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AUTOMORPHISMS COMMUTING WITH A CONDITIONAL
EXPECTATION ONTO A SUBFACTOR WITH FINITE INDEX

YASUYUKI KAWAHIGASHI

0. INTRODUCTION

Kosaki extended the theory of Jones [21] on indices of subfactors of type IIy
to general setting for arbitrary factors in [25] based on Connes’ spatial theory [8]
and Haagerup’s work on operator-valued weights [11]. Since then, several results on
type III index theory have been obtained in [15, 16, 17-19, 26, 27, 28, 29]. In [27)
and [15], they showed that if a subfactor is contained in a factor of type III with
finite index, then the two factors are similar in some sense. Their work is actually
study of modular automorphism groups commuting with the conditional expectations.
From this viewpoint we generalize their methods to study automorphisms and group
actions commuting with the conditional expectation onto a subfactor with finite index.
Connes’ automorphism approach to studying factors has been so successful that we

try to study subfactors via automorphisms, and this is our first step.

It has been shown that a factor and its subfactor with finite index are similar
in the sense that the factor has properties like injectivity, fullness, and property T
if and only if its subfactor with finite index has the same property. (see (21], [32],
and [33] respectively.) Here we show that an automorphism on the ambient factor M
fixing a subfactor N with finite index globally and its restriction on N are similar in
several senses like innerness, central triviality, approximate pointwise innerness, and
pointwise innerness. In general, if o [resp. a|n] satisfies some property, then aff,
[resp. aP] satisfies the same property for some p which is determined by the index.
In particular, any non-trivial power of a single automorphism fixing a subfactor with
finite index globally is free [resp. centrally free] if and only if any non-trivial power
of its restriction on the subfactor is free [resp. centrally free].
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After the circulation of the first version of this paper as a preprint, the au-
thor received a preprint of Loi [28], in which he showed uniqueness of certain free
automorphisms of an approximately finite dimensional (AFD) factor M of type II;
fixing an subfactor N with finite index globally, assuming that N has finite depth
and N'N M = C. Loi studies these problems for applying them to classification of
subfactors of type IIIy AFD factors, 0 < A < 1. Here we have added Section 3 to
show that our method based on conditional expectations removes the irreducibility
assumption N' N M = C in Loi’s results without appealing to Ocneanu’s theorem,
whose proof has not been published.

Section 1 is devoted to general preliminaries on automorphisms commuting with
a conditional expectation. In Section 2, we apply the results in Section 1 to study
several types of automorphisms such as inner ones, centrally trivial ones, and so on.
We apply our method to Loi’s theory in Section 3.

The author is thankful to Prof. F. Hial and Prof. E. Stgrmer for sending their
preprints [18-19] and [13] respectively, to Prof. H. Kosaki for sending his preprint [26]
and unpublished work, and to Prof. P. H. Loi for sending his preprints [27, 28] and
helpful communications on the first version of this paper and [28]. The author also
thanks the referee for corrections of typographical errors and comments for improving

the exposition.

1. PRELIMINARIES

In [15), Hamachi and Kosaki compared flows of weights for a factor and a sub-
factor with finite index by contructing the crossed product algebras by modular au-
tomorphism groups. (See [9] for background on flows of weights.) We show that
their method can be extended to more general setting where actions commute with
conditional expectations.

In this section, we deal with the following assumption.

ASSUMPTION 1.1. Let N C M be o-finite von Neumann algebras, E a faithful
normal conditional expectation frormn M onto N, and o, an action of a separable
locally compact abelian group G on M with the following properties.

(Do E=E . qa
(2) The map z € M} — E(z) — Az is completely positive for some A > 0.
Note that condition (1) implies that N is globally invariant under the action ay.

(A necessary and sufficient condition for existence of E with (1) is given in [12].) We

denote oy simply by e if no confusion arises. We are interested in mainly factors,
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but we do not assume M and N are factors here because we will apply the results
to ultraproduct algebras and crossed product algebras later. If M and N are factors,
then the largest possible A in (2) is equal to (Index E)~!, where Index E' denotes
Kosaki’s index of a conditional expectation [25], by Kosaki’s unpublished work or [2].
(See the arguments preceding Definition 1.7.). The commutativity of G is used only
for considering dual actions. Note that if one conditional expectation from a factor
M onto a subfactor N satisfies (2) for some A > 0, then all the others also satisfy
it for some another A > 0 by [17]. Before working on the assumptions, we list easy
prépositions on the above (1).

PROPOSITION 1.2. Suppose M and N are factors and o, is an action of G on M
which fixes N globally. Condition (1) of Assumption 1.1 holds if one of the following
is valid.

(a) NNnM=C.

(b) M is of type Il and E is the conditional expectation with respect to the trace.

(¢) E has the minimal index in the sense of Hiai [17].

