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CHARACTERS AND FACTOR REPRESENTATIONS
OF THE INFINITE DIMENSIONAL CLASSICAL GROUPS

ROBERT P. BOYER

1. INTRODUCTION

The starting point of this work was the announcement by S. V. Kerov and A. M.
Vershik [11] that the finite characters of the inductive limit group U(co) can all be
obtained as limits of normalized characters of U(N), which we call the Asymptotic
Character Formula or the “ergodic method”. In Section 2, we give a detailed proof
of this Theorem for representations in the non-negative signatures. It is exactly this
case which we need to establish the Asymptotic Formula for the other classical groups:
the infinite symplectic, special orthogonal, and spin groups. In Proposition 2.2, we
make a detailed study of the limiting behavior of the ratios of hooklengths which can
be viewed as a refinement of the asymptotic methods of [10] and [26]. Essential use
is made of the dimension formulas of [8]. Hence, the classification and asymptotic
behavior of the characters of the infinite classical groups of compact type is complete.

In the final section, we use the techniques we developed in [6] and [7] to study
factor representations of SO(o0) and Sp(oco) in the antisymmetric and symmetric
tensors. These representations can be viewed as a generalization of the well-known
quasi-free states of the algebras for the canonical commutation or anticommutation
relations. By exploiting special combinatorial structures [23] and [24], we can make
use of the dynamical system ideas of Stritild and Voiculescu [21]. A much more
general situation is studied in [2] and [3].

Our methods fall naturally in the theory of spherical functions for the infinite
classical groups which have been studied by G. I. Ol’shankii [19] and D. Pickrell [20].

We would like to thank Professor D. Voiculescu for suggesting to us to complete
the classification of finite characters which was given in [5, 6, 12] for the unitary and
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symplectic groups.

Notation. For the unitary group U(N), we parametrize its irreducible represen-
tations (corresponding to the ones with non-negative signatures) by Young diagrams
{A} which have no more than N rows. We write: Ch{\} or {1} for the corresponding
character, and dim{A} for the dimension of the representation. In addition, we let ||
denote the number of nodes in the diagram. We let r;(A) (respectively, ¢;(1)) denote
the length of the i-th row (respectively, column). The rank, rk(A), of {A} is the length
of the main diagonal. Next, we let (a1, @s,...,a,|b1,bs,...,b;) denote the Frobenius
coordinates of {A}. For all this, see the book by 1. Macdonald [16].

For the symplectic, special orthogonal, and spin groups, we adapt the above
notation for the unitary group by replacing {---} with (---) for the symplectic group
Sp(2N) while with [- - ] for the special orthogonal group SO(2N +1). We let A denote
the basic spin representation of Spin(2N + 1). Then the proper spin representations
of Spin(2N + 1) can be parametrized [A, A] where A is a Young diagram with N or
fewer rows.

We let f* denote the dimension of the irreducible rep;esentation associated to A

on the symmetric group on |A| letters.

2. ASYMPTOTIC FORMULAS FOR THE UNITARY GROUP

Let Ay < Ao < - with Ay € U/(]T/) In this section, we wish to give a detailed
proof of the portions of the Asymptotic Character Formula that we will need in the
next section. This result was announced by Kerov and Vershik in [12].

We record here the fundamental convergence conditions discovered by Kerov
and Vershik. We require that the following limits all exist: a; = 1\}1_{1;0 ri(An)/N,
B = 1\}1_120 ¢;(AN)/N, and 6 = 1\}1_{1;0 |An]/N. We call these limits the row, column,

and occupancy frequencies, respectively. Further, we require a summation condition
(o]
to hold: Z(ag + ;) < oo. Note that the row and column numbers in the above

=1
limits can be replaced by the corresponding Frobenius coordinates.
By the Voiculescu Factorization Theorem [26], it suffices to consider a character
of U(N) restricted to one variable:

B ‘ Rl dim{An/k}n_1
fn(2) = Ch{An}(z, 1, ..., 1)/ dim{An}y = ,;, “Empwly

Without loss of generality, we may assume that the length of the N-th row
rn(AN) is zero. Also, we note that the irreducible components of {An/k}y_, are
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simple [17]. To establish the Asymptotic Character Formula we shall show that the
limit of fx(z) exists pointwise.

Since the coefficients of fy(2) are all non-negative and sum to one, we can treat
fn as a probability generating function on the non-negative integers. Hence, the
pointwise limit of fiy(2) exists if and only if each coefficient converges.

One further observation is that the row length rx(An) gives the minimal power of
z that occurs in the polynomial fy(z). So, the row lengths 7n(An) must be uniformly
bounded in N, otherwise, the coefficients of fa(z) would all converge to 0.

To establish the limiting behavior of dim{Ax/k}n—-1/dim{An}, for fixed k, we
need to exploit finer structures.

It will be necessary to separate out the numerator and the denumerator contri-
butions to the dimension of Ay € UT]T/'):

. _ num{\y}
dim{\n} = 0w)
where O
num{\y} = H (N+a;)

o (V= -1y

H(An) is the usual product of the hook lengths and (agN) , agN), e |ng), ng), .- .) are
the Frobenius coordinates of {Ax}. Note that H(Ay) is independent of the number
of variables of U(N); in fact, it only depends of the shape of Ay.

Let A%y be a summand of Ay |U(N —1), where A}y is obtained by deleting k nodes.
It will be necessary to describe a sequence of Al .
gN)’ ceey :cgﬁ,r),m(lN), ceey mﬁﬁ);yg"'), .. ,yg)) where
:cEN) (respectively, ygN) ) denotes a row (respectively, a column) number and m; € Z+.

We assume that ngN) +tny = k. Then (An:pun) denotes the diagram for which
€))
i

call pun the deletion nodes. When we use the notation (A : u), we assume that the
result of deleting the nodes corresponding to p results in another Young diagram. To

Let pn be a finite sequence (z

m; nodes are deleted from row z; ’ and 1 node is deleted from column yEN). We

emphasize this, we introducé further notation.

Let Dg, v denote the collection of all possible k nodes configurations that can be
stripped from Ay. Let Dy be the set of all sequences gy € Dy n. Let Cp denote the
set of all sequences in Dy which are eventually constant. We simply write in this case
that u € Cy.

