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MULTIPLIERS AND INVARIANT SUBSPACES
IN THE DIRICHLET SPACE

STEFAN RICHTER and CARL SUNDBERG

1. INTRODUCTION

The Dirichlet space D is the space of all analytic functions f on the open unit
disc D that have a finite Dirichlet integral, i.e.

o(f) = [[Ir@PaaE <
D

where d A(re'!) = lrdrdt denotes the normalized area measure on D. The operator
of multiplication by 2 on D is called the Dirichlet shift, and we denote it by (M., D).
In this paper we study the invariant subspace structure of (M;, D). It is one of
our main results that every invariant subspace M is generated by a multiplier ¢, i.e.
an analytic function ¢ on D such that ¢f € D whenever f € D. Our proof builds on
results from [9] and [11], where the somewhat more general situation of the Dirichlet-
type spaces D(p) (definition below) is considered. These spaces D(p) naturally occur
when one considers the totality of all invariant subspaces of (M, D). Hence it will be
useful to know (and hardly any more difficult to prove) that almost all of our results
are valid in this more general situation.
Let ¢ be a point on the unit circle T = {|z| = 1}. In [11], Section 2, it was shown
that, if f € H? and if
2 9

(1.1) 2%/ feh—a

¢ dt < o0
0

for some complex number «, then the oricyclic limit (and therefore in particular the

nontangential limit) of f at { exists and equals a. Thus, as in [11] we can define the
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local Dirichlet integral of the H2-function f at ¢ by

G
elt (

(12) n(f) = /

Throughout this paper g will always be a nonnegative finite Borel measure on
the unit circle T. The Dirichlet-type space D(u) is the space of all H-functions such
that D¢(f) € L'(u). A norm on D(p) can be defined by

MG = 171 + [ De)au(o)
T

Note that if f € D(u), then D¢(f) < oo a.e. [u], so tha.t F(¢) exists a.e. [u] as the
oricyclic limit of f at (.
Let m denote the normalized Lebesgue measure on T, i.e. dm(e'!) = 2—11th. By

a formula of Douglas [5] one has
() = [ De(n)dm(c).
T

In fact, more generally it turns out that

(13) D(f) = / oL aae

for arbitrary H2-functions f (see Proposition 2.2 of [11]). These formulas explain
the name “local Dirichlet integral”, and we see that the Dirichlet space D equals the
space D(m).

In the following we shall use (M, D(u)) to denote the bounded linear transfor-
mation on D(g) which takes a function f to the function zf. The lattice of all (closed)
invariant subspaces of (M}, D(p)) will be denoted by Lat(M,, D(x)). A multiplier of
D(p) is a function ¢ on D such that of € D(u) whenever f € D(p).

If f,g € D(p), then [f] denotes the smallest invariant subspace of (M., D(u))
containing f, while [f, g] is used for the span of [f] and [g]. If [f] = D(u) then f is
called. cyclic (or cyclic in D(p)).

Let M € Lat(M,, D(u)), M # (0). In Theorem 3.2 we shall show that M ©
©zM(= M N (zM)"1) is one dimensional. This generalizes Theorem 2 of [10] where
this result was established for (M., D). If M contains a function that does not vanish
at the origin, then a well known (and simple) argument shows that f € M © 2z M,
f # 0, if and only if f is a solution to the extremal problem

(1.4) imf{lll—‘%g‘)-‘i:geM}.
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Thus it follows from Theorem 7.1 of [9] that M = ¢D(u,), where ¢ is a
unit vector solving the extremal problem (1.4), and p, is the measure defined by
dpy(¢) = 19(¢)|?dp(¢). This theorem is very reminiscent of Beurling’s Theorem for
the invariant subspaces of H2. In fact the special case 4 = 0 corresponds to a part
of Beurling’s Theorem. What is lacking is information about the extremal functions
satisfying (1.4). In the H? situation one knows that these are constant multiples of
inner functions. Theorem 3.1 says that any solution to (1.4) has to be a multiplier
of D(u); and it follows that every invariant subspace of (M;, D(u)) is generated by a
multiplier.

In light of this “Beurling type theorem” for the invariant subspaces of (M, D(u))
one might wonder whether making use of the inner-outer factorization of H2-functions
obscures the fact that one should really be trying to characterize “Dirichlet-inner
functions” (i.e. solutions to the extremal problem (1.4)). However, there seems to
be a natural split between the cases of HZ2-inner and outer functions: If B is a
nontrivial inner function such that the invariant subspace D(z) N BH? is nonzero,
then it properly contains the invariant subspace D(z) N B2H2. On the other hand, if
f and f? are outer functions in D(p), then [f] = [f?] (see Theorem 4.3). Thus, if it is
true that invariant subspaces are determined by certain zero sets in D~ (and all our
results support such a conjecture), then one might say that inner functions “count
multiplicity” of zero sets while outer functions don’t.

Beurling showed in [1] that if f is in the Dirichlet space D, then the set of points
in the unit circle for which f does not have a finite radial limit, has logarithmic
capacity zero. Let Z(f) denote the set of points in T where the radial limit of f is
zero. Brown and Shields [4] prove that if Z(f) has positive logarithmic capacity, then
f is not cyclic in D. Furthermore, Brown and Shields conjecture that a function f is
cyclic in D if and only if f is outer and Z(f) has logarithmic capacity zero.

