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APPROXIMATELY HYPERREFLEXIVE ALGEBRAS

DON HADWIN

1. INTRODUCTION

Let B(H ) denote the set of operators on a Hilbert space H. If § is a linear
subspace of B(H), then RefS consists of those operators T for which Tz € [Sz]~ for
every z in H. The subspace S is reflexive if S = RefS. If A is a unital subalgebra of
B(H), then Ref A = AlgLat.A, where LatA is the lattice of (closed) invariant subspaces
(projections) for A, and AlgLatA = {T' € B(H):LatA C LatT'}. The von Neumann
double commutant theorem implies that every von Neumann algebra is reflexive, and
it is reasonable to view the reflexive subalgebras of B(H') as non-selfadjoint analogues
of von Neumann algebras. '

Suppose S is a reflexive linear subspace of B(H). We define a seminorm d( , S)
on B(H) by d(T,S) = sup{dist(T'z,Sz):z € H,||z|] € 1}. Alternatively, d(T,S) =
= sup{||PTQ||: P, Q projections, PSQ = {0}} = sup{||ATB||:||Al|,||B]] € 1,ASB =
= {0}}. It is clear that d(T, S) < dist(T, §), and since § isreflexive, we have d(T, §) =
=0 < dist(T,S) = 0. The subspace S is hyperreflexive if the seminorms d( ,S)
and dist( ,S) are équivalent, i.e., if there is a constant K such that dist( ,8) <
Kd( ,8). The smallest such K is called the constant of hyperreflexivity of S and is
denoted by K(S); we say K(8) = oo if S is not hyperreflexive.

If A is a reflexive subalgebra of B(H), we have another description of d( ,.A),
namely, d(T,.A) = sup{||(1 — P)TP||: P € LatA}. The first result on hyperreflexivity
was the well-known Arveson distance formula [3], which says K(A) = 1 whenever A
is a nest algebra. Further results on hyperreflexivity appear in [4], [7], [8], [22], [19],
(18], [9], and [15]. It is known that many von Neumann algebras are hyperreflexive,
and it was proved by E. Christensen [7] that the problem of hyperrefiexivity for von
Neumann algebras is equivalent to the problem of whether every derivation from a von
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Neumann subalgebra of B(H) into B(H) is inner. It is known [12] that an affirmative
answer to R. Kadison’s similarity problem (Is every bounded homomorphism from a
C*-algebra into B(H) similar to a s-homomorphism?) implies an affirmative answer
to the inner derivation problem. Another related problem, due to J. Dixmier, is
whether the range of an operator being invariant for a von Neumann algebra implies
it is the range of an operator in the commutant of the algebra (See [5]).

We are interested in asymptotic analogues of reflexivity and hyperreflexivity. If
S is a linear subspace of B(H), we define ApprRefS as the set of those operators
T for which ||PAT Q|| — 0 whenever {P,} and {Q.} are nets of projections such
that ||[PASQa}| — 0 for every S in S. Equivalently, T € ApprRefS if ||A\TB\|| — 0
whenever {A,} and {B\} are bounded nets of operators such that ||4)\SB\{] — 0 for
every S in §. A third formulation is that T' € ApprRefS if and only if (Tey, fa) — 0
whenever {e)} and {f»} are bounded nets of vectors such that (Sey, fa) — 0 for every
S in 8. We say that the subspace S is approximately reflexive if § = ApprRefS.

Another version of approximate reflexivity was defined in {1,2] and [13] for unital
subalgebras of B(H). If A is such an algebra, we define ApprAlgLatA to be the set of
those operators T' for which ||(1 — P\)TPx|| — 0 whenever {P,} is a net of projections
such that ||(1 — Py)SP,|| — 0 for every S in A. An equivalent definition is obtained
when the condition that the P\’s are projections is replaced with the condition that
they form a bounded net of idempotents. In the case in which A is norm separable, an
equivalent definition is obtained when “net” is replaced with “sequence”. In [13] it was
shown that, for every unital C*-subalgebra A of B(H), we have A = ApprAlgLatA;
this is an asymptotic analogue for C*-algebras of von Neumann’s double commutant
theorem. Moreover, it was shown in [13] that if 4 is a unital C*-subalgebra of B(H),
then A is the set of those operators T for which ||[UyT —~ TU,|| — 0 whenever {U,} is
a net of unitary operators such that [|UyS— SU,|| — 0 for every S in A. Also A is the
set of those operators T for which ||A T — T A,l| — 0 whenever {A,} is a bounded
net of operators such that ||A,S — SA,|| — 0 for every S in A.