For A = An, M = (An:pn), pn € Di,n, the quotient dim{X'}y-1/dim{A}x is
the product of four factors:

num{X}n_1

(2.0.1) Sy

-constant term analysis
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N
(2.0.2) I ——
(3,5)EA\A! N+j—i

-conversion factor between the constant term and higher order coefficients

!
2.0.3 l/l N* _conversion factor between unitary and symmetric groups
|A7|!
MY SHX A . .
(2.0.4) % / 71% = _jj_:_)‘_ -symmetric group asymptotics.

Comments. The first factor (2.0.1) involves the limiting behavior of the constant
term of fy(z). We shall see that the middle two factors are elementary to analyze.
The fourth factor (2.0.4) is connected with the Asymptotic Formula for the infinite
symmetric group S(c0). :

To state the following Lemma, it is necessary to introduce some notation and
facts about S(00).

We shall write &; = lim ri(Av)/|Ax| and Gi = lim c;(An)/IAn}. So, i = dif
and B; = (8. From the Asymptotic Character Formula for S(co) [11] or [27], we
know that

l. f)\N/k
im =
where
[ o) =
5 1+ B;t
2.0.5 )= ptt =M ] :
( ) G( ) kzopk ) t=1 1 - dit,

and 0KAKL G122 20 Ahz2h- 20, and:\+207£+5i= 1.
Moreover, we shall see in Proposition 2.2 that for a sequence with distinct row and
column frequencies:

f(ouv:m) . f(AN:#e)

im

Q; = lim 1\}—»00 .—fA—N—’

N~ f)‘N

s —

where p; (respectively, u!) denotes the deletion of one node in the i-th row (respec-

tively, column).

Observation. In [11) or [27], shifted Frobenius coordinates are used in the sense
that 1/2 is added to the usual coordinates. In those calculations, this has the effect of
making the error term in the asymptotic formula be homogeneous in these coordinates

and makes the sum of the normalized coordinates be < 1.
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The first Lemma is immediate. We list it because of its frequent use.

LEMMA 2.1. Suppose that u and p’ are deletion nodes and that both limits

f((f\N:u):/A’)/f(/\N:u') and f(/\N:#’)/f(z\Nru)

exist as N — oo, then the limit off(()‘N”‘)"")/f)‘N exists as N — oo and is equal to

the product of the above limits.

The following Proposition is the version we need concerning the asymptotics of

the symmetric group.

ProPOSITION 2.2. (i) Let u, = p € C, for all N, where
B=(21, . Ts, My, ., M3 Y1 -, Yt)

Zmi +t=k X ={z1,...,2,} and Y = {y1,...,y}. If all the row frequencies

. : fOn)
&z,, 1< t< s, are distinct, then lim = exists and equals Hﬁ. Ha,”"
N—oo f €Y ieX
(ii) Suppose that &,, = --- = @, = @&, then
. JONV) (s 4k —1\
am > =0 ) &

lv|=k

where (An:v) denotes row deletion nodes chosen relative to the set X only.
(iii) Suppose that ,Byl =...= By‘ = j3, then

. f(ANv)— t ok
i, 2 g =) &

where (An:v) denotes column deletion nodes chosen relative to the set Y only.

Proof. By Lemma 2.1, it is enough to consider the situation that p nodes are
deleted from the ¢-th row of Ax. It is interesting to compare the calculations below
with those of [11] and [27] in establishing the Asymptotic Character Formula for
S(00). As done there, we shall give a variation of an argument originally due to
Frobenius (see [18, pp. 138-139]).

We first note that Nh_r.r;o tk(An)/|AN]| = 0, since [tk(An)]? < |[AN]|. We write:
sy =tk(An).

We define an auxiliary generating function:

(N)
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where Any has Frobenius coordinates (agN), . SI,‘? | b(N) .,bgﬁ)). Then:
fOwp) -1
= X
Ay p(AND(ANT = 1) - (AN =P+ 1)

x Res (y(y ~1)--(y-p+ I)F(}/(;)P),GEN)) .

Since this singularity is a simple pole, the desired residue equals:

tirg (v = o )y(y~1)---(y—p+ 1)—F(1~1“j(;)p—) =

y—al
N N N -p N N
= a™(a®™ — 1. (d )—p+1)a(N)+b(N) — (( ) 48§ )+1)
2 4 -
(w o™ + 6 41 agw)_agN)_pH)

J]';'E a(N) + b(N) -p+1 agN) - aEN)

(In [18], the sum of all finite residues is needed, in other words, the residue at

00.) Now, the quotient of dimensions becomes:
OV (1) (P —pr1) (P
ANl ) \IAn] =1 An|-p+1 o™ 16— p 41

1+ 1-
(g o™ +b<~) » +1) (g M (N))

We claim that these last three products will converge to 1, as N — oo. Recall
that p is a constant and that sy /[An| — o0, as N — oo. It is clear that the first

product converges to 1. Next, we consider the product:

-1 SN
r D Y4
(2:2.1) H ( (_N) '(N)') = H (1 - (N)_(N)) H (1 ) (N))
; j=1 \ ae - aj al - aj

Jj#e j=e41

£-1
C .. . P :
Again, it is immediate that I__I; (1 — W) — 1. Moreover, we have the in-
1=

P B P
(1 (—N)—(N—)) < I (1—;gv—>:l<—m)<1'

o Gppy j=t+1 >

equalities:

In general, for a sequence {p,} of real numbers such that 0 < p, < 1 and p, — 0, the
sequence (1 — p, )™ converges if and only if np, — A, where 0 < A < co. The limit, if
it exists, equals e~*. In our case, we have that

lim ——N =0,

N g _ o) =
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since agN) > aﬁﬂ. Hence, the entire product in (2.2.1) converges to 1.

By a similar argument, we see that

. p
lim 1- =1.

So, we have the bounds

-1
P P
1< 1+ <(1- :
\g( aﬁ”’+b§-”)—p+1)\( aﬁN)+b§N)—p+1)

since H(l +pn) < I/H(l — pn). Hence, we conclude that

. fANIP) .
| (—— =a’
dim, g =
The case of column deletion follows from the row deletion argument with p = 1 since
the dimensions f* and f"l agree, where ) is the conjugate of the partition A.
The argument for the case of many identical row frequencies is very similar. To
simplify notation, we assume that the first s row frequencies have a common value
s—1
&. All of the above calculations hold except that the factor H (1 - W)
j=1 s T TG
in (2.2.1) converges to 1. In the base case in which the row lenghts are identical, so
agN) = _agN) +1=---=a™+5—1, the sum in statement (ii) consists of a single term
corresponding to deleting p nodes from row s. Then the factor in (2.2.1) becomes

(+5)=(""1"),

To handle the general case, we use induction on s. Suppose that s = 2 and that
a(lN) - agN) = m — 1, with m > 1. Then the contribution of deleting j nodes from
row 1 and p — j nodes from row 2 is (1 — j/m)(1 + (p — j)/ma). Hence, the total

contribution is:

P j p—j im+4p—2j
Z(l——) (1+———.> =2+Z————=p+1.
m m—j = m

j=0

Note that the value of this sum is independent of the choice of m. Moreover, it is
easy to see that if agN) - agN) — 00, then the total contribution is again p+ 1. So,

>

lvl=p

we now conclude that

f(AN:u)
7

=(p+ 1)a&*,
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where (Ay:v) denotes row node deletion from the first two rows only. Hence, state-
ment (ii) holds if s = 2.
An interesting consequence of this argument is that fA~?)/fAN converges if and

only if agN) - a(zN) — 00 Or agN) - agN)

is eventually constant.