All of our results support this conjecture. In particular, we give an affirmative
answer to Question 14 of [4] by showing that any nonvanishing univalent function
in the Dirichlet space must be cyclic in D (see Corollary 4.4). This is interesting,
because it was known before (see [1]) that for univalent functions f in D, Z(f) has
logarithmic capacity zero.

Let f,g € D(p). We know from the above mentioned theorem that (f] N [g] and
[f, 9] are singly generated. If f and g are outer functions, then we define the outer
functions f A g and fV g by |f A g(e'*)| = min{|f(ei*)], |g(e'*)|} and |f V g(e')| =
= max{|f(e'*)|, |g(e'*)]}. We shall show that f A g and fV g are in D(u) whenever
both f and ¢ are in D(p) (Lemma 2.2), and that [f]N{g]l = [fA g} and [f,g] = [fV 4]
(Theorems 4.1 and 4.5). Finally, in Section 5 we prove that every invariant subspace
of (M,, D(p)) is of the form [f] N BH? where f is outer and B is inner (Theorem
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5.3). In Proposition 5.4 we show that knowledge about the space D(y), p singular, is
interesting when dealing with singular inner factors of functions in D.

In the following sections we shall use several elementary facts without further
reference. One is that the product of two bounded D(u)-functions is again in D(p),
ie. D(p) N H™ is an algebra. Another fact that we shall frequently use is that a
sequence of functions {fn}nen € D(u) converges weakly if and only if it converges
pointwise in D and is norm-bounded (see Proposition 2, p. 272 of [4]). Furthermore
if # #0 andif "llr{}o Ja(2) = f(z) for all z € D, then for the norm-boundedness in

D(p) one only needs to check that / D¢(fn)dp(¢) < C for some constant C' and all

Y
n € N, because the H2-norm of a function f is bounded by a constant times

(If(0)|2+ J Dc(f)d#(C))
T

(sce Lemma 3.1 of [9]). In any case, the estimates for the H2-norm would usually

1

2

simply follow from pointwise estimates.

2. CUT-OFF FUNCTIONS

All of our results of the later sections will follow in part from some rather technical
estimates for the local Dirichlet integral, which we shall obtain by use of a formula
that was proved in [11]. This is done in Lemmas 2.1 and 4.2, and even though the
details appear cumbersome the methods are of an elementary nature.

Let f,g € H? be outer functions, then we define the outer functions f A g and
£Vg by [(FAg)(e)| = min{If(e)], lo(e)[} and [(FVa)(e™)| = max{lf(e"), la(e')}.
This means that for z € D

fase) o { o [ S 2 rogl(s AN}

elt

1va) =en {3 [ S 1ol v axeiat).

elt

Let A = Bf be the inner-outer factorizarion of the H2-function % and define the
two functions ¢ = B(f A1) and ¢ = 1/(fV1). Then h = p/¢ is the quotient of
two bounded functions, and in [4] it was shown that the Dirichlet integrals of ¢ and
¥ are both bounded by the Dirichlet integral of h. In [11] it was proved that these
estimates hold even for the local Dirichlet integrals of ¢, and 1/+.
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We note that because |i(z)| < 1 for all z € D, we have |¢/(2)] < [(1/%)(2)|.
Hence it follows from (1.3) that D¢(¥) < D¢(1/%). Thus we see that at least in the
case where h has no non-trivial inner factor the estimates mentioned above follow
from the estimates for the local Dirichlet integrals of f A1 and fV 1.

In Lemma 2.2 we shall extend these results and show that the local Dirichlet
integrals of f A g and f V g are bounded by the sum of the local Dirichlet integrals
of f and g. This will follow from the formula for the local Dirichlet integral that was
proved in [11]. For the convenience of the reader we shall restate the part that we will
use. In fact we shall state the results of Theorem 3.1, Lemma 3.4, and Proposition
3.5 of [11] in two formulas. To simplify subsequent notation we define

ef—e¥—e¥(zr—y) ifz,yeR

F(z,y) = .
(=9) {ez fzeR y=—-o00

We note that from the representation F(z,y) = e¥(e*~Y —1—(z —y)) it is easy to see
that F(z,y) > 0 for all z,y. Let h = Bf be the inner-outer factorization of h € H?
and write u(e'*) = log|f(e'*)|]. Thenfor( € T

21 D¢(Bf) = D¢(B)IF(O)I* + D¢(f),
(2.2) D(f) = 2_1;/ F(zre(i(:i?,(ﬁ:(o) dt
0

where D¢(B) coincides with the angular derivative of the inner function B.
In order to obtain the estimates for D¢(f A g) and D¢(f V g) we shall have to
deal with the integrand of the term on the right hand side of (2.2).

LEMMA 2.1. Let 21,22 € R and y1,y» € RU {o0}, then
F(max(z1, 22), max(y1, ¥2)) < maX{F(zl)yl)’F(z2)y2)}
F(min(z1, z2), min(y1, y2)) < max{F(z1,41), F(z2,32)}.

