~(0(X)2 = 0. This shows that

px(e+ R)px(c+ F2) = px(t + F1 + F»).
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The filtrations are trivial if A is simple and hence
Extc(Ko(A), K, (J)) o~ EXt(Ko(A), Kl(J))

and
Homc(Kg(A), Kl(J)) jod Horn(Kl(A), Ko(-]))

are isomorphisms. This shows that ¢g is an isomorphism.

Let us prove now that ¢; is an isomorphism. Since K;(A’) ~ Ko(A4)/Z[1],
Ko(A’) =~ 0 we obtain using Corollary 4.6 a), Lemma 4.7 and the Universal Coef-
ficient Theorem [24] that there exists a commutative diagram with exact rows

0 —  Exti(Ko(A),Ki(J)) — [X,Aut(A)] — G -0

J» L !

0 — Ext(Ko(A)/Z[1],K1(J)) — KK%A4,SJ) — Hom(Ko(A)/Z[1),Ko(J)) — ©

Let us determine the morphism h.
Suppose that ¢ € Map(X, Aut’(A)), then [p] € kera, if and only if Ko(S(p)) =

= Ko(D(p0)) = «.
Then there exists a commutative diagram

0 0

l 1
0—->SZJ-—->SE«,——->SA——>0

ll |

0—-—>§2J—>SE¢—>SA——>0

l |
c c

(We have denoted by E|, the mapping cone of the inclusion C — E,). The corre-
sponding diagram of K;-groups shows that h associates to the class of the compatible

extension with order unit
0 — Ky (J) — (Ko(E),[1]) = (Ko(A),[1]) -0

the class of
0 — Ki(J) — Ko(Ey)/Z[1] — K1(A4)/Z[1] = 0

in Ext(Ko(A)/Z(1],K1(J)) [5]. The morphism A is obviously an isomorphism if A is
simple. The Five Lemma shows that ¢; is also an isomorphism.
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6. THE SAMELSON PRODUCT

In this section we shall briefly study the Samelson product. It turns out that
it does not vanish in general and hence the classifying space of Aut’(A) is not a H-
-space [27]. This shows that the set of isomorphism classes of locally trivial fields of
C*-algebras on X with fiber A cannot be endowed with a natural group structure for
any compact CW-complex X [27, p. 475, 7.8].

Let us recall the definition of the Samelson product {27, p. 467] it is a pairing

(-,) 1 [X, Aut(A)] x [Y, Aut(4)] — [X AY, Aut(A)]

defined by
([e], [¥]) = [n], n(z A y) = e(2)¥(y)p(z) ()"

If X =8", Y = 8™ this gives a pairing
Tn(Aut(A4)) x 7 (Aut(A)) = Tnim(Aut(A)).

Let us observe that o((a,b)) depends only on a(a) and a(b) (we omit various
subscripts or superscripts of &) and it is defined by

(6.1) g o pxay (a({a, b)) = (ux (a)uy (B)ux (@)~ uy (b)) o

. Here j : Ko(C(X AY, A)) — Ko(C(X x Y, A)) is the obvious inclusion, p'(a)
is obtained out of px(c(a)) : Ko(C(X,A)) — Ko(C(X, A)) as a K°(X x Y)-linear
morphism 'y (a) : Ko(C(X x Y, A)) = Ko(C(X x Y, A)) by extending the ring using
K%(X) — K°%X x Y). 4 is defined similarly.

Moreover, since kera is represented by approximately inner loops we obtain the
following result:

PROPOSITION 6.2. a) u({a,b)) depends only on a(a) and «(b) and its formula is
given by (6.1).

b) (kere, [Y, Aut(A)]) and ([Y, Aut(A)],kerer) are contained in kera.

¢) (kera, kerer) = 0.

d) "6290 Tn(Aut(A)) with the Samelson product is gradedly isomorphic to

Aut(Ko(A), Z(A)) & (k?l Ext?®) (Ko (A), KO(A)))

with the product {a,b)’ = aba~'b~1 if a and b are of degree 0, {a,b)’ = aba=! = b ifa
is of degree 0 and b of degree > 1, and {a,b) = ab— ba if a,b are both of degree >
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Here Ext?*)(K,(A), Ko(A)) denotes

Hom(Ko(A),Ko(A)) if k is even and 1 € A,

Hom(Ko(A), Ko(A)) N Hom(Ko(A)/Z[1],Ko(A)) if k is even and 1 € A,
Extc(Ko(A), Ko(A)) if k is odd, 1 ¢ A,

Exty(Ko{A), Ko(A)) if kis odd and 1 € A.

5(A) is the scale of the ordered group Ko(A).
For the last part see also [20].

REMARK 6.3. The preceding theorem gives a necessary condition on A in order

to exist a natural group structure on the set of iscmorphism classes of locally trivial

fields of AF-algebras with fiber A. Indeed, if such a natural group structure would

exist then every field on $" V §™ would have an extension on $" x §™ thus forcing
the vanishing of the Samelson product on m,_1(Aut(A)) X mm_1(Aut(A)) (27, p. 476,
7.10]. This cannot happen if A is simple and Hom(Ko(A), Ko(A)) is not commutative.
d) also identifies the action of mo(Aut(A)) on [X, Aut(A)] for X = §".

i

11.
12,

13.

14.
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