Now, we assume the result for fewer than s rows or for s rows with fewer than p
nodes deleted. Assume that a,( ) ; ( ) = = m;;, with 1 €7 < j < s. We consider the
case of p row nodes deletion over s rows. We break out the calculation into two cases.

In the first case, we demand that every deletion contains at least 1 node in the first row.

s—p-—2
P 1 ) In the second
S —
case, we require that no deletions are made from the first row. Again, by induction,
T s+p—2 0 . [s+p-—1
the contribution is: . So, the total contribution is: ] . We
s — s —
may now conclude that statement (ii) holds in general.

Hence, by induction, we have that the contribution is (

A similar argument can be given to deduce statement (iii). |

The following Corollary is easy to deduce from the proof of the Proposition.

o0
COROLLARY 2.3. Let ¢ > 0 be given. Choose m so that Z(&,- + ﬂ:) <eée. Let
m+1
N) be deletion nodes with coordinates > m, with 1 < ¢ < kx. Then:

(i) Let p € €1 with coordinates £ m and distinct row or column frequencies.
Then

N—-oo Py fAN N-—o00 pasey f’\N N—=oco f)‘

kN e(Oniu{™):m) kv e(anie™) CY I
lim " e o gim (Z 22 ) im (f—> :
(ii) Suppose @1 = a3 = -+ - = d; = & with coordinates < m. Then:
(N) k (V)
f((AN# ):s) s+k—-1\ _, . N AN
hm z Z = & A}lm Z )
i=1 [v|=k i=1

where, (An:v) denotes row deletion from rows z1, ...,z only.
(iii) Supppose By =---= B, = 3 with coordinates < m. Then:

N) (N)

f((/\Ny )u) t\ fOw)

Aim le‘li, =) im, Z |
i=1 |v|=k

where (An:v) denotes row deletion from columns y, .. ., yt only.

The next Lemma establishes the connection between row and column frequencies
normalized by [Ax| and N, the number of variables for U(N).
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LEMMA 2.4.

where 0 = A}im |ANI/N. In particular, the limit is independent of the choice of
—00
deleted nodes.

Proof. We have:

k-1 , ‘
ANIE [ ak (l)wl—]) k
—Q [/ N¥ = —_ ) = 6",

| AN ! j];](; N
where 6 = lim |An[/N. |

N—oo

Notation. Let € > 0 be given. Fix a positive integer k. Define m, ; € Z* so that
1+ gt a 1+ Bit

T—at  dT-a

n
n > me; € Zt implies that the ¢/-th coefficients of H agree
i=1

to within e, 0 < j < &, and m¢ ;-1 € Me k-

We shall list the &, &s, ... and B, Ba,... according to their multiplicity in the
generating function G(t), defined in (2.0.5).

Let X and Y be finite subsets of Z* such that if ¢ € X and &; = &;, then j € X,
while if i € Y and §; = Bj, then j € Y. We let X, be the subset of X consisting of
indices of the distinct values of &;, ¢ € X. (We may choose the elements of X be using
the smallest choice of index, say.) Similarly, we define Yp. Next, we give two sequences
of non-negative integers. Let m : my, mo, ... be chosen so that m; = 0 if i > m, ; and
m; = m; whenever &; = &;. Similarly, we take n : ny,nz,...s0n; =0if i > m, ; and
n; = n; if G; = Bj- Moreover, we require that: Z{m; +nj:i€Xo, jeYo}=k.

Now, (X, m,Y,n) determines a set D = D(X,m,Y,n) C Dy of deletion nodes
when m; nodes are deleted over the rows with row frequency &;, ¢ € Xy, and n; nodes
are deleted over the columns with column frequency ,é,-, 1 €Y,

Note that if 4 € D, then [u| = k. So, we can define [D| as ||, for any p in D.
Also, we define the multiplicity m(D) of D by:

=1 (") G

where @&;, 1 € X has multiplicity s; and [3.-, i € Yy has multiplicity ¢;.
Finally, we let J. ~ be the collection of all such sets D C Dy
LEMMA 2.5. For D = D(X,m,Y,n) € Jo n CDn, |D| =k —j,

(AN:pv)
(2.5.1) S(N,D) = E{fj;— tp€D, vELN, Iv|= j}
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converges to within m(D)(k + 1)le of m(D)M /j! x Hﬂa H &
i€Y ieX

Proof. We shall first assume that the row and column frequencies are distinct
relative to the sets X and Y; that is X = Xy and Y = Y, with n; = 1.
Let Ej ; be an error bound defined so that

Jim S(N,D) - 5 Hﬂz IT &™| < Ex ze.
€Y ieX
We shall use the facts that lim fAN/k/fAN = p; the coefficients of the generating
-0

function G(t) (2.0.5) are non-negative and bounded by 1, and that each p; is a
polynomial in X whose coefficients are functions in &,:,,Bi.

For j =0, Ex o = 1, by construction. Fork =1, j =1, Ey; = 1sincep; =1 and

o0

S(N, 1) converges to within ¢ of z&g + B; = 1 — X. By the multiplicative properties

3=1
of our limits, we have the relation: Ej -1 = 2Er_1,-1+ 1, k¥ 2 2. Moreover,

Exk=Ero+ E,1+ -+ Ei k-1, because of the limit expression for p;. The desired
upper bound E ; < (k + 1)! follows easily.

To obtain the general case, we can argue as in the proof of Proposition 2.2 by
choosing convergent subsequences of f(*~#)/f* with 4 € D. Then the sum (2.5.1)

always has the same limiting value which is independent of the choice of subsequence.
]

The next Lemma will change constant term contributions in fx(z) to higher

order contributions.