" Proof. Because a;! - E - oy is also a conditional expectation from M onto N

for each g € G, we get the conclusion by uniqueness of the appropriate conditional
expectations ([3, Théoréme 1.5.5], {17, Theorem 1(1)]). (Also see the proof of [18,
Theorem 2.8] as to (c).) u

If one conditional expectation E: M — N has a finite index for factors M and
N, then there exists the conditional expectation having the minimal index value by
[17], thus Lemma 1.2 (c) shows that Assumption 1.1 (1) is not very restrictive.

ProPoOsITION 1.3. Let N C M be o-finite von Neumann algebras, and E a
faithful normal conditional expectation from M onto N. Take a normal faithful state
@on N andset = ¢ - E € M. With G =R and oy = 0¥, g =t € R, we get (1)
in Assumption 1.1.

Proof. Immediate by [3, Lemme 1.4.3], [36, Corollary 10.5). [38]. |
Proposition 1.3 shows that our situation is a generalization of [27], [15], [26].
We now fix a normal faithful state ¢ on N and set ¥ = ¢ - E € M}.

LEMMA 1.4. Under Assumption 1.1, there exists a normal faithful conditional
expectation E from Mx4G onto NxoG with the following properties.

) E. Gp = Gp - E, where &, denotes the dual action for p € G.

(2) E|m = E.

(3) E — )id is completely positive on MxG.
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_ Proof. Regarding M x,G as a subalgebra of MQ®L(L?(G)) as usual, we set
E = (B ®id|L(L*(G)))|M xaG as in [19, Section 5]. It is clear that this £ satisfies
(1) and (2), and Assumption 1.1 (2) implies (3) because & is a restriction of £ @
®id|L(L*(G)). (In [19], this £ is called the canonical extension of E.) |

Assume Assumption 1.1 (2). Represent M in a standard form (M, H=H,.g, J, P)
(see [10], [1]), where ¢ is a fixed normal faithful state on N. We may assume ¢ - E =
wg,, @ vector state, with a cyclic and separating vector £ € H. We define ey and
construct My = (M, en) as in (25, Section 3]. (Here M and N do not have to be
factors.) Then it is shown that E=1(1) is a bounded element in Z(M) as in [2]. Indeed,
by vE-!()u* = E~Y(ulu*) = E-1(1) for u € U(M') we first get E-1(1) € Z(J\\l)+.
The proof of [25, Lemma 3.1] works even when M and N are not factors, thus we get
E~1(1)2 E~'(en) = 1. Then applying E~1(J - J) to the equality in [2, Remarques
3.4 (ii1)] with [2, Corollaire 2.14} and using E~!(en) = 1 and [2, Théoréme 3.5 b)),
we thus get 1< E~1(1) <A™t in Z(M),.

DEFINITION 1.5. Suppose Assumption 1.1 (2) holds.
(1) Define an operator valued weight Epr: My — M by

Eym(z) = (E7Y()"YJE~YJJ)], z€ M.

" (2) Choose the implementing unitary u, on H for g as in [10, Theorem 3.2] and
define an action @ of G by &, = Ad(u,) for g € G.

xtension of an automorphism a as above is independently studied in [28). For
type II; case, this was also mentioned in [40, page 227)].
The method of the following proof is essentially same as that of Lemma 1.3 in

[25).

LrMMA 1.6. Suppose E is a faithful normal conditional expectation from a von
Neumann algebra M onto a subalgebra N and « is an automorphism of M fixing N
globally. Then (a~!-E-a)~! = a!. E-!. &, where & is defined as in Definition 1.5
(2)-

Proof. Choose an implementing unitary u on H as in Definition 1.5 (2). For
weights ¢ on M and x on M, set §(z) = Y(uzu*), z € My, %(z) = x(uzu*), ¢ €
€ M}, and E(z) = u*E(uzu*)u, £ € M. Then by the same kind of argument as the

%u‘ = :_T/J Choosing a faithful state ¢ on N and

applying the same kind of argument as the proof of (25, Lemma 1.3] again, we get
(E-1Y= (E)~! as desired. |
" The following lemma shows that the new quadruple (M, M, E, &) satisfies As-

proof of {25, Lemma 1.3], we get u

sumption 1.1 again.
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LEMMA 1.7. Assume Assumption 1.1. For & in Definition 1.5, we have the
following.
(1) Ear is a conditional expectation from My onto M.
(2) The map x € My — Epm(z) — Az is completely positive.
(3) Gglnr = ay.
(4) ag(My) = M.
(5) G - Ens = Ent - .
(6) ag(en) = en.
(7) ag(JxJ) = Jay(z)J.

Proof. (1) If x € M, we get
Epm(z*z) = (E7Y())Y YWE~Y(Jz*zJ)] = (E~1(1))" Y J(J=* J)E~*(1)(Ja )] =

=(E- 1)) 2*JE~I(1)Jz = z*z.

(2) It is enough to show Ep(z)2 Az for z € M;. (Use E ® id, instead of E
for general cases.) We may assume that z is of the form y*y, y = arenby +--- +
+arenbr, ai,by,...,ak,br € M. Then A~1 > E-1(1) € Z(M), implies Ep(y*y) >
2 Ay'y.