Proof. We observe that both inequalities are trivially true, if either max(z1, z2) =
= z; and max(y1, y2) = y1 or max(zy,z2) = z3 and max(y1, y2) = yo.

- By symmetry we only need to consider one of the other two cases. Without
loss of generality we assume max(z;,z3) = z; and max(y1,y2) = y2. Furthermore,
we note that for each fixed z € R, F(z,-) is continuous at —oo. Thus, by a limit
argument the result will follow in the stated generality, once it has been established
for y1,y2 > —oo0.
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It will be convenient to use the partial derivatives Fy(z,y) = e* —e¥, Fy(z,y) =

=&Y (y - 2).
To prove the two inequalities we consider four (not necessarily distinct) cases.

(1) z1 = max(z1, z2) < max(y, y2) = va.
In this case Fy(t,y2) < 0 for 2 <t < z1 < ¥2, hence

F(max(z), £2), max(y1, y2)) = F(21,¥2) < F(z2,92).

(2) 21 = max(zy, z2) > max(yy, y2) = va.
Now Fy(z1,t) <0 for y1 €t < y2 € 71, thus,

F(max(zy, z2), max(y1, y2)) = F(z1,¥2) < F(z1,%1).

(3) zz = min(z;,z2) < min(y1,y2) =
Note that Fy(z3,t) 2 0 for z2 < y1 € s y2. This implies

F(min(z,, z2), min(y1, ¥2)) = F(z2,41) € F(z2,v2).

(4) T2 = min(zl)zz) > min(ylyyZ) =hn-
In this final case Fy(¢,41) 2 0 for yy < z2 <t < 21, s0

F(min(zl)zZ):nlin(yl: y?)) = F(IZ;yl) < F(xla yl)' u

The lemma about the local Dirichlet integrals of D¢(f V g) and D¢(f A g) follows

immediately.

LEMMA 2.2. Let f, g be outer functions in H2. Then for every { € T, D¢(fVy) <
< D¢(f) + Di(g) and D¢(f A g) < De(f) + De(g)-

Furthermore, if f, g are outer functions in D(p), then fV g and f A g are in D(u)
and ||f v gllz < IF115 + llglty and [If AgliZ < IAIZ + llgllz-

Proof. Fix ( € T. The inequalities are trivially true if either D¢(f) or D¢(g)
is infinite, thus we shall assume that both quantities are finite. We use formula
(2.2) and Lemma 2.1. fV g is an outer function, hence if u(e'*) = log|f(e'*)| and
v(e'') = log |g(e'*)|, then

De(f V) = /F(max{zu(e") 212?:31}&;2“{21;(() 29O} 44 <
1 [ max{F(2u(e"), 2u(C)), F(2v(e'*), 2v(¢))}
= 2”/ lelt CIZ dt

< D¢(f) + D¢(g).
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The inequality for D¢(f A g) follows in exactly the same way. The second part
of the lemma follows by integrating the above inequalities with respect to 4 and by
noting that a similar estimate for the H2-norm follows trivially. |

If h = Bf is the inner-outer factorization of h € H? and N € R is a constant,
then we consider the cut-off function hy = B(f AeM).

CorOLLARY 2.3. Ifh € H? ( € T, and N € R, then D¢(hn) < D¢(h).
Consequently [l < 1Al whenever h € D(s).

Proof. Of course D¢(eV) = 0. Thus with the notation from above, Lemma 2.2
and formula (2.1) imply that

D¢(hn) = De(B)I(f AeM)(O)I* + De(f AeM) <
< De(B)F(Q)P + De(f) = De(h).
The D(p) inequality follows as before. a

Corollary 2.3 and the following results will enable us to reduce many ques-
tions about Dirichlet functions to bounded Dirichlet functions. First recall a result
from [11].

" LEMMA 2.4. (=Corollary 5.5, [11]) Let f,g € D(p). If |g(2)| < c|f(2)| for some
constant ¢ > 0 and all z € D, then [g] C [f].

LEMMA 2.5. If p € H® and ) € H?, then foreach N € Rand (€T

D¢(¥n @) < 4D¢(ve) + 6ll|2, D¢ ()

Proof. Let N € R and ¢ € T be fixed. The assertion is trivially true if either
D¢ () or D¢(yp) is infinite, so we may assume that both quantities are finite. Now

note that ¥ne = hne(0) (<) T
NP —YNPC) p—9 N — YN
| Pt B U
and that ©) _ bo—po(0) ¥ —(0)
e —p(Q) _ Yo —ve() -
FET e AT

Hence we see that

2
De(we) <2 (“w“’%ﬂo\]m + ||<P||<2>0Dc(1/)N)) <

< 2“¢  + D) <
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<4 (D(¥9) + liellz De () + 2llellz De (¥). =

* In [11] we stated the following result without proof. We include the proof here
as it is the basis of much of the rest of the paper. We remark that in (8] it was
proved that every function in the Dirichlet space D can be factored as a product of
a bounded and a cyclic function in D. In that case the new (and more difficult part)
of the result is that the bounded factor generates the same invariant subspace as the
original function (and the observation that one over the cyclic factor is also a cyclic
vector).

LEMMA 2.6. Let f € D(p). If f = /v, where p,%p € H® N D(p) and 1/¢ €
€ D(p), then [f] = [¢] and ¢ and 1/ are cyclic vectors in D(p).