LEMMA 2.6. (i) Let py = p € Cx. Let Xy = (An:p). Then:

1 \™
H N+JN—zN Hl—ﬁsn(l+ae).'

GnINIEAN\AY

(ii) Let (in,jn) be the coordinates of a deleted node. If neither iy nor jy are

eventually constant, then either i3, or j% is O(N). In particular, ————— — 1.
y ’ N OT N ( ) p ,(N+JN—ZN)_)

Proof. (i) This statement follows from two observations. The first is that
(in,JN) € AN \ Ny represent the coordinates of a deleted node. In particular, the
limits of jn/N and in/N both exist and given by a column and row frequency, re-

spectively.
(11) Now 0 < in, Jjn £ rk(/\N). But [l‘k(AN)]Z < I/\Nl and I/\Nl/N — A as
N — o0. n

We now come to the Theorem announced by Kerov and Vershik [12].
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THEOREM 2.7. If the row, column, and occupancy frequencies exist and the

summation conditions holds, then

. dim{An/k}N-1
1 -
Nl-{rgo {)\N}N

exists and equals the z*-coefficient of

F(z) = X6~ 1)H1+ﬂa +5s

Qi — Qa2

Proof. We first write:

num{Anive: e 1 - 6NN 1N
Ay = ————— = ) .
num{Ax }n o 1+aM)N
. dim{An/k}N-1
Since EmOw TN
to the value of limsup Ayx. To simplify the notation, we shall surpress all subindices.

< 1, for all k and N, we can find a subsequence which converges

N-—roo
By an application of Fatou’s Lemma, we can further claim that:

- 1_,3:
li Ay =e™° >0
e v =< [T 172 @

Further, we will inductively define a subsequence of {An} such that

dim{An/k}N-1

ist. .
Aim Tt exists for all k&

Let ¢ > 0 be given. Fix k € Z*. Let uy € Di,n, Ay = (An:pn). Then:

dim{My}~v-1 _ (num{X}ny_1 N W/ (2
TmDNIN ( mum{\ ) ((i,j)l;[w.rvﬂ-i) (|,v|!/N ) (f'\)'

It is easy to verify that

7
lim num{Ay}n_1
N—oco num{Ay}n

also converges to

o]
]-;-[1+a,

in other words, this limit is insensitive to the choice of the deletion nodes puy. We
also have that:
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For the remaining two products, their limiting values depend on the choice of
deletion nodes pn. They are controlled by Proposition 2.2 and Lemma 2.6.
We fix k € Z+. Let € > 0 be given, and let &’ = ¢/(k + 2)!2%. Then:

fim SmON/Epus 5 {dim{(/\Nlﬂ)}N—l o EDM} -

N dm{ANlx | Neso dm{ v =

dim{(An: ;w)},\r_ }
-JJLH;ZZ{ dimDyy #EDE T v €lew D= k=g =]

By construction, for fixed D € .+ n the sums

dim{(An: pv)}n-1 _ }
Z{ dim{AN}N ',UED,VEIE',N; IVI—J

converge to within ¢/(k + 2)2F of

mg A]
(272) m(D)e* | []1-4 (H ﬂ,-) II— (H .+1)
igY i€Yo igx I +oai (1+a )m
Hence, the limit of Nlim dim{An/k}n_1/ dim{An}n is within ¢/2% of the z*-coef-
—o0
ficient of

—a_ Az Bi + Biz
g(z) =e%* H-———Ha:_az

But fx(1) = 1, for all N. Hence,

oo .
) ( lim M) -1
ieo N—oo dxm{/\N}N
So, g(1) is within ¢ of 1, for all ¢ > 0. We conclude that g(1)=1ora=A.
By the same method, we can show that the value of l}vm inf Ay agrees with the
—00

value of

limsup An.
N—oo

In particular, the full limit of Ay exists. It follows at once that the desired limit

. dim{An/k}n-1
N EmOn

exists because of the factored expression (2.7.2) and the fact that the

. num{/\ﬁv}N_l
Nll-rgo num{Ay}n
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is independent of the deletion nodes. n

CoroLLARY 2.8. If the row, column and occupancy frequencies exist and the

summation conditions holds, then

. Ch{dn} M
Nl_l:r;o dlm{/\N }(V) = il;ll:F(zi)a

where F(z) is given in the Theorem 2.7 and z1,23,...,2m are the eigenvalues of V

different from 1.

‘We now turn to the converse of the Theorem. We focus on the case that we will
need for the other classical groups, then make comments on the general case. Let
fn(z) be as above. We assume that fn(z) converges pointwise to a function f(z),
where f(1) = 1.

The special assumption we make is that limsup #; < 1 and that f(0) # 0. Since
en(An) < N, for all N, we can find a subsequlgr:c’;Q of {An} such that all the column

frequencies exists. Consider the constant term of fn(z):

HOw) g M N _1N

Ay =
=1 1+ aSN)/N

Since Ay = fn (0}, the limit of Ay must exists and equals A = f(0). But, Ax <
!‘k()\N)
H 1- b(N) /N, hence A < H 1 — B;, by the definition of b( ). Since 0<Bi<l1

i=1 i=1
and A > 0, we must have Z B; < oo. Moreover, we further have

rk()\N)

1 H 1— (N)/N,

An £
1+ (N)/N i=1

so, limsup agN) /N < oo as well. Hence, we can find a subsequence of {Anx} so that
N—o0
the row frequencies exist as well. By the same method as for the B's, we can deduce

that Zai < oo when A = f(0) > 0.

We now have shown:

LEMMA 2.9. If fn(2) — f(z) poinwise and f(0) # 0, then:
(i) For any subsequence for the all the column frequencies 3; exist, Z B; < o0;

(i1) lim sup aZ(N)/N < 00;
N—oo
(ii1) for any subsequence for which all the row frequencies «; exists, E a; < oo.

We now show:
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LEMMA 2.10.

|AN|

limsup — < oo.
N—oco N

Proof. We first observe that
1 1
— —:(i,5)EX < —.
But (N + j — i)~} is minimized if j = r;(gn) and i = 1. So,
1 |An|

An 7 N+7‘1(/\N)—1'

Since limsupr; (An) < oo, limsup |An|/N = oo implies that
N—oo N—co

,/\Tirv—l+r1()w)— 1 — co.

Hence, there is a subsequence of {An} such that
w= 1 (1-555=)
(i,)EAN
converges to 0. So, f(0) = 0. Contradiction. [ |

COROLLARY 2.11.
tk(Ay) = O(N/?).