Unlike the case of Ref and AlglLat, it is not clear that ApprRef. A = ApprAlgLatA
when A is a unital algebra. This is our first main result (Theorem 9, Corollary 10);
the proof involves a characterization (Proposition 7, Lemma 8) of certain completely
bounded maps that is analogous to the characterization in [14] of those unital com-
pletely positive maps that are approximate compressions of a given representation of
a C*-algebra.

We then investigate an asymp{otic notion of hyperrefiexivity, approximate hyper-
reflexivity, and we prove analogues of several of the known results on hyperreflexivity.
In particular, our proof that ApprAlgLatA = ApprRefA for every unital algebra A
of operators also shows that the analogous notions of hyperreflexivity for subspaces
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and unital algebras coincide. We also introduce a new operator topology that is to
the weak (i.e., o(B(H), B(H)")) topology on B(H) what the weak operator topology
is to the weak*-topology (ultraweak topology) on B(H). This topology is very much
related to approximate reflexivity and approximate hyperreflexivity.

Using the notion of relative approximate hyperreflexivity, we prove that every
C*-algebra is approximately hyperreflexive.

We define the seminorm d,( ,S) on B(H) by d,(T, S) = sup{limsup, ||PATQ:]|:
:{P»},{@x} are nets of projections, ||PASQ»|| — 0 for every S in S§}. It is easy
to show that d,(7,8) = sup{limsup,[(Tey, fr)|:{ex}, {fr} are nets of unit vec-
tors, (Sex, fa) — O for every S in 8}. It is clear that dq(T,S) = 0 precisely when
T € ApprRef A.

We say that a linear subspace S of B(H) is approximately hyperreflexive if there
is a (smallest) constant K = K,(S) such that, for every T in B(H), dist(T,S) <
< Kd, (T, S).

The following elementary lemma shows how du( ,S) and dist( ,S) share some
common properties that help to reduce problems of approximate reflexivity and hy-
perreflexivity to the case of a separable subspace acting on a separable Hilbert space.

LEMMA 1. Suppose S is a linear subspace of B(H), and T € B(H) and M is
the collection of all separable subspaces of H that are reducing for S U {T'}. Then

(1) da(T,S) = inf{das(T, T): T is a norm separable subspace of S},
and

(2) if S isnorm separable, then d4(T,S) = sup{d,(T|M,S|M): M € M}.

The following lemma contains a useful characterization of approximate hyper-
reflexivity.

LEMMA 2. Suppose S is a linear subspace of B(H). The following are equivalent.
(1) Ka(S) < K '
(2) For every € > 0, for every T in B(H) and every finite subset F of S, there
are projections P,Q in B(H) such that
(a) (K +&)|IPTQ|| > dist(T, 8),

and

(b) [|PSQ|| < e foreach S in F.
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(3) For every € > 0, for every T in B(H) and every finite subset F of S, there
are unit vectors e, f in H such that

(2) (K +¢)|(Te, f)] > dist(T, 5),
and
(b) |(Se,f)] <e foreach S in F.

Proof: The implication (1) => (2) is obvious. The equivalence of (2) and (3)
comes from considering the projections e ® e and f @ f. The proof of (2) = (1) is
obtained by defining the directed set A of all pairs (e, F) with £ > 0 and F a finite
subset of F so that larger elements of A have smaller ¢’s and larger F’s. Suppose
T € B(H), and for each A = (¢, F) in A, choosing projections P = Pj and Q = @, so
that the conditions in statement (2) hold. It is clear that, for every S in S, we have
IPASQx]| — 0 and that Klimfup |PAT@,)] 2 dist(T, S). This clearly implies (1). B

CoroLLARY 3. If {S;:i € I} is an increasingly directed family of subspaces of
B(H) whose union is dense in S, then

Ku(S) < sup Ko(S;)-

Let X(H) denote the algebra of all compact operators on H. In [1] it was shown
that ApprAlgLatA C [A + K(H)]™ for every separable unital subalgebra of B(H)
when H is separable. In [15] it was shown that ApprRefS C [S + K(H)]™ for every
linear subspace S of B(H). One key ingredient of the proof is the following lemma,
which is a generalization of a theorem of Glimm [11] characterizing states on B(H)
that annihilate KX(H). This lemma can be proved using Voiculescu’s theorem on
approximate equivalence [23]; the analogue for I,,1 < p < o0, is proved in [16).