(3) Trivial.

(4) We get the conclusion by My = JN'J, u,J = Juy, and a,(N) = N ([25,
Lemma 3.2], {10, Theorem 3.2], and Assumption 1.1).

(5) By (3), we have the desired equality on M. Thus it is enough to show
&g . EM(CN) = EM . &g(eN).

By Lemma 1.6, we get E~! = (a;' - E -ay)"' =a&;' - E~' - &,. Thus

Epm(éy(en)) = (E7' (1)) TE™ (Jug(en)ugl) = (BT (1) "W E™H(Gy(en))J =

= (B (1) 2" Tag (B~ (en))d = (E7' ()7,
by-[25, Lemma 3.1.]. On the other hand, we get &,(E~1)(1) = E-1(a,4(1)) = E~1(1),

hence

ay(Epm(en)) = ag(E71(1))7) = (BT ()~

These imply the desired equality.

(6) Simply write o and u for oy and ugy for a fixed g € G. As in the proof of
[25, Lemma 3.1], set K = N§; so that ey is the orthogonal projection onto K. Then
a vector 79 € K in the self-dual cone for N exists so that ¢ - a|y = wy,. By (1) of
Assumption 1.1, we get ¢ - E - & = wy,. By [38, Section 4], the unitary involutions
for M and N are the same, thus 7y is in the self-dual cone for M. Because eny = o,
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we get v - F - a = wy,, hence the implementing unitary u for a is given by u{zng) =
= a(z)€, £ € M. (See (1, Theorem 11].) Then

uenu®*(z&o) = uen(a~(z)no) = uena~ (z)enno) =

= uE(a~(z))0 = ua~1(E(z))no = E(z)& = enz&o.
(7) Trivial. »

If G = R and o is given by the modular automorphism group ¢¥Z, then we
have two ways of extending this to M;; 7*E on M as in Definition 1.5, and the
modular automorphism group of a state ¢ - £ - Epr on M. Lemma 1.7 (6) and [25,
Lemma 5.1] show that these two extensions coincide.

LEMMA 1.8. Under Assumption 1.1, the crossed product algebra M) x;G is the

basic extension of E: Mx,G — N31,G and we get & =&,

Proof. We represent M in a standard form on X, and consider everything in the
Hilbert space H ® L2(G) = L2(G,H). Let J be the modular conjugation for M x,G
and é be the projection corresponding to E. Then it is enough to show J (Mixg
%5G)J = (NxoG) by [25, Lemma 3.2]. For ¢ € L?(G,H), J is given by (J€)(g) =
= u}JE(g™!) by [11, Lemma 2.8]. On the other hand, we know that (Nx,G) =
= (N'® C,U*(C ® R(G))U) by [11, Theorem 2.1}, where R(G) is a von Neumann
algebra generated by the right regular representation of G and the unitary U on
L*(G, M) is given by (U€)(g) = ug€(g). For z € N’ and g € G, an easy computation
shows

(J(z ® 1)J€)(g) = &, (J2I)é(g),
JU*(1®p,)UJ = 1@ Ay,

where p and A denote the right and the left regular representation of G. Because
M, = JN'J by [25, Lemma 3.2], this shows J(N%,G)'J = M1x5G.
It is easy to see & = & now. L
The following is a generalization of {15, Theorem). With above preliminaries, the
same method as in [15) works, but we include a proof for the sake of completeness.

THEOREM 1.9. Under Assumption 1.1, let Z(Mx,G) = L®(X,pum) and
Z(Nx4G) = L®(Xn,pn). Then there exists a non-singular action T of G on a
measure space (X, pt) such that the both L*°(Xas) and L*(Xy) are regarded as sub-
algebras of L (X) and there exists a conditional expectation E, from L*°(X) onto
L>®(Xn) [resp. Ez from L®(X) onto L®(Xy)], with Pimsner-Popa estimate with
the constant X, intertwining T, and &, p € G
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Proof. By Lemma 1.4 (3) we have the Pimsner-Popa estimate for £. The restric-
tion of this £ on Z((Mx,G) N (Nx,G)') = L®(X, ) gives a map from Z((Mx,
¥ G) N (N3oGY) to Z(Nx,G), which still satisfies the inequality.

Lemma 1.7 allows us to apply the same arguments for M C M;. Then Lemma
1.8 implies that (M x4G)N(N%,G)' is anti-isomorphic to (M1 %5G)N(Mx,G)' and
this anti-isomorphism intertwines o and @&, hence we get the conclusion. ]

2. INNERNESS, CENTRAL FREENESS, AND SO ON

In this section, we apply the results in Section 1 to show that an automorhism on
a factor M fixing a subfactor N with finite index globally is similar to its restriction
on N in terms of innerness, central triviality, approximate pointwise innerness, and
pointwise innerness.
- First note that if the action o, is centrally ergodic both on M and N, we get the
following, which generalizes [15, Theorem).