Proof. [rk(An)]? < [An]. [ |
So, summing up, we have:

PropPosITION 2.12. If fn(2) converges as N — oo and if limsup ng)/N <1,

—00
then the row, column, occupancy frequencies must exist and the summation conditon
hold. :

3. ASYMPTOTIC FORMULAS FOR THE SYMPLECTIC, SPECIAL ORTHOGONAL, AND
SPIN GROUPS

We shall now establish the Asymptotic Character Formula for the other classical
groups. We must make extensive use of the dimension formulas of El Samra and King
[9]. If (A) € §f)(2N ), then the dimension of this irreducible representation is:

rk{A)

rkﬁ) (2N +a; +1)! H (2N t+ai+a;+2) (2N —b; — b)) H(\)
2N =b)! 21 (N +ai—bj+1) @N —bi+a; +1) ,

=1
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where (a1, asz,...|b1,ba,...) are Frobenius coordinates of A.

As in Section 2, our standing assumption is that for the sequence of diagrams
(An) € §B(2N ) their row, column, and occupancy frequencies exist and the summa-
tion condition holds. Under this standing assumption, we shall show that the limit of

the normalized characters exist.

LEMMA 3.1. Let An be an increasing sequence of signatures, Ay € Spr\N). If the
row, column, and occupancy frequencies exist for (An) and the summation conditions

holds, then '
lim dim{AN)N-1
N-ox dim(AN)N

exists and equals

Proof. We have that:

dimOn)nv-: O @N +a™ -1 N =™y

dimQAn)y o @N +a™ 1) (2N_b§N>-2)!x
x“‘ﬁ”( 2N+(jzv§:v)+(§§;") )(2N+a§§;—b%1}:))+l)x
joit1 \2N +a; "’ =b;"" ~1 2N +a; ' +a; ' +2
x""ﬁ”) (2N—b§”’-b§."’)—2) (2N—b§"’)+a§”)+1) _
o \2N =5 4N g oN — b — 4V
_”‘ﬁ”)<(2N—b§”)>(21v—b£”’—1))
a @N - ™ + 1)2N + o)

=1 .

3 rkﬁ\') 1 _ 1 1 + 1 y
2N +a™ + o™ 42 N + o™ — (M)

j=i+41

l‘k()\N) 1 1
X 1-— 1+ _
JEI ( 2N+b,£N)-b§N)) ( gN_ng>+a§N)>

HQ) [on by aN - 5V — 1)
@N — o™ + 12N + V)

i=1

3 rkﬁN) (1 .\ agN) + bEN) +1 ) 3
izt L @N =™ 4 aM)enN + o™ + a1 2)
x rkﬁm (1 - a™ + o™ +1 ) x
j=i+l (2N - bEN) - bg-N))(2N + aSN) - ng))
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1 1
* (1 - 2N—2b(.N)) (1+ 2N — b(.N)+a(.N)> '

Under our assumptions, we have that

HOw) (on — ™) (2N — bM) - 1)
@N — o™ + 1)2N +a™)

lim
N—=oo
i=1

converges to
- - Mi
[l

rk(Ay) = O(N/?),

rk(An) rk(AN)
o — and 1+ .
oN — 2Nt 2N — b + o)

converge to 1 as N — oo.

To see that the remaining factors converge to 1, let € > 0 be given. Choose m so
large that for N > m, both agN) /N and bEN) /N < ¢ for i > m. Clearly, these factors
are bounded above by 1. Also, we observe that:

Moreover, since

both

rkﬁN) rkﬁm 1+ ™ 1M 41
imm \izm N84V + 1 +2) |

3 rki_AIN) (rkﬁr)H 2N + 2 ) .
= zm \ jom (2N — eN)(2N)

The limit of this last expression is bounded above by e*¢, where k is given by the
inequality: [rk(An)}2 < kN. Since € > 0 is arbitrary, this last product must converge
to 1. The remaining factors with indices in range 1 < i < rk(An) and i+ 1< j<m
orinrange 1 i< mand i+ 1< j<rk(Ay) must converge to 1, since the number

of factors involved has order of magnitute O(N1/2). n
LEMMA 3.2
lim dim()\N/st)N_l - lim dil’n{/\N/St}zN_l
N—oo dim(/\N)N T Nooo dim{/\N}zN+1 )

Proof. We will first assume that the row and column frequencies are distinct.

We fix s,t > 0. It will suffice to consider the case of only one deletion process, that
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is, the deletion of s nodes, say. Let px be a collection of deletion nodes, with |p| = s.
We shall show that:

lim dlm('(/\N:/t))N-1 - lim dlm_{(/\_NIM)}ZN—x'
N—oo dlm(AN)N N—oo dll’l’l{/\N}gN.H

To simplify notation, we will surpress the superscript N on the Frobenius coordinates,
so we write a; for aEN), for example. If the Frobenius coordinates of (An:p) differ
from those of Axy we place a prime / on that coordinate. The Lemma will be proved

if we can show:

KON HOW) g + aé- / 2N +a;+a; +2
1

lim
N—oo E JH’I 2N +a} — 2N +a; —b; +1

“‘ﬁ"’zN—bg—b;—z IN — b — b
RP S Sy vy 2N =it e +1

Jj=t

(3.2.1)
=1.

We first deal with the case that s column nodes are deleted, with at most 2 per
column. '

Suppose nodes are deleted at the p;-th columns, 1 < ! < s. Then there are at
most 2rk(An) affected factors in the product (3.2.1). In particular, 2rk(Ax) = O(N).
Write: p = p;, ¢ = ¢, then

ON — ¥, +d ON b, —b, )

_ (1+(b,,—b;,)+(bq-b;)+1 CSARS
AN — b, — b, 2N — b, +a;

and

(2N+ap+aq+1) (2N+a,,—bq+1 _
2N +a, — b, 2N +a,+a,+2)

_(1_ 1 L b mbptl
2N +ap+a,+2 2N +ap =¥,/

Now, choose an index M such that if > M implies that a; /N, b;/N < ¢. In the
product (3.2.1), at most 2s factors differ from the constant term case. Moreover, the
differing factors are bounded above by:

5 rk()\N)
(322) <1 + m) , with p=> M.