LEMMA 4. If p is a continuous linear functional on B(H) such that |j¢|| = 1 and
K(H) C kery, then there are nets {e5} and {f»} of unit vectors in H, both converging
weakly to 0, such that

e(T) = Ii)r\n(Te,\,fA) for every T in B(H).
COROLLARY 5. IfS is a linear subspace of B(H) and T € B(H), then dist(T, S+

+K(H)) € do(T, ).

COROLLARY 6. If S is a norm closed linear subspace of B(H) that contains
K(H), then S is approximately hyperreflexive and K,(S) = 1.
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Our next result is an analogue for completely bounded maps of the characteriza-
tion in [14] of completely positive maps that are approximate compressions of a given
representation of a C*-algebra. Let C(H) denote the algebra of all compact operators
on H. Suppose A is a separable C*-algebra, H is a separable Hilbert space and = and
p are unital representations of A in B(H). We say that = and p are approximately
equivalent if there is a sequence {Uy} of unitary operators such that:

(i) [Uxnx(a)U, — p(a)|| — O for every a in A, and

(it) Uy n(a)U, — p(a) € K(H) for every a in A and every n > 1.

In [23] D. Voiculescu gave a very simple characterization of approximate equiva-
lence. In particular, Voiculescu’s theorem implies that if #71(K(H)) C kerp, then =
and 7 @ p are approximately equivalent.

If ¢: A — B(H) is a linear map, then, for each positive integer n, we let Mn(A)
denote the C*-algebra of all n X n matrices over A, and we define ¢,,: M,(A4) —
— Mn(B(H)) by pn((aij)) = (¢n(aij)). Wesay that the map p is completely positive
if each @y, is positive and we say that ¢ is completely bounded if ||p||cs = sup,||en]|| <
< oo. It was proved by Wittstock [24] that if ¢ is completely bounded, then there is
a *-homomorphism 7 and operators V, W with ||V|| - ||W|| = ||¢l|cs, such that ¢(a) =
= Vr(a)W for every a in A. A beautiful account of completely bounded maps is
contained in [20] (see also [6] and [10]).

PropPoSITION 7. Suppose A is a separable unital C*-algebra, M and H are
separable Hilbert spaces, m: A — B(H) is a unital representation, and ¢: A — B(M)
is a linear map. The following are equivalent:

(1) There is a unital representation p: A — B(H) that is approximately equivalent
to w, and operators V and W such that, for every a in A, ¢(a) = Vp(a)W.

(2) There are bounded nets {V,} and {W\} of operators such that, for every a
in A, Vam(a)Wy — p(a) in the weak operator topology. -

(3) The map ¢ is completely bounded and there are operators A and B such that
¢(a) = An(a)B for every a in #~1(K(H)).

Proof. (1) = (2). This is obvious.

(2) = (3). By choosing appropriate subnets, we can assume that there are operators
V and W such that V), — V and W), — W in the weak operator topology. It follows
that, for each compact operator T, we have VATW, — VTW. Hence (3) holds.

(3) = (1). Define ¥ on A by ¥(a) = An(a)B. Then 9 is completely bounded and ¢ =
= p—1 is a completely bounded map that annihilates the ideal 7~ (C(H)). It follows
from Wittstock’s theorem [24], applied to the map induced by o on A/7x~1(K(H)),
that there is a representation 7 on A and operators C, D such that 7= 1(KX(H)) C kerr
and o(a) = Cr(a)D for every a in A. It follows from Voiculescu’s theorem [23] that
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7 is approximately equivalent to 0 = 7 @ 7. Define Wz = (Bz, Dz) and V(z,y) =
= Az + Cy. We then have statement (1) above. |

REMARK. It is clear from the proof of the preceding theorem that, in going
from (2) to (1), it is possible to choose V and W in part (1) so that ||V|| - [|W]| <
< 2liminf, ||Vi||-||Wall. Vern Paulsen has provided the author with an idea that allows
the construction of V and W so that ||V]| - ||W|| < liminfy|[V3]| - ||Wa]l- To see this,
suppose that ||Vi||,||[Wa]| < 1 for every A. There is no harm in assuming that M = H.
For each A we can define a unitary element Uy in M4(B(H)) whose 2 x 2 upper