Note that for any N € R the cut-off functions ¢ = fy and ¢ = eV /(h Ve)
satisfy the hypothesis of the lemma; here h is the outer factor of f.

Proof. By a scaling argument we may assume ||¢||co, ||¥|joc € 1.
For all z € D we have |¢(z)| < |f(2)|, thus the inclusion [p] C [f] follows from
Lemma 2.4.

To show that [f] C [i] we shall prove that {(l) <p} is contained in (]
Y/ NeN

and converges weakly to f. First, we note that it follows from Lemma 2.5 applied

with ¢ € H® and 1/¢ € H? that D, ((-11;) <p) < 4D¢(f) + 6D; (;lz) for all
N

N € R and ( € T. We integrate with respect to p and obtain that (l) ¢ € D(p),
N

Y
1 1 .
(—) ® - for some constant ¢. Again we use
YN ¥
Lemma 2.4 to see that for each N € R, (%) @ € [¢]. It is easy to see that for each
N
z €D, (-1-> () - (-1-> (2) as N — co. Thus, the sequence {(l) <p} is
/N 4 Y/ N Jnen

bounded in D(u) and converges pointwise to f, hence it converges weakly to f. This
shows that [f] C [¢].

Finally, we have to show that ¢ and 1/¢ are cyclic in D(z). Lemma 2.4 together
with the fact that |(1/4)(2)| is bounded below by 1 for z € D implies that 1/ is

cyclic. Furthermore, the same argument as in the previous paragraph shows that

{(-}-) 1/)} C [¥] converges weakly to 1. Thus ¢ is cyclic as well. ]
N NeN

2 2

in fact we have

<e (llflll‘i +

» 7

¥

For the special case of the Dirichlet space, i.e. 4 =Lebesgue measure on T the
following corollary was shown in [3].

. CoROLLARY 2.7. If f and 1/f are contained in D(u), then both are cyclic.
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Proof. We use Lemma 2.6. It follows from the assumption that f has no inner
factor, hence f = /¢ and 1/f = ¥/p, where ¢ and ¢ are cyclic. Consequently
fl=lel=D) =M =0/7. u

For later reference we shall need one more lemma about cut-off functions.

LEMMA 2.8. Let {fs}nen C H? and let f be an outer function in H®, ||f||e < 1.
If {fa}nen — f in H?, then the cut-off functions {(fs)o}nen satisfy {(fn)o(2)} —
— f(2) for all z € D. Consequently if {fo}neN — f in D(p), then {(fn)o} — [
(weakly) in D(p).

Proof. Clearly {f,(2)} — f(z) for every z € D. Hence if we let hy, = (fn)o/fn,
then we need to show that {h,(2)} — 1 for every z € D. Furthermore, ||hn]lc < 1
for all n, thus it suffices to show that {|h,(0)|} — 1. This can be done in exactly the
same way as in the proof of Lemma 6, p. 283 of [4].

The second part of the Lemma follows, because convergence in D(u) implies

convergence in H2. ]

3. INVARIANT SUBSPACES ARE GENERATED BY MULTIPLIERS

Theorem 7.1 of [9] states that any invariant subspace M of (M, D(p)) with
dimM © zM = 1 is of the form M = [¢] = ¢D(p,), where ¢ € M © 2M and
dp, = |p|?dp. Furthermore if ¢ has norm one, then we have for every g € D(p,,)

(3.1) lleglly = llgha, -

We note that this implies that ¢ defines a bounded multiplication operator on D{u),
whenever ¢ € H®. In fact, if ¢ is bounded, then D(x) C D(p,), hence

eD(p) C pD(pp) = M C D(p).

Using (3.1) one can check that the multiplier norm of ¢ is bounded by the maximum
of [lplly and [[gpe

We shall show that such functions ¢ are indeed multipliers of D(¢). Furthermore,
later we shall show that every non-zero invariant subspace of (M, D(p)) satisfies the
hypothesis of the above quoted theorem, i.e. dimM & 2M = 1.

THEOREM 3.1. If f € D(u) is orthogonal in D(u) to 2" f for every n > 0, then
f is a multiplier of D(y).

Proof. We assume f # 0. The assumptions in the Theorem imply that f €
[f]1© z[f). Furthermore, it is true for any operator T that a cyclic invariant subspace
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M satisfies dimM © TM < 1. Thus, dim[f] © z[f] = 1 and by what has been said
above we only need to show that f is a bounded function.

We denote the power series coefficients of a function h € D(p) by ﬁ(n),
n=0,1,...

Let & be the smallest nonnegative integer such that f(k) # 0, i.e. there exists
a function g € D(p) such that f = z*g and g(0) # 0. Then all functions in [f] are
of the form 2*h for some h € D(y), and it is well known (and easy to check) that
f = z%g is a solution to the extremal problem

(3.2) inf{ 1" Rlls e, [f]}.
. k(0]
In the following we shall show that for any unbounded function ¥k € [f} with
h(0) # O there exists N > 0 such that the (bounded) cut-off function z*hy =
= (2*h)n € [f] satisfies

[25hwlln _ [12* Rl

(3.3) x @ = RO

This will of course establish that the infimum in (3.2) can only be attained by a
bounded function, 1.e. f € H*®.