But the limit sup of (3.2.2) is 1. Hence, the lim sup of the expression (3.2.1) is at
most 1. Note: 0 < b; — b} < 2, for all 4.
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Similarly, for a lower bound, we replace the factor for p, ¢ > M with:

3 2rk(An)-2M 1 rk(An)
2. 1 o— — o 1— —— .
@9 (-gyew) (- 733)

But the lim inf of (3.2.3) is 1. Hence, the limit of (3.2.1) exists and 1 in this case.
We next turn to the case nodes are deleted only from rows.
Suppose that nodes are deleted from rows p and ¢. Then the affected factor in
(3.2.1) is:

2N+'a;,+_a'q+1) IN +ap —by +1
2N +a, — b, 2N +ap+a,+2

_ 1_(a,,—a;,)+(aq—a;)+1 - ap —ap +1
2N +ap+ag+2 2N +aj, — b,

and

IN —b,— b, —1\ (2N — b, +a,+1) _
5N — b, +af IN—b,—b, )

wis) ()
={1- 1+ :
( 2N — b, — b, 3N —b, + d

Since 0 < ap — a,, ag — @y < 5, We can argue as for column deletion. Moreover, the

/
)
general deletion };,)rocess can be decomposed into separate row and column deletion
steps with the above estimates yielding the general result.
We drop our condition that the row and column frequencies are distinct by fol-
lowing the technique of Proposition 2.2, because the value of the hooklenghts have no

effect on the product in (3.2.1). - ]

Hence, we have established the Asymptotic Character Formula for the symplectic
group Sp(co).

THEOREM 3.3. If the row, column, and occupancy frequencies exist and the

. A
summation condition holds, then the sequence of symplectic characters —M
dim{An)
a limit as N — oo.
Ch(An)

PROPOSITION 3.4. Suppose that the limit of the normalized characters m
N
exists, then the row, column, occupancy frequencies exist and the summation condi-

tions holds.

Proof. We consider the sequence dim{Anx}n—1/dim(An)n. Since these quo-
tients are non-negative and bounded above by 1, there exists a convergent subse-
quence. To simplify notation, we omit subindices. Now, on the one hand, the value

A}im dim(An)N—1/ dim{An)N gives the measure of the cylinder set S of all paths that
—00

pass through the node (0)2, (0)2 € S;(\Q) On the other hand, by our classification of
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the characters of the infinite symplectic group, [6], the measure of S is given by an

o 4 2
-z — Y
(e H1+2i) ’

=1

expression of the form:

where 0 < 2, 2z, <00, 0K y; < I/Z,Z(yi + z;) < 00. In particular, the measure of
the set S is 0 if and only if the measure itself is identically zero.
The key to the proof of the Proposition is the inequality:
dim(An)n-1 _ dim{Ax}an-1
dim(/\N)N = dim{/\N}2N+1 )
To establish the inequality (3.4.1), it will suffice to show that

N+aj+aj+1\/N+a;+a; +2 N—-b—-b-1 N —b; —b; <1
N+a,~—bj N+a¢—bj+1 N—bi+a]~ N—bi+aj+l =

To simplify notation, we have ommited the superscript N. Now, this product can be

(3.4.1)

written as:

<1+ aj+bj+l )(1_ aj+bj+1 ):
(N +ai +a; + 2)(N + a; - b;) (N —bi = bj)(N — b; + a5)
(@ +b; +1)(A—a; — b — 1)
(N +ai+aj + 2)(N + a; — b }(N — bi — b;)(N — b; +a5)’

where
A:(N—b;—bj)(N—bi+aj)—(N+ai+aj +2)(N+aj—b]-).

But A must be non-positive since b; < b; < N.

If a row frequency or occupancy of (An) diverges to oo or the summation con-
dition fails, then the ratio dim{An}ny—1/dim{An}n converges to 0 as N — oco. By
the above inequality, this forces the probability measure that corresponds to the limit
of the normalized characters to be identically zero. Contradiction. Moreover, the
sequences aSN) /2N, bSN) /2N, and |A|/2N must converge, otherwise, the sequence of
normalized characters would converge to more than one value because our assump-

tions are sufficient to guarantee convergence. ]

The same method can easily adapted to the special orthogonal group. We shall
be satisfied to state the result. The classification portion of this Theorem can be

derived using the method in our paper [6].

THEOREM 3.5. If the row, column, and occupancy frequencies exist and the
summation condition holds, then the sequence of characters {An] of the special or-
thogonal groups SO(N) has a limit as N — oo. Moreover, every finite character y of
SO(o0) has the form:

x(V) = [T1£(z)IP = det[f(V)],
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where f(z) = e’\("‘l)H 1-fit bz and V € SO(2N + 1) C SO(co) has the eigen-
i=1

14 o; — 32
values 21,%,...,2N,2ZN, L.

The classification of the characters of the infinite spin group will follow from the

next result.

THEOREM 3.6.

C™ (Spin(oo)) 2 C*(SO(c0)) ® C*(Sp(co)) ® UHF(2%).

Proof. By the branching laws for the spin groups [15], the'representation [4; A]y
decomposes into components again of the form [A;)]y_1, so the group algebra
C*(Spin(c0)) is isomorphic to the direct sum C*(SO(oc0)) with some algebra A =
=limAp. Our claim is that A = C*(Sp(c0)) ® UHF(2°°).

_‘To complete the proof we now outline a general method to construct a Bratteli
diagram for B = A ® UHF(2%®), where A = lim A, is an AF-algebra. Set B =
= lim By, Bai = (A2x @A) ® Myx-1(C), and Bz:q.l = A2t +1Q® M, (C). To describe
the embedding B; — Biy1, we let o denote the image of @ € A; in Aip,. Now,
Bsj—1 — Bog or Agp_1 ® Max—s (C) — (Azk ® Azk) Q@ Msx-1 bya®z— (a' é a’) Q.
Also, By — Bagq or (A2k @Azk)@Mzk-x (C) by (aEBal)@x — (a ? z @ ?@ 1:) S
€ Azk41 ® Mar-1(C) @ M2(C).

Following many authors (for example [15]), we find it convenient to introduce the
odd symplectic groups Sp(2N — 1) whose characters are parametrized by signatures
with NV entries. The character and dimension formulas for the even symplectic groups

still make sense if the even dimension 2N is replaced by an odd dimension.