: . A 0
lefthand corn
efth orner is [ 0 wr

that {UaTU3}} converges in the weak operator topology to an operator a(T’) for every
T in B(H). It follows from [14] that there is a representation o of M4(A) that is

approximately equivalent to 74 and an isometry Y such that a(74(A)) = Y*o(A)Y for

], By choosing an appropriate subnet, we can assume

every A in My4(A). However, there must be a representation p that is approximately
equivalent to 7 such that o is unitarily equivalent (hence, we can assume equal) to p4.
If a € A, let A, be the element of AM4(A) whose (1,2)-entry is a and whose remaining
entries are 0. It follows that the (1,2)-entry of a(A,) is ¢(a), and, since ps(A,) has
(1,2)-entry p(a) and all other entries 0, it follows that there are contractions V and
W such that (a) = Vp(a)W for all @ in A. Note that the result in this remark shows
how the results in [14] can be extended to nonunital completely positive maps. W

In the case in which ¢ is a linear functional, the result in the preceding remark
can be obtained more easily.

LemMma 8. Suppose A is a separable unital C*-algebra, H is a separable Hilbert
space, m: A — B(H) is a unital representation, and ¢: A — C is a linear map for
which there are bounded nets {ex} and {f,} in H such that, for each a in A, ¢p(a) =
= lim(n(a)ex, fr). Then there is a representation p: A — B(H) that is approximately
eqi:ivalent to n and vectors u and v such that

(1) llull® = Jjol|* < liminf fjex] - 1£ll
and
(2) p(a) = (p(a)u,v) for every ain A.

Proof. By choosing appropriate subnets, we can assume that there are vectors e,
f such that ey — e weakly and fi — f weakly and such that, for every T in B(H),
limy(Tex, fa) = a(T) exists. It follows that (Tex, fr) — (Te, f) = o(T) for every
compact operator T in K(H). Since the functional (T} = a(T) — (Te, f) annihilates
K(H), it follows from Wittstock’s theorem [24] that there is a representation 7 of
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B(H) and vectors z, y with ||z]|? = ||y||? = ||| such that X(H) C kerr and such that
B(T) = (r(T)x, y) for every T in B(H).

We now want to prove that ||af] = ||e|| - ||f|]| + l|z|| - ||y]|- First choose an operator
A whose restriction to sp{e, f} is a unitary operator and whose restriction to {e, f}*
is 0 such that (Ae, f) = |lel] - ||f]|- Let @ be the projection onto {e, f}*, and choose
a sequence {By} of operators with norm 1 such that 0 < 8(B,) — |18l = ll=|] - ||vll-
Note that since KX(H) C kerf, we can assume that B, = Q@B,Q. Since 5(A) = 0,
and (Bpe, f) = 0 and ||A + By|| = 1 for each n, we have ||a|| > sup,(A + B,) =
= (Ae, f)+supB(B,) = llell-lIfll+l=|l-|lyll- The reverse inequality is obvious; whence
lleell = llell - 11£11 + ll1l - [lyll-

Wenowlet p=n®(ron), u=e®z and v = f®y. Then ¢(T) = (p(a)u, v) for
every a in A and [Jul® = [[ol = [l - |1} + llz] - Iyl < llo] < limsupy leal] - 172}

REMARK. If X is a Banach space with dual X¥, there is a natural embedding of
X into X". In general X is not complemented in X", e.g., ¢ is not complemented
in 1° [21]. However, X' is always complemented in X" with a norm idempotent
P: X" — X' defined by P(p) = ¢|X. In general, |1 — P|| is not 1. In the case
X = K(H), we have X! = C;(H), the set of trace class operators on H, and the
above proof that ||a|| = |le]} - ||f]| + ||zl| - |ly]] can be easily adapted to show that
[[1.— P|| = 1, more precisely, for every ¢ in B(H), |lo|| = ||Pell + lI(1 = P)g||. W

The following theorem shows the equivalence of ApprAlgLat and ApprRef for
unital algebras. This answers a question raised in [15].

THEOREM 9. Suppose that A is a unital subalgebra of B(H) and T € B(H).
Then

(1) do(T,A) = sup{limsup,||(1 — P,\)TP,||:{P\} is a net of projections,
[|(1 = Py)AP,|| — O for every A in A},

(2) if A is a C*-algebra, then d,(T,A) = sup{limsup,||PAT — TE;||: {P»} is a
net of projections, ||PAA — AP,|| — 0 for every A in A}.