To verify (3.3) we square, multiply through with |k(0)|%, and subtract ||z*hn/||3
from both sides of the inequality to see that the assertion is equivalent to

R{0)[?
1=l (e =) < 1= = et

Thus, we have to show that for large N
2*RIIE = li2* Rl

hOF _
Ok

(3.4) A2 <

It follows from Corollary 2.3 that the left hand side is bounded by ||z*h||2. We shall
finish the proof of (3.3) by establishing that the right hand side of (3.4) is larger than
ce®V for large N.

Let g be the outer factor of 4 and write u(ei*) =log|g(e'?)|, un(e'*) =log |gn(c'*)|,
and Fy = {t € [0,27] : u(e'*) > N}. The definition of the cut-off function gx implies
that v and uy agree on the complement of Fy, hence we obtain

[AO)> _ : _ol it
log = 31 = 20105 15(0)| < og law () = 227F/ (u(e") - N)dt.
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2
O
Consequently, there exist ¢ > 0 and Ny € R such that for N > Ny

2— / (u(eit) — N)dt>c(l}|Lh(?3;Tz 1).

Recall from Corollary 2.3 that for each N € R and { € T one has D¢(hn) <
< D¢(h). This implies

We note that this easily implies that N — oo.

WRIE = WenllZ = 1Rl = (lAnIF: + /(Dc(h) — D¢(hn))dp(C) 2
2x
}__ ityee ity|2 _i/ 2u(e’) _ 2N
> 5= [P ~ law(eP)dt = o [ (249 - V) ar>
0 Fn

> [ ofu(eh) - Wy,
Fn

because % — 1 2 z for all z € R. We have thus seen that for all N > N,
[IAIE — lIAn I3
[(0)°
Ihn (0)
As mentioned above this implies that our function f which solves the extremal
problem (3.2) must be bounded, and this concludes the proof of Theorem 3.1. u

>c
-1

Recall from [7] that an operator T on a Hilbert space is called cellularly inde-
composable, if any two non-zero invariant subspaces M and N of T have a non-zero
intersection. In [10] it was shown that the Dirichlet shift is cellularly indecompos-
able. Using Theorem 3.1 it is now easy to see that all the operators (M,, D(u)) are
cellularly indecomposable. Indeed, it is clear that every non-zero invariant subspace
contains non-zero functions which satisfy the hypothesis of Theorem 3.1. Thus, ev-
ery non-trivial invariant subspace of (M,, D(p)) contains non-zero multipliers. This
implies that any two non-zero invariant subspaces M and N of (M, D(u)) have a
non-zero intersection, because by Lemma 2.4 the intersection will contain all products
of the form v, where ¢ € M and ¢ € N are multipliers.

THEOREM 3.2. The operator (M, D(p)) is cellularly indecomposable. Every
non-zero invariant subspace M satisfies dim M © zM = 1, and consequently is of the
form M = [¢] = pD(p,), where ¢ € M & 2M is a multiplier of D(p).

Furthermore if ¢ = By is the inner-outer factorization of ¢, then |p(e'!)| =
= Jp(e'!)| a.e. [p] so that D(u,) = D(py) with equality of norms.
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We note that it is a consequence of this Theorem that D(x) C D(p,).

Proof. We have already seen that (M,, D(p)) is cellularly indecomposable. Let
M € Lat(M,, D(p)), M # (0), we have to prove that dim M ©2zM = 1. But this fol-
lows from a theorem of Bourdon [2], which states that under some extra assumptions
which the spaces D(u) clearly meet, all non-zero invariant subspaces of a cellularly
indecomposable operator satisfy dimM © zM = 1.

Now let ¢ = B¢ be the inner-outer factorization of . Since By € D(p) we
have that D¢(BY) < oo ae. [g]. From formula (2.1) we know that D¢(By) =
= D¢(B)|%(¢)1? + D¢(¥), where the local Dirichlet integral D;(B) of the inner func-
tion B equals its angular derivative. Hence, if D¢(B) is finite, then |B({)] = 1. We
see that if D¢(By) is finite, then either [¢(¢)| = 0 or |B(¢)| = 1, in either case
(O] = 1BY(Q! = W) .

4, INVARIANT SUBSPACES GENERATED BY OUTER FUNCTIONS

In this section we shall prove results about spans and intersections of invariant
subspaces generated by outer functions. We shall start out with the result concerning
the spans.

THEOREM 4.1. Let f and g be outer functions in D(ps). Then

[f,9]=1fVyl.

Proof. We have |f(2)},|g(2)] < I(fV ¢)(2)] for every z € D. By Lemma 2.4 this
means that f,g € [f Vyg).