It is straightforward to verify that the following diagrams are commutative,

Ak ———————— (A2 ® A2r) ® Mps-1(C) ——— Ay

J l J

Azk41 Azk4+1 @ Mo (C) — A

and

Ay —mMmm888m— Az -1 ® Mar-1(C) Aszi-1

1 l |

Ayp  ————————— (Ao © Az) ® Myu—s(C) Aai

Here, the second mapping on each row is an isomorphism. The maps from A; to 4,41

and A; to A;41 are the natural maps given via restriction of representations. The

result now follows. u
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To state the next result, we will let 4 denote the basic character of the infinite
spin group. This and associated representations have been studied by R. Plymen [21].
By the result of Blackadar [4] on primitive ideals and traceable factor representations

on tensor products of C*-algebras, we have the following Corollary:

CoROLLARY 3.7. (i) Prim(Spin(c0)) is naturally isomorphic to the disjoint union
of the primitive ideal spaces of SO(o0) and Sp(oc).

(i) Let A den8te the character of the spin representation of Spin(co). Then the
finite characters x of Spin(co) have the form:

!

x=4-x

where x' is a finite character for SO(0).

4. FACTOR REPRESENTATIONS IN THE ANTISYMMETRIC AND SYMMETRIC TENSORS

In this final section, we extend the results of [7] and [8] to the special orthogonal
and symplectic groups. In particular, we study the restriction of the positive-definite
functions pa(V) = det(I — A+ AV), 0 < A < I, which corresponds to representa-
tions in the antisymmetric tensors (exterior algebra) and pg(V) = det((I — B)(I -
—BV)™1), 0 < B < I, which corresponds to representations in the symmetric ten-
sors. We study in detail the antisymmetric case. The arguments for the symmetric
case follow in like manner. ‘

We introduce the notation Ay, Asp, and Aso, respectively for the quotients of
the group algebras supporting the representations of the infinite unitary, symplectic,
and special orthogonal groups, respectively, in the antisymmetric tensors.

We shall show:

THEOREM 4.1. If 0 € A < I and Tr[A(I — A)] = oo, then the positive-definite
function ps = det(I — A + AV)) is factorial on either Sp(co) or SO(00).

The proof rests on a close examination of the condition given in Chapter IV
of [22]. We need to introduce some notation and ideas from there. First, we let
X, = {0,1}, for all i. Following [14] or [27], we shall treat the spectrum of the MASA

j
of an AF-algebra as a space of paths. So, X(; ;) = H X, will be thought of as the set
p=1
of all paths that begin in the set X; and end in the set X;. If k € X(; 5, let X(; 41 1)(k)

denote the set of all paths in X(;41,1) such that kk’ € X(; 1) where k' € X(;41,1). Set
o0

X = lEnX(l,n) = HXi, the space of infinite paths. Next, we let y, be a probability

=1
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measure on Xp with 4, ({0}) = pi, pp({1}) =1~ =P 0<p;i<l,andt; = (1—p;)/pi-

Let (9 = ® pi on the set X(; ;y, and let p = H u; on X. Finally, we let G, denote

1
the group of path permutations on X1 ry.

Next, we let f be the characteristic function of the cylinder set based on the finite
path o, a € X(1 ,). We assume that n < r < N. Now as in [22], we assume that g is
a G,-invariant function of the form: g(k,v) = @(k, ¥(r+1,~5)), where k € X(1 ), 7 €
€ X(r41,00)- Here k, denotes the r-th node on the path k. We now argue that we can
drop the assumption that g is G,-invariant. For ease of comparison with [22], we still
write g(k,7) = @(k, Y(r+1,8))-

The fundamental quantity to estimate in the factor condition is:

[7=([) (/)

YT ek RO @) - w0k = o)l

kEX(s,r) TEX (r41,n) (K)

Here, ;A(l")(k(ll,,) = «) denotes the measure of the set of all paths k in X(1,r) such
that their first n nodes agree with a. We next observe that:

HEI @) = wD ks = @) = D@L E) = KD s 1,0)] < O

for all k£ € X(;,+)- We now fix the choice of ¢(k,v) = —1, for all (k,v) € X(1,n), s0
the fundamental quantity becomes:

O

Z pTEN () pt) (@) [ﬂ(n+1'r)(k(n+1,r)) — “(l,r)(k)]
EEX(1,r) YEX (r41,n) (k)

where each term is non-negative. This last quantity can be dominated by the sum:

Y WO k) — KOO B @),
k€X (1,0

Since each term is non-negative, the terms can be grouped together with absolute
values inserted at will.

We write the factor condition with the notation of [22]. For z € X,., let D, denote
the cylinder set of all paths in X that pass through the node z, and let D, C D;
consist of all paths ¥ € D}, with y(; ny = @. Our last estimate can now be written as:

(4.1.1) > |m(DL) ~ w(D)u e

z€X,
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It Zpi(l‘"Pi) = 00, then this last sum converges to 0 as r — oo and the corresponding
representation is a factor. [1] or [22]

We now describe the analogue of (4.1.1) for the dynamical system (Y, Gy ), asso-
ciated to the AF-algebra Asp. (compare [22]). Y will be given as imY (1, N).

Recall that the unitary character {17}y restricts to Sp(2N) into the sum
(Uon + (1V"2)on + -+ 4+ (17-20/2),y 0 < j < N. Moreover, a basis for the
representation space for each (1)ay can be indexed by Young diagram consist-
ing of a single column of length j whose entries are chosen from the alphabet:
1<1<2<2<--< N < N, are strictly increasing, and satisfy the condi-
tion that the entry in row i must be > i. We call these tableaux symplectic [25].
Such tableaux, though, can only index a portion of a basis for the j-th exterior power
AJ(C?N). The basis elements for the other terms (19=2), (19=%),... are needed. From
the representation theory of the unitary group, we know that a basis for 47(C?V) is
indexed by Young “unitary” tableaux consisting of a single column of length j whose
entries are chosen to be strictly increasing from the alphabet: 1 <1< ---< N < N.
We now describe how to associate a column of length j with these shorter tableaux.
Given a (j—2)-length column for (19=2),y, it can be imbedded into a j-length cotumn
by adding the entries i and 7 to it, where i and 7 are the first pair of letters that do
not appear in the given tableau. This rule can be applied recursively to imbed the
tableaux for (19=%)an, (197%)an, ... into single column tableaux of length j. More-
over, we can identify a basis for 4/(C?V) with j > N, by taking the (2N — j)-column
T giving a basis element for A2V —J(C2"), from a column of length j by choosing the
entries to be exactly those not occuring in 7. We shall call two unitary tableaux,
not necessary symplectic, sp-equivalent if one can be obtained from the other using,
perhaps repeatedly, the two procedures described in this paragraph.