Proof. (1). It follows from Lemma 1 that we can assume that A and H are
both norm separable. First suppose that {Py: A € A} is a net of projections for which
II(1 = Py\)APy|| — 0 for every Ain A. Let T = A x {1,2,3,...} directed so that
(a,m) < (B,n) means a < B and m < n. For each v = (\,n) € T choose a unit
vector ey in ranP) and a unit vector £y in ran(1— Py) so that |((1— PA)TPaey, fy)| >

> (1 - ;ll-) (1 — P\)TP,||. It follows, for every A in A and every v in T, that
|(Aey, fy)| = [(1 = Pa)APxey, )| < ||(1 = PA)AP:||. 1t follows that (Aey, fy) — 0

for every A in A. On the other hand, it follows that lim,|(Tey, f,)| = limsup, ||(1 —
—P))TP,||. 1t follows that da(T,.4) > sup{limsup,||(1 — P\)TP:||: {P»} is a net of
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projections, ||(1 — Py)AP,|| — 0 for every A in A}.

To prove the reverse inequality, suppose that {e,} and {f,} are nets of unit
vectors in H such that (Aey, fn) — 0 for every A in A, and let é = limsup, |(Tex, fi)]-
By choosing an appropriate subnet, we can assume that limy|(Tex, fo)] = 6. Again,
by choosing an appropriate subnet, we can assume that ¢(S) = lim,(Sey, fa) exists
for every S in B(H).

It follows from Lemma 8 that there is a representation p: C*(A U {T'}) — B(H)
that is approximately equivalent to the identity representation on C*(AU {T'}) and
vectors u,v in H such that ||u||? = ||v||? <liminf,||ex|[{|frll = 1 and @(A) = (p(A)u, v)
for every A in C*(A U {T'}). Since p is approximately equivalent to the identity
representation, there is a sequence {U,} of unitary operators such that, for every A
in C*(AU{T}), lUsn(A)Un — p(A)}} — 0. Let P be the projection onto [p(A)u]".
It follows that (1 — P)p(A)P = 0 for every A in A, and since (p(A)u,v) = p(4) =0
for every A in A, we conclude that (1 — P)v = v. Thus ||(1 — P)p(T)P|| 2 |((1-
—P)p(T)Pu,v)| = |(p(T)u,v)] = ¢(T) = 6. For each positive integer n, let P, =
= U, PU,;. For each Ain C*(AU{T?}), we have ||(1=Pn)AP,|| = [[(1-P)U AU, P|| —
— [|[(1 = P)p(A)P||. 1t follows that [|[(1 — P,)AP.|| — O for every A in A and
limsup, ||(1 = Pa)TP,|| > 6. It therefore follows that d,(7,.A) < sup{limsup,||(1—
—P)\)TP;)|: {Px} is a net of projections, ||(1— Py)AP,]| — 0 for every A in A}.

(2). Thisfollows from the fact that if A is a C*-algebra and { P} is a net of projections
such that ||(1 — P\)AP,}| — 0 for every A in A, then ||P»A — AP,|| — 0 for every A
in A, and, for each A, we have [[P\T — TP, || = max(J|(1 — Px)TPx|, ||PAT(1 — P)l)).

: |

REMARKS. 1. The techniques of the preceding theorem, combined with the
techniques in [22], can be used to show that if A is a C*-subalgebra of B(H) and
T € B(H), then do(T, A) < sup{limsup,||U\T — TU,||: {Ux} is a net of unitaries,
[{UrA — AU|| — 0 for every A in A} < sup{limsup, [|SxT — T°Sx||: {Sx} is a net of
contractions, [[SaA — ASy|| — 0 for every A in A} < 2d4(T, A).