The outer inclusion will follow from Theorem 3.2 and Lemma 2.2. The span
[£+g] contains outer functions; thus by Theorem 3.2 it is of the form [f, g] = hD(up)
for some outer function h € D(y). We have to show that fV g € hD(u), i.e.
hy = (FV g)/h € Dig). |

We know fi = f/h, g1 = g/h € D(un). From the definition of f V g we have
hy = f1 Vg1, thus by Lemma 2.2

/D((hl)dﬂh < /D((fl)dﬂh+/D((gl)dﬂh.
This implies hy € D(pp) and fV g = hih € hD{ps) = [f, g]- )

It follows from Corollary 5.6 of [11] that a bounded function f in D(g) is cyclic
if and only if f2 is cyclic. ‘Thecrem 4.3 is a generalization of this. It and Theorem 4.5
also are generalizations of results of Brown and Shields (see [4], p. 290, Proposition 14
and its corollaries).
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. First we shall prove the crucial lemma.

LEMMA 4.2. If f € H? is an outer function, N € R, and ¢ € T, then

D¢ ((%)Nfz) < 4D¢(f)-

Proof. Fix ¢ € T. Without loss of generality we may assume that D;(f) < co.

Furthermore, assume for a moment that the lemma has been verified for N = 0. Then

for N €R Dc((_})Nfz)=Dc (eN( f) fz)
D, (e"N( - ) (eNf)z)
= eV, ((NL) (eNf)z)

<4e 2D (eNf) = (by the assumption)
= 4D¢(f)-

Hence it suffices to show the lemma for N = 0.

" First consider the case f({) = 0. Since we clearly have

()0

< |f(2)], Vz € T the definition of the local Dirichlet integral at ¢ implies in this case

DC(G)O ) D¢(f) < 4D¢(f).

Now assume f(¢) # 0. In this case we shall use formula (2.2). For z € T write
u(z) = log|f(z)|. Then \(%) fz' =e', where
0

_ u(z) u(2)=0
vz) = {2u(z) u(z) <0’

u(z) # —oo a.e., thus, it follows from formula (2.2) that we are done once we
have shown that

F(2v(2),2v(¢)) < 4F(2u(2),2u({)) Vz €T, u(z) # —co.

If we define the real valued function g on R by g(z) = z if z > 0 and g(z) = 2z if
z < 0, then we have to show that

G(z,y) = 4F(z,y) — F(g(z),9(v)) 20 Vz,y€eR.

Here we do not need to consider the case y = —oo, because by our assumption
u(¢) # —oo. Recall that F(z,y) = ¢® — ¥ —e¥(z — y).
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We distinguish four cases:

(1) z,y>0.

In this case G(z,4) = 3F(z,y) > 0.

(2) z,y<0.

A short computation shows that Gy(z,y) = 4e¥(1 — e¥)(y — z). This has the
same sign as y — . Since G(z,z) = 0, we conclude that G(z,y) > 0.

(3) <0,y 3>0.

Note that G is continuous on R?, hence case (2) implies that G(z,0) > 0. We
compute the partial derivative Gy, Gy(z,y) = e¥(3y — 2z) > 0, l.e. G(z,y) is a
non-decreasing function of y.

(4) 220,y<0.

Again we compute Gy, Gy(z,y) = 4e¥ (y—z)—2e¥ (2y—z) < 4e¥(1—e¥)(y—-2z) < .
< 0. Thus in this case G(z,y) is a decreasing function of y. By case (1) G(z,0) >
2 0, hence the continuity of G implies that G(z,y) > 0. |

THEOREM 4.3. If f € D(u) is an outer function, and if o« > 0 such that f* €
€ D(p), then [f] = [f*].

Proof. Write f = /¢, where ¢,% € D(u) N H*® are cut-off functions such
that 1/% € D(u), ||¢|lco, ||#ilc € 1. Then ©* and ¢ are the corresponding cut-off
functions for f¢. It follows from Lemma 2.6 that [f] = [¢] and [f*] = [¢®]. Thus, we
may assume that f is bounded.

We shall first prove the theorem in the case where @ = 2. We have to show
that [f] = [f?]. By Lemma 2.4 it is clear that [f*] C [f]. To show the reverse

inclusion we shall use cut-off functions and verify that —1— f? converges
N NeN
weakly to f. As in the proof of Lemma 2.6 it follows from Lemmas 2.5 and 2.4

that {G)Nfz}wm C [, and {(%)Nfz(z)}NeN = f(z) for each z € D.

1 .
Furthermore, by Lemma 4.2 we know that the sequence —) fz} is norm
N NeN

f

bounded in D(u), hence it must converge weakly to f.

Next assume that o > 1. A repeated application of the result of the previous
paragraph shows that [f] = [f2"] for any n > 0. But we assumed that f is bounded,
thus, by Lemma 2.4 [f] = [f2"] C [f®] C [f] whenever 2" > « > 1. This shows that
[f] = [f®] for any @ > 1. Now if @ < 1 then 1/a > 1, and we can apply the above
argument to g = f and g'/* = f. [ ]

The following answers a question of Brown and Shields, see [4], Question 14,
p. 297.
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COROLLARY 4.4. If f € D is univalent, then f is cyclic in D if and only if
f(z) #0 for all z € D.