THEOREM 2.1. Suppose the action o, is centrally ergodic both on M on N
in addition to Assumption 1.1. Set Z(Mx,G) = L®(Xpm,pm) and Z(NXoG) =
& L®(Xn, pn). Then there exists a non-singular action T of G on a measure space
(X, p) satisfying the following.

(1) X is isomorphic to Xpr x {1,2,...,m} and Xy x {1,2,...,n} as a measure
space, where m, n are integers with m,n < Index E.

(2) The projection maps np and ny from X = Xy x {1,2,...,m} = Xy x
x{1,2,...,n} onto Xp and Xy intertwines T and the actions given by & on Xy
and Xy.

Proof. Apply the proof of Theorem 1.9. The action T is given by the dual action
of @ on Z((Mx,G) N (NxqG)'). Then the disintegration for Z((MxoG) N (N x4
XaG)') D Z(Nx,G) implies L®(X, p) = /® A(z)dpn(z), where A(z) is an abelian
von Neumann algebra for each z € Xy. (ge’é [39, Theorem 8.21] for instance.) Let
Y be the subset of £ € X such that .4(z) has a partition of unity into ¢ nonzero
mutually crtkogonal projections with ¢ > A~1. Then the Pimsner-Popa inequality
implies un(Y') = 0. Hence each A(z) is atomic, and the number of atoms is less than
or equal to Index E. Lemma 1.4 (1) implies that the number of atoms is invariant
under the ergodic action induced by & on Xy. (Because « is centrally ergodic, the
dual action is also centrally ergodic by [22, Proposition 2.1.13).) Thus X is isomorphic
to Xy x {1,2,...,n} with n<A~1. We apply the same arguments for M C M; again
to get the conclusion. |
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The next shows the relations of Connes spectra of o and «|N.

COROLLARY 2.2. Assume a is centrally etgodic both on M and N in Assumption
1.1. Then there exists an integer k such that kI'(a) C T'(a|N) and kI'(a|N) C T'(a).

Proof. Set k = [A™Y]!. If p € T'(a|N) C G, then disintegration in Theorem 2.1
shows that T}, = id on X, hence kp € T'(a). We get the converse inclusion, too. W

- Because & on Z(Mx,G) is given by the characteristic invariants (see [20],{22,
Proposition 2.1.13)), this gives a restriction on a relation of characteristic invariants of
o and a|N. In the simplest case, we get the following, which generalizes [27, Corollary
2.5.9], a result on T-sets.

THEOREM 2.3. Suppose N is a subfactor with finite index of a factor M and
« is an automorphism of M with «(N) = N. Assume « [resp. «|N] is inner. Set
p = po(a|N) [resp. p = po(e)], the outer period, and ¥ = v(a|N) [resp. ¥ = v(e)],
the obstruction. (See [5] for definitions.) Define q to be the least positive integer such
that v? =1, ¢<p. Then p > 0 and pg< Index E.

Proof. Choose a conditional expectation £: M — N with minimal index and
apply Theorem 2.1 with A =(Index E)~!. The center of NxoZ [resp. MXqZ] is
generated by (uU~P)?, where Ad(u) = of|N [resp. Ad(u) = of], and U is the
implementing unitary in the crossed product algebra. Because of compactness of
T = Z, the action T of T in Theorem 2.1 is (translation)xid on T x {1,...,m}. By
the n-to-1 projection 7y, we get a translation of T with speed pg on T, thus we get
mpq = n [resp. npg = m]. Then we get the conclusion. [ |

COROLLARY 2.4. Suppose N is a subfactor with finite index of a factor M and
o Js an automorphism of M with a(N) = N. Then a is free if and only if a|N is so.

Proof. Immediate by Theorem 2.3. u

Loi independently obtained this corollary in [28, Corollary 5.2] by a different
method.

Next we work on centrally trivial automorphisms. Several properties of centrally
trivial automorphisms were studied in [5, 23, 30, 37], and it has been known that
this class of automorphisms is important for classification of group actions. (For the
ultraproduct algebras, see [4] or [30, Chapter 5).)

DEFINITION 2.5. Let M and N be o-finite von Neumann algebras, E a faithful
normal conditional expectation from M onto N, and w a free ultrafilter on N. Define
M, n to be the quotient of all bounded sequences (z,) in M such that ||[zn,, - E]|| —
— 0, n — w, for all ¢ € N,, by the two sided ideal of sequences converging *-strongly
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to 0 when n — w.

LEMMA 2.6. The C*-algebra M, n in Definition 2.5 is a finite von Neumann
algebra.

Proof. The same proof as [4, Theorem 2.9] works. |

THEOREM 2.7. Suppose N is a subfactor with finite index of a factor M and «
is an automorphism of M with a(N) = N. If o [resp. a|N] is centrally trivial, then
there exists a positive integer p < Index E with of|N € Cnt(N) [resp. af € Cnt(M)].

Proof. Choose a conditional expectation £: M — N with the minimal index
again. First assume a|N € Cnt(N).