2. Note that if S is a norm separable linear subspace of B(H) with H separable, and
if T € B(H) and ¢ is any continuous linear functional on B(H), then there is a rep-
resentation p: C*(S U {T}) — B(H) that is approximately equivalent to the identity
representation and unit vectors f,g € H@® H @ - - - such that || f]|? = ||g]|*> = ||¢|| and
Y(S) = (p(°)(S)f, g) for every S in C*(SU{T}) (see the proof of Theorem 2.2 in [13]).
In particular, if § = A is a C*-algebra, 9|4 = 0 and ¢(T') = dist(T, A), and |[¢|| = 1,
then it follows that dist(p(T), p(A)") = dist(p(®)(T), p{®)(A)") > dist(T, A). If P is
any projection in p(A)’, then the proof of the preceding theorem (and the theorem
itself) shows that da(T,.A) 2 ||(1 - P)p(T)P||. It follows that if p(A)" is hyperreflex-
ive, then A is approximately hyperreflexive and K,(A) < K(p(A)"). In particular,
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it follows from [7, Thm. 2.3], [22, Thm. 2.1) that if A is nuclear, then, since p(A)"
is injective, Ko(A) < K(p(A)’) < 4. With a larger estimate of K,(A), we prove
(Theorem 13) that every C*-algebra is approximately hyperreflexive. |

~ CorOLLARY 10. If A is a unital subalgebra of B(H), then

ApprRef A = ApprAlgLatA.

CoROLLARY 11. If A is a unital subalgebra of B(H), then K,(A) < K if and
only if, for every € > 0, for every T in B(H) and every finite subset F of A, there is
a projection P in B(H) such that

(a) (1 = P)YTP|| > (K — €)dist(T, A),
and
(b) I(1~ P)SP|| <€ foreach S in F.

We now define an analogue of the notion of relative hyperreflexivity introduced
in [15). Suppose that S and 7 are linear subspaces of B(H) and § C 7. We say
that S is relatively approximately hyperreflexive in T if there is a smallest constant
K = Ko(S,T) such that dist(T,S) < Kda(T,S) for every T in T.

The following elementary lemma is contained in [15].

LEMMA 12. Suppose that R,S,T are linear subspaces of B(H) and RC SCT.
Then Ko(R,T) < (14 Ko(R,S))(1 + Kq(S,7)) - 1.

We are now ready to prove our main result. If H is a Hilbert space, then H(®)
denotes the direct sum of n copies of H; if T € B(H), then T(") denotes the direct
sum of n copies of T acting on H(®), Similarly, if p is a representation of a C*-algebra,
then p(*) denotes the direct sum of n copies of p.

THEOREM 13. If A is a unital C*-algebra of B(H), then A is approximately
hyperreflexive and K,(A) < 29.

Proof. Let M = {h € H:'[IC(H.) N Alh = {0}}, let: Q be the projection onto M
and let P = 1—- Q. The identity representation of ANK(H) is unitarily equivalent to
() : @ i
OGBZ ‘r,-(n') relativeto H = M @E H,-(n’), with each 7; irreducible. The identity
i i

representation on A is unitarily equivalent to 7@ Z 7r,-(n'). Also PA"P is the set of
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operators of the form 0@2 T; "/ with each T; in B(H;). Let B = QB(H)Q+PA"P
i

be the set of all operators of the form T & ZGBT‘(n,;) with T in B(M) and each T;

in B(H;). Then B is a type I von Neumann a,'lgebra, and by {7, Thm. 2.4], [22, Thm.
2.1] B is hyperreflexive with K(B) < 4. Clearly, K,(B) < K(B).

Next let D = (A+K(H))NB. Then D = PK(H)P+A. Suppose T € B and choose
a continuous linear functional ¢ with norm 1 so that ¢|D = 0 and (7'} = dist(T, D).
Since BNK(H) C kerp, and (B+ K(H)]l/K(H) is isomorphic to B/K(H), it is possible
to extend ¢ to a continuous linear functional ¢ on B(H) with norm 1 such that
K(H) C kery. It follows from Lemma 4 that there are nets {ex} and {fr} of unit
vectors converging weakly to 0 such that ¥(S) = lim,(Sea, f)) for every S in B(H).
It follows that dist(T, D) < do(T, D). Hence Ko(D,B) = 1.

It follows from Lemma 12 that D is approximately hyperreflexive and K,(D) <
S@+1H)(1+1)-1=9.