Proof. Clearly if f vanishes somewhere in the unit disk then f cannot be cyclic.
If f(2) # 0 for all z € D, then since f is univalent, f must be an outer function
(see [6], Theorem 3.17). It follows from Theorem 4.3 that the result will follow once
we show that f* — 1in D as @ — 0. It is clear that f*(z) — 1 for every z € D.
Furthermore for 0 < a < 1

D(f* - )= D) = [[ @) PaAG) =
D
= [[@rareraae =
D

= 012/ |w|?*~2d A(w) < (by a change of variables)

/(D)
<o [[lufetaaw +a? [[ juPetasw) <
B J(DINC-D
<a+a? // dA(w) €
f(B)NC-D
<a+a®D(f) -0
as’'a — 0. L

It is clear that a somewhat more general result holds, because one can use a more
general change of variables formula than the one being used. We leave the details to
the reader.

THEOREM 4.5. If f and g are outer functions in D(p), then

[fAgl=[f1Nn]g].

If in addition fg € D(p), then also

(f9] = [f1n[g].

Proof. We shall first show that [f] N [g] C [fg] whenever fg € D(u).

[f]1 N [g] is an invariant subspace of (M,, D(u)); thus, by Theorem 3.2 it is gen-
erated by a bounded function h, i.e. [A] = [f]1 N ([g]. Since (f A1) g A1) € [A] it
is clear that h is an outer function, and we may assume that ||h||cc < 1. We shall
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show that h? € [fg]. This will conclude the proof of [f] N [g] = [h] C [fg] because of
Theorem 4.3.

By assumption we can find sequences of polynomials {pn }neNn and {gn}nen such
that {p.f} — h and {gng} — & in D(p). We assumed that |h(z)] < 1 for all
z € D, thus, by Lemma 2.8 the chopped-off sequences {(p,f)o}nen and {(gng)o}nenN
converge weakly to k. For each n € N we have

(Pnf)O(Qng)U € [an'xfg] c [fg]

By use of (1.3) we see that the sequence {(pn f)o(qng)o}neN is norm bounded in D(u),
hence it converges weakly to h%. Thus, h? € [fg] as promised.

Now we can use the above to prove that [f A g] = [f] N [g] for general outer
functions f, g € D(p). We observe that the following inclusions hold:

[fAglC [fln[g] (by Lemma 2.4, since |f Ag| < |fl,lg])
= [fAl)n{gAl] (by Lemma 2.6)
C [(fAL(gA1)] (by the first part of this proof)
C[(fAL)A(gAl)] (Lemma 2.4)
C [fAg] (Lemma 2.4);

thus we must have equality throughout.

To finish the proof of Corollary 4.5 we have to show that fg € D() implies that
(f9l € [£1Nn[g].

The assumption fg € D(u) implies by Lemma 2.2 that f(gAl) = (fg)Af € D(u).
Now write f = ¢/v, where ¢, 9 € H® N D(p) and 1/¢ € D(p). Then we can apply
Lemma 2.6 to f(g A1) = (¢(g A 1))/¥, and we see that [f(g A1)] = [p(g A1)] C
C [g]. Next note that [((fg) A 1)(e'*)| > |(f(g A 1))(e'?)] only if {f(e'*)] < 1. Hence
I(fg) A1l < |(f(g A1)V g|. Thus by Lemmas 2.6, 2.4, and Theorem 4.1 we have

(fal =[(f) AL CUfleA1) Vgl =[f(gAl),g] Clg,9] = [g]

Of course, by symmetry we must then also have [fg] C [f]. =

5. INNER FUNCTIONS AND INVARIANT SUBSPACES

If B is an arbitrary inner function then B may or may not be in D(u). For
example, an inner function is in D if and only if B is a finite Blaschke product.
However, B may still occur as & factor of some functions in D(u). The set of all such
functions is D(p) N BH? and it is easy to check that this is an invariant subspace
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of (M;,D(p)) (possibly the zero space). Similarly, if M is any invariant subspace of
(M., D(p)), then N' N BH? € Lat(M,, D(¢)). Thus it is natural to ask:

QUESTION 5.1. Is every invariant subspace of (M, D(p)) of the form NN BH?,

where B is an inner function and N' € Lat(M,, D(p)) contains an outer function?

We shall answer this question affirmatively. Without going into any further detail
we remark that this implies that Question 12 and 14 of [12], p. 345 are equivalent to
one another.

We start out with a lemma.

LEMMA 5.2. If B is an inner function, and if N' € Lat(M,, D(p)) contains an
outer function, then

BN ND(u)=NNBHZ
Furthermore, N' N BH? = (0) if and only if either N' = (0) or D(p) N BH? = (0).

Proof. If ¢ € N such that Bg € D(u), then by Lemma 2.4 Bg € [g] C N. This
together with the trivial observation that BA’ C BH? implies that BN N D(p) C
NnNBH?.

In order to show the other inclusion we recall from Theorem 3.2 that A is of the
form N = fD(p;) for some f € D(p). Since A contains an outer function, it is clear
that f must be an outer function.