Note that o acts on M, x. We denote Aa“' for this action. Then M,, and N, are
subalgebras of M, v and a*(M,) = M, and o*(N,) = N,. Applying E term by
term, we get a normal faithful conditional expectation E“ from M, n onto N, with
the Pimsner-Popa estimate with constant A = (Index E)~!. Thus Assumption 1.1 is
satisfied for this E“. (cf. Proposition 1.11 of [32].)

We claim next that there exist a positive integer p<Index E and a non-zero a €
€ M, ~ such that (a“)?(z)a = az for all z € M,, n. Suppose not. Then the center of

the crossed product algebra M, yXq«Z is contained in Z aU k |a; €
k=0,|k|>Index E

€ Mw,N}, where U is the implementing unitary of the crossed product M, yXqvZ.

Thus there exists no non-zero a in the center such that a®,(a) = p*a, p€ T C C,
for any 0 < k<Index E. On the other hand, the dual action of T on Z(N,X4 Z) =
= Z(Nu,) ® L*°(T) is given by idx(translation). By compactness of T, we know that
the space X and the action T in Theorem 1.9 are of the foorm X =2 Y x 7T, T =
= idx(translation). Decomposing X into speed ! components for each | € Z, we get
a contradiction to the property of mas.

The same proof as in [5, Proposition 2.1.2] shows that (a*)? is trivial on M,
now. (It does not matter that a is not in M, here.)

On the other hand, assume « is centrally trivial on M. Then by Lemma 1.7 and
the above proof, there exists a positive integer p < Index E such that & is centrally
trivial on M;.

Note that a|N is conjugate to @*~ by Lemma 1.7 (6). If N is of type II;, then M;
is also of type II;, and [6, Proposition 4.2, Theorem 4.3] imply that oP|N is centrally
trivial. If N is of type I, then M; is also of type Il and tra, (en) = oo, hence en
is equivalent to 1 in M. If N is of type III, then ey is equivalent to 1 in M, again.
In the both cases, choose a partial isometry v € My, with vv* = ey and v*v = 1.
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Then Ad{v*&(v)) - & is conjugate to &°N, hence to a|N. This implies that o?|N is
centrally trivial. |

CoROLLARY 2.8. Suppose N is a subfactor with finite index of a factor M and
« Is an automorphism of M with a(N) = N. Then any non-trivial power of & is
centrally free if and only if any non-trivial power of a|N is centrally free.

Proof. Immediate by Theorem 2.7. |

Connes and Takesaki introduced a continuous homormorphism “module” from
Aut(M) to Aut(F(M)) in [9]. (Here M denotes a infinite separable factor and F(M)
its flow of weights.) For AFD factors, the module is important as a tool for distin-
guishing approximately inner antomorphisms. We show that this mod is compatible
with the common finite extension of flows of weights of [15].

THEOREM 2.9. Suppose N is a subfactor with finite index of a separable factor M
of type Ill and « is an action of the discrete abelian group G on M with ay(N) = N
for all g. Set Z(Mx,R) = L®(Xur,pam) and Z(Nx,R) = L®(Xy, pN), where o
denotes the modular automorphism groups c¥'E for a weight ¢ on N. Then there
exists a non-singular action T of G x R on a measure space (X, u) satisfying the
following.

(1) X is isomorphic to Xpr x {1,2,...,m} and Xy x {1,2,...,n} as a measure
space, where m, n are integers with m,n<Index E.

(2) The projection maps wpr and wn from X = Xpr x {1,2,...,m} = Xy X
x{1,2,...,n} onto Xps and Xy interwines T and the actions given by the product
of mod(«a) and the flow of weights on Xar and Xy .

First, we show a lemma.

LEMMA 2.10. Assume the assumption of Theorem 2.9. Without loss of generality,
we may assume that there is a dominant weight ¢ on N with the following properties:

(1) The weight % is invariant under «|N.

(2) The weight ¥ - E is dominant on M and invariant under a.

(3) The action a extends to a pair M = Mx,oeR D N = Nx,R so that the
extended action satisfies Assunption 1.1 with E of Lemma 1.4.

Proof. Choose a conditional expectation E: M — N wifh the minimal index
again. By Lemma 1.4, we may rcplace @, E, M and N by &, E, M®L(L*G)), and
N&L(L%(G)), respectively. Then apply [37, Lemma 5.10] to get a dominant weight
¥ on N which is invariant under the (new perturbed) action «|N. (The cocycle to
perturb « is chosen within N, hence the perturbed action still satisfies Assumption
1.1 (1).) Then ) ~ At for all A > 0 implies ¥ - E ~ AY - E on M, hence ¢ - F is also
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dominant. (See [9, Theorem II.1.1, Definition 11.1.2].) The action o now extends to
the crossed product bt R as in [13, Lemma 13.2]. It is easy to see that this satisfies
(3). ' ]

Proof of Theorem. 2.9. We may assume (1), (2), and (3) of Lemma 2.10. The
action o extends to M; as in Lemma 1.7 and then it extends to the crossed product
M; by the modular automorphism group as in [13, Lemma 13.2]. On the other hand,
o extends as in (3) of Lemma 2.10 and it extends to M; (see Lemma 1.8) as in
Lemma 1.7. It is easy to see that these two extensions coincide. Then we can apply
the argument of [15] (or Theorem 2.1 here) to get the conclusion. |

Haagerup and Stgrmer showed that mod(a) is trivial if and only if « is ap-
proximately pointwise inner in [13, Corollary 13.5]. (See [13, Definition 12.3] for the
definition.) Thus we get the following corollary.