We can now describe the infinite path space Y for Asp in terms of symplectic
tableaux. The space Yy is parametrized by the irreducible representations (1/)sn, 0 <
J < N. A path in Y{; n) can be identified with a symplectic tableau associated with
some (19),y with the map from Y(; n) to ¥(1,n—1) determined by deleting the entries
N and N from the symplectic tableau.

The weight vectors for Sp(2N) that correspond to the symplectic tableaux do
not, in general coincide with the weight vectors of U(2N) on A/(C?M). As a conse-
quence, it is not clear which measure is determined by u on the dynamical system
(Y,Gy) associated to Sp(co). Compare with [22, p. 80 and p. 120]. To simplify
this process, we shall work with a quasi-equivalent representation of U (c0). Let & be
the *-automorphism of Ay which will take a system of matrix units whose MASA is
generated by the projections onto certain weight vectors of Sp(2N), N > 1, onto a
system of matrix units whose MASA is generated by the projections onto the weight
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vectors of U(2N). In particular, we choose the usual weight vectors for the standard
copy of {(17)on contained in A/ (CZV). We construct further orthonormal vectors by
choosing them consistently with the copies of (19=2)ax, (1/"%)an,... contained in
AJ(C?N). (This step is unnecessary if g is a central measure, so p4 is a finite char-
acter). Then the probability measure ¥ on Y determined by this quasi-equivalent

representation of U(oo) is given via the generating function:

N N
[T +t2im12)( + t27) [/ [T+ tain)(1 +t20).
=1 i=1

As in the unitary case, we associate the coefficient of the monomial w;, w;, - - - w;,
to a tableau with entries 71,%3,...7;. Here, w; = z; if7 = 1,2,..., N, while w; = 7z}
if i =T1,2,---,N. For Sp(co), the measure v of the symplectic tableau T is the sum
of the coefficients of the monomials associated to all unitary tableaux sp-equivalent
to T.

Arguing as in [1] or [23], we have that the factor condition for Sp(co) is:

lim z |V(D;) - U(Dy)u(l’”)(a)l =0.

r—oo

yEYr

However, this sum is dominated by:

> |u(02) - w(Dut ™ (w)|.

zeX,

This last sum converges to 0 as r — oo when Zp,;(l — p;) = 0. The measure v
corresponds to choosing A to be a diagonalizable operator in the formula: det(] — A+
+AV). By following the reasoning in [7] or [8] concerning quasi-equivalence, we can
drop the condition that A is diagonalizable.

The situation for SO(oc) is even easier since the exterior powers AJ(CZN*t1)
are irreducible for SO(2N + 1), but the j-th exterior power is equivalent to the
(2N +1-j)-th power. So the distinct irreducible representations occur for: 0 € j < N.
So, in orthogonal case, the notion of equivalent tableaux is even simpler than in
the symplectic situation. A tableau T of length j is equivalent to tableau T if T”
has length 2N + 1 — j and the entries of 7' and 7" are disjoint. With this notion
of equivalence, the argument for the symplectic group now extends to the special
orthogonal group. This ends the reasoning for the antisymmetric tensors.

In the symmetric tensors, the unitary character {m},n of U(2N) when restricted
to Sp(2N) remains irreducible. Hence, our factor condition [7] extends immediately.
The above argument for the symplectic group in antisymmetric tensors will extend to
the situation of the special orthogonal group in symmetric tensors because the measure
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4 associated with the positive-definite function pp is an infinite product measure on an
infinite product space and there is a notion of so-tableau [24] analogous to symplectic
tableau.

Recall that the unitary character {m}sn4+1 of U(2N + 1) restricts to the special
orthogonal group SO(2N + 1) into the sum [m]eny1 + [m — 2]ong1 + -+ + [m —
—2[m/2))an+1, m = 0. Moreover, a basis for the representation space for each
[m]an+1 can be indexed by a Young diagram consisting of a single row of length
m whose entries chosen from the alphabet: 1 < T < -.- < N < N < o0, such that
the entries are chosen to be weakly increasing and oo occurs at most once. These
tableaux are known as the so-tableaux, and are analogous to the symplectic tableaux.
In order to obtain a basis for the j-th symmetric power of C2V+! we must imbed the
so-tableaux for [m — 2j] into an unitary Young tableaux consisting of a single row of
length m whose entries chosen from the same alphabet as the so-tableaux except now
all entries are chosen to be weakly increasing including co. To imbed a so-tableau
T of length m — 2 into an unitary tableau symply extend the tableau by repeating
the entry oo twice. We can apply this rule recursively to imbed the so-tableaux for
[m — 4],[m — 6], ... into unitary tableaux of length m. We call two unitary tableaux
so-equivalent if one can be obtained from the other using, perhaps repeatedly, this

procedure.

[= o]
Now the infinite path space & for the unitary group is given by: X = H(Z+ U
n=1
oo .
U{0}), with probability measure y = @ p, where p, is the probability measure on
n=1
the non-negative integers with density {(1 — ¢n)cE}2., and 0 < ¢, < 1for all n .
Let ) be the infinite path space associated to representations of SO(c0) in the
symmetric tensors. Then the measure v on ) will be determined by the generating

function:
N+1 N
H 1—coi—1 I'I 1—co
—_— )
iy - caimazaion o 1 — e
as follows. To each so-tableau with entries #;,15,..., %, we associate the coefficient

of the monomial w;, w;, - - -w;,, where w; = z; if i = 1,2,...N;=%; ifi = 1,2,... N,
however, if ¢ = co, then the monomial contains the factor 23, 41 When oo is repeated
J times. For SO(o0), the measure v of the so-tableau T is the sum of the coefficients

of the monomials associated to all unitary tableaux so-equivalent to T'.

ExAMPLE. For the finite character x(V) = det((1 — ¢)(1 — ¢2z)™!), we have, for
'V € SO(N), :

x(V) = x(z1,22,- -, 28) = (L = &)Y Z{m}Ncm =

m=0
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=(1-e)N Z (Z 2n+m) [m]n (1If6'1 Z[m]Nc

So, we are satisfied to state the following theorem.

THEOREM 4.2. If Tr(B) = oo, then the positive-definite function pg(V) =
= det((I — B)(I — BV)™!) is factorial on either Sp(c0) or SO(c0).

In [7], we state the factor condition as Tr[(I+B)(I—B)~!] = co. Since 0 £ B < I,
this last condition implies that Tr(B) =
We expect these techniques to extend to handle representations in various mixed

classes of tensors.

Supported by a grant from the National Science Foundation MCS-8902389.
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