Let h € N N BH?. We must show that h € BN. The equality N = fD(uy)
implies that A is of the form h = fg, where ¢ € D(yy). The function f is outer,
thus h = BH? implies that ¢ has B as an inner factor. Inner factors increase the
local Dirichlet integral (see formula (2.1)), hence g/B € D(py). This implies that
fg/B € N, thus h = B(fg/B) € BN

The statement of the last sentence of the lemma follows, because trivially
NNBH? = N (D(p) N BH?) and because (M;, D(p)) is cellularly indecomposable
(see Theorem 3.2). |

If M is an invariant subspace of (M, D(p)), then by Theorem 3.2 M = [¢] =
= gD(u,) for some g € D(p). The greatest common inner divisor of M, i.e. the
maximal factor which is an inner factor of every function in M, is the same as the
inner factor of g. Let B denote this inner factor, so that ¢ = Bf, where f is an outer
function. Inner factors increase the local Dirichlet integral, hence the set M/B is
contained in D(yu) and contains the outer function f. Trivially, M = B(M/B)ND(u).
Let A be the closure of M/B in D(p). With this choice for N one always has
M C BN N D(p) = NN BH?2. The more difficult part of Question 5.1 is to show
that the inclusion cannot be proper.
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THEOREM 5.3. (a) If B is an inner function and f is an outer function such that
Bf € D(u), then
[Bf] = BIf]n D(u) = (f]n BH”.

(b) Let M € Lat(M., D(11)), and let B be the greatest common inner divisor of
M. Then, there is an outer function f € D(p) such that

M = [Bf]l = B[f)nD = [f]n BH*.

In fact, f can be chosen so that f and Bf are multipliers of D(p).

Proof. (a) As mentioned above the inner factor increases the local Dirichlet
integral, so by Lemma 5.2 we have [Bf] C B{f] N D(p) = [f]n BH2.

To finish the proof of (a) let g € [f] such that Bg € D(y), we must show that
Bg € [Bf]. We use cut-off functions to write g = ¢/9, where ¢, ¥, Bp € D(u) N H®
and 1/% € D(u). By Lemma 2.6 [¢] = [g] C [f] and [Bg] = [By]. Thus it suffices to
show that By € [Bf], and we may as well assume that [J¢|le < 1.

First we shall consider the case where ¢ is an outer function. By assumption
there exists a sequence of polynomials {p,} such that p,f — ¢. By Lemma 2.8
thé sequence of cut-off functions {fn} = {(pnf)o} C [f] converges to ¢ weakly and
satisfies |{fullo < 1. Furthermore Bf, = (pnBf)o € [Bf], and so by Lemma 2.4
¢Bf, € [Bf]. We have

(eBf) | < By + £,
hence by (1.3) the sequence {¢ B/, } is norm bounded in D(y) and converges pointwise
to Bp?. We have thus seen that By? € [Bf]. But this implies that By € [Bf],
because {(-1—) gsz} C [By?] C [Bf] converges weakly to By. Indeed, as
P/ N NeN

the pointwise convergence is clear we only need to show that the sequence is norm
bounded. From the formulas for the local Dirichlet integral ((2.1) and (2.2)) we see

2 ((3),2) - 2am|(3) ] +2e((3), 7)<

< DC(B)|‘P(C)|Z +4D¢(p) € (by Lemma 4.2)
< 4)|Bel7.

< 4D¢(By).
o
Y/ N "

Finally suppose ¢ has an inner factor, say ¢ = S, where 9 is the outer factor.
Since ¢ = Sy € [f] and f is outer, Lemma 5.2 implies that ¢ € [f]. Also By =
= BSv¥ € D(p) implies that By € D(n). By what was shown above it follows that
By € [Bf]. But then Lemma 2.4 implies that By = BSy € [Bf].

2
Hence
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(b) By Theorem 3.2 the generator Bf of M is a multiplier of D. Inner factors
increase the Dirichlet integral, hence f must be a multiplier as well. This proves (b).
|

We close this section by describing a situation where information about D(y)
for a singular measure g might be important for solving a question about D. It is
an open problem to determine the zero sets of Dirichlet space functions, i.e. given a
sequence {an}neN C D, when does there exist a nonzero function f € D such that
f(an) = 0 for each n € N? This is equivalent to asking, when is there a function
¢ € D such that Bg € D, where B is the Blaschke product with zeros {a,}. More
generally one might ask, which inner functions appear as factors of Dirichlet space

functions. Regarding the singular inner factor we can relate this question to the space
D(p) as follows.

PROPOSITION 5.4. Let p be a Borel measure on T that is nonnegative, finite,
and singular, and let S, be the singular inner function associated with y, i.e.

/:: d (e")} €D.

T

Su(z) = exp {—

Iff€ H% then S,f € D ifand only if f € D(p) N D and f =0 a.e. [y].
Proof. We recall from [11], Theorem 3.1 that

2 i
D¢(Sy) = / mdﬂ(e ).
¥
Thus formula (2.1) implies that

De(Suf) = [ g dme NP + D ().
T

We integrate this identity with respect to dm(¢). An application of Fubini’s Theorem
shows that the Dirichlet integral of S, f equals

(5.1) D(S,f) =2 / ( / |'f «”;lzd (4)) du(et) + D(f).

Now suppose D(S, f) < oo, then D(f) < oo, i.e. f € D. But we also must have

1P

‘ext g dm(¢) < oo a.e. [u].
¥
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Thus from the definition of the local Dirichlet integral (see (1.1), (1.2), and the remark

made between these formulas) it follows that

and that f = 0 a.e. [u]. Hence since the first term on the right hand side of (5.1) has
to be finite we see that f € D(p).

The converse follows in a similar manner from formula (5.1). u
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