COROLLARY 2.1. Suppose N is a subfactor with finite index of a separable factor
M of type Il and « is an action of the discrete abelian group G on M withay(N) = N
for all g. Define

P(a) = {g € G| ay is approximately pointwise inner.}.

Then there exists an integer k such that kP(a) C P(a|N) and kP(a|N) C P(c).
Proof. Apply the same argument as the proof of Corollary 2.2. a

For AFD factors, the module is trivial if and only if the automorphism is approx-
imately inner as announced in [7, section 3.8]. (See [23, Theorem 1 (i)] for the proof.)
Thus we get the following corollary immediately.

COROLLARY 2.12. Suppose N is an AFD subfactor with finite index of a separable
factor M of type III and a is an action of the discrete abelian group G on M with
ay(N) = N for all g. Define A(a) = {g € G|, is approximately inner.}. Then there
exists an integer k such that kA(a) C A(a|N) and kA(a|N) C A(a).

Haagerup and Stgrmer also introduced the notion of pointwise inner automor-
phisms in [13, Definition 12.3] and studied them in [14]. In particular, they showed
that an automorphism a of a separable factor M of type IlII,, 0< A < 1, is pointwise
inner if and only if its canonical extension & to M X,R is inner ([14, Theorem 5.2))
and that an automorphism « of a separable factor of type III is an extended modular
automorphism up to inner perturbation if and only if & is inner ([14, Proposition
5.4]). On the other hand, the flow of weights of the crossed product of a factor M
of type III by an action « of a discrete group G is determined by the flow of weights
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of M,
H = {g € M|a, is an extended modular automorphism up to inner perturbation.},

and the restriction of @ on H. (See [35, Theorem] and [24, Theorem 3.3). In [24],
injectivity of the factor is assumed, but it is unnecessary.) This shows importance of
this type of automorphisms. Note that for an automorphism of AFD factors, it is an
extended modular automorphism up to inner perturbation if and only if it is centrally
trivial as announced in (7, section 3.8] (see (23, Theorem 1 (ii)] for the proof). Now

we get the following theorem for this type of automorphisms.

THEOREM 2.13. Suppose N is a subfactor with finite index of a separable factor
factor M of type III and & is an action of the discrete abelian group G on M with
ay(N) = N for all g. Define

D(a)={g € G| ay is an extended modular automorphism up to inner perturbation}

Then there exists an integer k such that kD(a) C D(a|N) and kD(a|N) C D(a).

Proof. Extend o to M and N as in Lemma 2.10. Now we can apply Theorem
1.9 as in the proof of Theorem 2.7. By (24, Lemma 3.2] and [14, Proposition 5.4], we
conclude that if ag| N is an extended modular automorphism up to inner perturbation,

then so is of) on M for some p<IndexE. The conclusion now easily follows. ]

REMARKS 2.14. It follows from Theorem 2.13 that for an automorphism o of a
separable factor M of type III fixing a subfactor N with finite index globally, none of
its nontrivial power is an extended modular automorphism up to inner perturbation
if and only if we have the same property for o|N. An approach based on [35] or [24,
Theorem 3.1, Theorem 4.1] can also be used for this. For example, suppose M is of
type III; and none of non-trivial powers of a are extended modular automorphisms
up to inner perturbation. Then « is a free action of Z on M, hence free on N by
Corollary 2.4. Now M x,Z and Nx,Z are both factors and the index of the pair is
finite. By [35, Theorem], MX,Z is of type III;, hence Loi’s result [27] (or Corollary
2.2 here) implies that Nx4Z is also of type III;. If a?|N = Ad(u) - o, for some p > 0,
then the flow of weights of Nx,Z is given by L®(T)® for some rational rotation S
as in the proof of [24, Theorem 4.1], hence Nx,Z is of type III, for some A €]0, 1],
which is a contradiction.

REMARKS 2.15. For AFD factors, an automorphism is centrally trivial if and only
if it is an extended modular automorphism up to inner perturbation. ([7, section 3.8],
{23, Theorem 1 (ii)).) Of course, above Theorem 2.13 is compatible with Theorem 2.7

for this case.
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By [14, Theorem 5.2], we get the following corollary immediately.

COROLLARY 2.16. Suppose N is a subfactor with finite index of a separable

‘ factor M of type I, 0< A < 1, and « is an action of the discrete abelian group G

on M with ay(N) = N for all g. Define I(a) = {9 € G|a, is pointwise inner.}. Then
there exists an integer k such that kI(a) C I{(a|N) and kI(a|N) C I(a).