" Next suppose that T € D. Then T = A+ B with A € A and B € PK(H)P. It
follows that dist(T,.A) = dist(B, .A) and dq(T, A) = da(B, A). Hence we can assume
that T € PK(H)P. Suppose e anc. f are unit vectors in M. The formula @(A) =
= (Ae, f) defines a continuous linear functional on A that annihilates ANK(H). Argu-
ing as before, we obtain nets {ux} and {va} of vectors in the unit ball of H converging
weakly to 0 such that ¢(A) = limy(Auy, vy) for every A in A. Clearly, we can choose
the ux’s and vy’s to be in {e, f}*. Define ey = (e+ux)/v/2 and fy = (f ~v2)/V?2 for
each A. Then (Aey, fa) — 0 for every A in A and (Tey, fo) — (Te, f)/2. 1t follows
that |(Te, f)] € 2d4(T,A). Since T = PTP, we conclude that ||T|| < 2d4(T, A).
Thus dist(T, A) < 2d4(T, A). It follows that K.(A,D) < 2, and by Lemma 12, we
conclude that A is approximately hyperreflexive and K;(A) < 9+ 1)(2+1)-1=
= 29. u

The techniques of the preceding proof yield three more useful results for arbitrary
linear subspaces. Perhaps the most remarkable of these is the following characteriza-
tion of approximate hyperreflexivity.

ProrosITION 14. Suppose that S is a norm closed linear subspace of B(H).
Then S is approximately hyperreflexive if and only if there is a constant K, such
that, for every finite-rank operator T in B(H),

dist(T, §) < Kd4(T, S).

Proof. Suppose there is a constant K, such that, for every finite-rank operator
Tin B(H) dist(T,S) € Kd, (T, S). If S € S and T has finite rank, it follows that
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dist(S + T,8) = dist(T,S) < Kdy(T,S) = Kdu(S + T,S). Since the seminorms
dist( ,S) and dq( , S) are norm continuous, we conclude that dist(T,S) < Kd.(T,S)
holds for every T in [S + K(H)]~. However, we know from Corollary 6 that K,([S+
+K(H)]™) = 1. Thus, by Lemma 12, S is approximately hyperreflexive.

The reverse implication is obvious. [ ]
Another result shows the relation between RefS and ApprRefS when § C K(H).

" ProPosITION 15. Suppose S C K(H). Then ApprRefS = K(H) N RefS, and
ApprAlgLatS = C*(K(H)) N AlgLatS.

Proof. Suppose T € K(H)NRefS. Suppose via contradiction {ex} and {f,} are
nets of unit vectors such that (Sex, fa) — 0 for each S in S, but (Te,, fr) / 0. By
choosing an appropriate subnet we can assume that there is an € > 0 and vectors
e, f such that ey — e weakly and f), — f weakly and, for every A, [(Tex, fi)] = €.
However, for every compact operator A, we have (Aey, fa) — (Ae, f). Hence (Se, f) =
= 0 for every S in S, but |(Te, f)] > €. This contradicts the fact that T € RefS.

For the converse, it is clear that ApprRefS C RefS and ApprRefS C
C ApprRefK(H) C K(H). n

Corollary 6 states that S is approximately hyperreflexive whenever K(H) C §.
The following result shows what happens at the other extreme.

PROPOSITION 16. Suppose S is a linear subspace of B(H). If SNK(H) = 0 and
S + K(H) is norm closed, then § is approximately hyperreflexive.

Proof. The hypotheses imply that if 7 is the restriction to § of the quotient map
from B(H) to B(H)/K(H), then 7 is 1-1 and 5(S) is closed. Thus 71:9(S) —» S
is a bounded linear map. Suppose that T" has finite rank and choose unit vectors e,
f in H so that (Te, f) = ||T||. The mapping s — (n73(s)e, f) on 5(S) extends to
a linear functional 8 on B(H)/K(H) with ||8]] < |[7~ !}l The functional ¢ = Bon
defines a continuous linear functional on B(H) that annihilates K(H). Ience there
are nets {ex} and {f,} of vectors converging weakly to 0 such that |lex||? = ||fa]|? =
= ll¢ll < lIn7Y| for every A, and such that ¢(A) = limx(Aea, fo) for every A in
B(H). We can assume that the ey’s and f’s are all in {e,f}J'. Let uy =e+e) and
vr = f — fr for each A. Then |ju,||?> = |[vAl|> = 1 + ||¢|| for every A, (Sua,va) —
— 0 for every S in § and (Tux,vy) — (Te, f) = ||T|| > dist(T,S). It follows that
dist(T, S) < (1 +{le|)da(T,S8) < (1 + ||~ H|)da(T, S) for every finite rank operator.
It follows from Proposition 14 that S is approximately hyperreflexive. Moreover,
Kao(S) < 2+ IIn~ )2 - 1= 3+ 2|57 n

Let £ denote the collection of continuous linear functionals on B(H) that are
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bounded w*-limits of rank-one tensors, i.e., ¢ € & if and only if there are bounded nets
{ex} and {fn} in H such that, for every T in B(H), we have o(T) = lim,(Tex, f»).
It follows, for each linear subspace S of B(H), that

ApprRefS = (St N &)y,

where * denotes the annihilator in B(H)!, and ; denotes the preannihilator in B(H).
Moreover, it follows from Lemma 8 that, for every subspace S of B(H), we have

da(T, S) = sup{le(T)|: p € S* NE and |lof| = 1}.