3. APPLICATION TO LOI'S CLASSIFICATION OF AUTOMORPHISMS OF SUBFACTORS

This section consists of remarks on Loi’s paper [28] to the effect that the irre-
ducibility assumption N’ N M = C in his results can be removed.

Basic observation in [28] is that Connes’ method in [5) to show uniqueness of
a centrally free and approximately inner automorphism of a McDuff factor works
in the subfactor setting where M®R = M, Int(M), Aut(M) and M’ N MY are
replaced by (N C M) = (N®R C M®R), Int(M, N), Aut(M,N), and M’ N¥
respectively. (Here Aut(M,N) = {a € Aut(M)|a(N) = N} and Int(M,N) is a
closure of {Ad(u) |u € U(N)} in Aut(M, N), and R denotes the AFD type II; factor.)

In [28, Proposition 4.4], Loi proved the following proposition under an additional
condition N’ N M = C for applying Connes’ non-commutative Rohlin method in [5]
to M’ N N*. This is used in [28, Proposition 6.1] to show splitting of the AFD factor
of type III,. (See Proposition 3.7 below.) The readers is referred to [31] or [34] for
definitions of finite depth, tunnel, and other related notions.

PRrOPOSITION 3.1. Let N C M be AFD factors of type Il of finite index and
finite depth, and o € Aut(M.N). If o is a free action of Z on M, then the restriction
of a,, onto M’ N N¥ is also free.

For the proof, Loi uses a theorem of Ocneanu announced in [31, page 137, The-
orem b)], whose proof has not yet been published, to the effect that M’/ N N¥ is
a subfactor of M, with finite index. (Ocneanu recently announced more detailed
study of the inclusion M' N N¥ C M, .) Here we give a more direct proof to the
above proposition based on our results and Popa’s approach [34] without assuming
N'NnM=_C.

Assume N C M be AFD factors of type II; with finite index. We choose and fix a
tunnel ---No C Ny C N = Ny C M = N_, and Jones projections {e_;}j=0,1,2.. C M
such that e_; € Nj_; and N; N{e_j} = Nj41. Then we get the following lemma
first.

LeMMA 3.2. Fix a free ultrafilter w on N. Then ---NY C NY C NY C M¥ is a
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tunnel! for the ultraproduct 11, factorM“ and Jones projections {e;j};j=0,1,2,.. C MY
satisfy N’ N {e_;}' = N{,,.

Proof. We prove this by induction on j. By [32, Proposition 1.10], we get
Ene, (e-j-1) =[M : N7t =[ny : Ny, )7

Thus if we set P = N{,; N {e_j1}, then this is a II; subfactor of N{¥,, with the
index equal to [M : N] by [32, Corollary 1.8]. Now N¢,, is included in P and have
the same index in N}, as P. This means Nj’,, = P = Nf;; N{e_;_1}". |

The following corresponds to (a part of) [31, page 137, Theorem d)].

LEMMA 3.3. Let N be a subfactor of a AFD 1I; factor M with finite index and the
generating property in the sense [34] that there exists a tunnel with V;(N]NM) = M
We fix such a tunnel. Then M’ N N¥ = {eg,e_1,e_2,...} N N¥ jn M¥“.

Proof. Because Jones projections are in M, it is trivial that we get
M'NN“C {60,8_1,6_2, . ..}' NNY“,

Choose an z € {eg,e_1,€6—3,...}) N N¥ and y € Nj N M for some j. Then
z € N N{eo,...,e~j41} = N{’ by Lemma 3.2. This implies zy = yz. By V;(N; N
NM) =M, we get z € M'. |

We consider the conditional expectation Epriqnye on MY with respect to the
trace in the above situation and denote its restriction on M, just by E. For this E,

Popa’s method gives a Pimsner-Popa estimate as follows.

LEMMA 3.4. Let N be a subfactor of an AFD 1I; factor M with finite index and
finite depth. We fix an arbitrary tunnel {Ni}. There exists a positive constant ¢ such
that for any positive element & in Ny V Z(N; N M), we get En, (z) > cz.

Proof. Let n) = (n(’ )) and p{/) l= (p(" ) ) be the vectors denoting the size and the
trace of the minimal projection in each irreducible component of NJ’ N M respectively.
By [34, Theorem 3.8), there exists jo such that p(z’ ) - = [M : N)ie-ip; (Zio+1) gor
§ > jo. Because nl#).pli) = 1, the vector [M : N}e=in(%+1) approaches to a Perron-
Frobenius eingenvector of AA* as j — co, where A denotes the inclusion matrix as in

{34, Corollary 2.3].
For p( 4 ), we have a similar result. Then we set ¢ = inf; kni’ )pg ), which is

positive. |

LEMMA 3.5. Let N be a subfactor of an AFD 1l; factor M with finite index and
finite depth. We fix an arbitrary tunnel {N}. Then there is a positive constant ¢
such that E — cid is completely positive on M,,,.
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Proof. Without loss of generality, we may assume the tunnel (N;); has the
generating property. (Such a tunnel can be chosen by [34, Theorem 4.9].)