It follows that S is approximately hyperreflexive if and only if S is £-hyperreflexive
in the sense of [15]. It follows that we can apply all of the relevant results of [15].

We call the weak topology on B(H) induced by the linear span sp€ the ap-
proximate weak operator topology on B(H); we denote this topology as the a.w.-
topology. Note, by Proposition 7 and Lemma 8, ¢ € £ if and only if ¢|K(H) can
be represented as a rank-one tensor; whence ¢ € sp€ precisely when ¢|K(H) is con-
tinuous with respect to the weak operator topology. In particular, £ contains all of
the functionals ¢ in B(H )} that annihilate K(H). By the weak topology on B(H)
we mean the o(B(H), B(H)")-topology. The map n: B(H) — B(H)(®) defined by
7(T) = T(®) = T®T®- - - is a homeomorphism with the weak* (ultraweak) topology
on B(H) and the weak operator topology on B(H)(*). Similarly, 7 is a homeormor-
phism with the weak topology on B(H) and the a.w. topology on B(H)(*).

In [15] it is shown, for a linear subspace S of B(H) and an operator T in B(H),
that T is in the a.w. closure of S if ad only if T(") € ApprRefS(") for each positive
integer n. It follows that if A is a unital subalgebra of B(H) and T € B(H), then T
is in the a.w. closure if and only if T(®) ¢ ApprAlgLatA(™) for every positive integer
n. In [13] it was asked if the latter condition implies that T" is the norm closure of
A. To find a counterexample, it suffices to find an algebra A that is norm closed
but not a.w. closed. Such an algebra is obtained by letting ¢ be a weak* continuous
linear functional on B(H) that is not continuous with respect to the weak operator
topology, and defining A to be the algebra of all operators on H @ H with an operator

matrix 0 A with A a scalar and A in kerp.

In [17] a subspace S was defined to have property D (resp. D,) if every weak
operator (resp. weak®) continuous linear functional agrees on § with a rank-one
tensor. The approximate analogues say that & has property D? (resp. D?2) if every
a.w. (resp. norm) continuous linear functional agrees on § with an element of £.
Intuition might suggest that since there are so many more norm continuous linear
functionals than weak®-continuous functionals that it should be more difficult for a
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subspace to have property D3 than to have property D, ; however, the opposite is true.
The next lemma gives a characterization that relates all four of the above properties.

LEMMA 17. Suppose § is a linear subspace of B(H).

(1) S has property D* if and only if every weak operator continuous linear func-
tional agrees on S with an element of £.

(2) S has property D} if and only if every weak® continuous linear functional
agrees on S with an element of £.

(3) property D = property D®, and property D, => property D3.

Proof. (1). Suppose every weak operator continuous linear functil‘mal agrees on
S with an element of £. Suppose ¢ is an a.w. continuous linear functional. Then
¢ = a + 3 where a is a weak operator continuous linear functional and §|K(H) = 0.
By hypothesis, there is an € in £ such that o — ¢ annihilates S. Let { = £ + 8. Then
 — ¢ annihilates 8, and since C|K(H) = €|K(H) is a rank-one tensor, it follows that
¢ € £. The reverse implication is obvious.
(2). This follows by imitating the proof of (1).
(3). This is obvious from (1) and (2). u

The following is a direct application of results in [15].

ProprosITION 18. Suppose S is an approximately hyperreflexive linear subspace
of B(H).

(1) Every approximate weakly closed linear subspace of S is approximately hy-
perreflexive if and only if § has property D*.

(2) Every norm closed linear subspace of § is approximately hyperreflexive if and
only if § has property D3.

(3) If T is an approximately reflexive linear subspace of B(H) and S+ T is norm
closed, then S NT is approximately hyperreflexive.
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