First note that (E @ ida}(z) = jlil& Enegm.(c)(z) for z € MY @ M, (C) by
Lemmas 3.2 and 3.3. (Here all the conditional expectations are in M“ with respect
to the trace. This equality with n = 1 proves the formula in [31, page 137, Theorem
d)] without the assumption N'N M =C.)

Fix j.n. Then there exists a positive constant ¢ such that

E(njv(vinMy)«@Ma(€)(Z) 2 ez

for all z € (M, ® Mn(C))4+ by [34, Theorem 4.3], because (N; ® M, (C)); is a tunnel
in M @ M,(C). Because ¢ € M, ® Myp(C), we get E(N,-v(N;nM))'-'@M..(C)(’?) =
= E(vaz(N;nM))mM..(C)(z)- Then we get

Envoma(€)(2) = Envem.©)(Ew;vzivinmyoma(c)(z)) 2 cc'z,

where ¢’ is given by Lemma 3.4 applied to the tunnel (N; ® M,(C)); in M ® M,(C).
This proves the conclusion. [ |

Now we can prove the Proposition.

Proof of Proposition 3.1. Because a €Aut(M, N), we know that o, acts on both
M, and M' N N¥. The conditional expectation E: M, — M’ N N* commutes with
o, because the trace is o, -invariant, thus Assumption 1.1 is satisfied by Lemma 3.5.
Suppose there exists k > 0 such that af is not properly outer on M'NN“. Then [28,
Proposition 4.2) implies that «f is trivial on M’ N N¥, hence

(M’ A N“)xaaZ = (M’ 0 N“BL2(T).

On the other hand, we know that a,, on M, is free as a Z-action by [5], thus The-
orem 1.9 implies that the dual action on Z((M' N N“)x4xZ) is trivial, which is a
contradiction. (Also see the proof of Theorem 2.7.) u

Assume N is a subfactor of a II; factor M with finite index and fix a tunnel
{N;};j>0- To apply Connes’ method in (5], one needs a characterization of Int(M, N).
For this purpose, Loi defined a homomorphism & from Aut(M, N) to the group G of
a system of automorphisms {ax}x>0 with

(1) each ax is a trace preserving automorphism of N{ N M;

" (2) ax preserves the inclusion NN N C NinM for 0<j<k;

(3) ak extends aj_1;

(4) ar(e—j)=e_; for 0Kj<k -1,



142 YASUYUKI KAWAHIGASHI

by fixing e;’s successively by inner perturbation ih [28, Section 5]. He showed the
continuity of ® under the assumption of NN M = C in [28, Proposition 5.3} to
get an exact sequence characterizing Int(M, N). (See Proposition 3.8 below.) The
topology of G here is given by convergence for each k. We show this continuity without
assuming N'N M = C as follows. Note that this ® reminds us the module of Connes-
Takesaki for automorphisms of type III factors [9, page 554]. (See also [28, Theorem
5.4] for a similarity between the two.) The following proof is an analogue of the proof
of Connes-Takesaki for continuity of mod.

PROPOSITION 3.6. The above ®: Aut(M,N) — §G is continuous if [M : N] <
< #+o00.

Proof. The map u € U(N) — uequ® is a continuous surjection onto
{p € Proj(M) | En(p) = [M : N]™"}

by [32, Proposition 1.2]. Because the both spaces are Polish, we get a Borel cross
section ¥ such that ¥(p) € U(N) and ¥(p)eo¥(p)* = p by von Neumann measurable
cross section Theorem, [39, Thecrem A.16]. Then a; is given by the restriction of
Ad(¥(a(e))*) - o on the relative commutant N{ N M. Because both Aut(M, N) and
the group of a; are Polish groups, the map o — ay is continuous. (See [4, Lemma
3.4] for example.) This method works for any k. [ |

The assumption N’ N M = C is used only in [28, Proposition 4.4, 5.3]. Thus we
get the following generalization immediately.

By our Proposition 3.1 instecad of [28, Proposition 4.4], we get the following,
which generalizes [28, Proposition 6.1}, with the same proof.

PRoOPOSITION 3.7. Let N C M be an inclusion of AFD III, factors of finite
index and finite depth with common discrete decompositions. If the tower of the
higher relative commutants of N C M is equal to that of the corresponding type
IIlh inclusion, then there exist AFD factors B C A of type 11; such that N C M is
isomorphic to BRR\ C ABR,.

By Proposition 3.6 instead of [28, Proposition 5.3], we get the following.

PROPOSITION 3.8. Let N C M be an inclusion of AFD 1I; factors of finite index
and finite depth. The following sequence is split exact.

1 — Tnt(M, N) — Aut(M,N) 2 g — 1.

This shows that a free automorphism in Ker(®) is unique up to outer conjugacy
without assuming N'NM = C.
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