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EXTENDING FACTORIZATIONS AND
MINIMAL NEGATIVE SIGNATURES

TIBERIU CONSTANTINESCU and AURELIAN GHEONDEA

1. INTRODUCTION

There exists a widely known method in the theory of moment problems which uses
a simple framework from operator theory. This method was initiated and developed
by M. A. Naimark [34] and M. G. Krein [28] and refers to the search of unitary
extensions of a given partial isometry, that go beyond the space where the partial
isometry acts. This method turned out to be useful for many problems. For instance:
the Nevanlinna-Pick problem can be solved in this way (B. Sz.-Nagy and Koranyi [39]),
the Hamburger moment problem and the Nehari problem fit well in this approach (see
D. Sarason [37]). Also, as shown by R. Arocena [4], the more general abstract problem
of lifting of commutants of Sarason, Sz.-Nagy and Foiag [36] and [38] (see also [27]),
can be embedded into this framework and, finally, let us mention that a recent method
of M. Cotlar and C. Sadosky [22] for solving moment problems can be viewed as a
case of the considered extension problem.

Quite recently, there appeared tentatives for obtaining other variants to solve
some other specific completion or moment problems. We mention here three direc-
tions. First, in order to solve Nevanlinna-Pick or Nehari problems for meromorphic
functions instead of analytic functions, extensions of isometries in spaces with indefi-
nite metrics were considered by V. M. Adamyan, D. Z. Arov and M. G. Krein [1],
T. A. Azizov [7], J. W. Ball and W. J. Helton [9], [10], M. G. Krein and H. Langer
[30], {31], [32], D. Aplay, P. Bruinsma, A. Dijksma and H. S. V. de Snoo [3]. Second,
for solving some bidimensional completion problems, a problem of extending pairs of
partial isometries was considered by R. Arocena and F. Montans (5] and, third, in
order to solve problems as those in the papers of H. Dym and I. Gohberg [26] or J. W.
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Ball and I. Gohberg [10], a nonstationary variant of the extension of partial isome-
trics was considered in [15] (see also [16]). The interpolation problems or moment pro-
blems that we reffered to before are mainly concerning Hilbert spaces or Pontryagin
spaces. An important challange in these topics appeared in 1986 when L. de Branges
asked the question of adapting the commutant lifting theorem to contractions in Krein
spaces. The first answer was given by the authors in [17] in the framework of Pon-
tryagin spaces and, for different situations involving Krein spaces, it was given by
M. A. Dritschel [24], M. A. Dritschel and M. A. Rovnyak [25] (see also [2], [13], [14],
and the authors’ papers [18], [19], where the more general case of nontrivial negative
signatures of defect is considered).

In [18] and [19] we have considered a problem of extending operators in Krein
spaces with control of the negative signatures of defect. This problem, denoted here
by E(T.,Te;k1,k2) (see Section 5) is a core of the variants of commutant lifting
with control of the negative signatures of defect. In [20], as a consequence of solving
a completion problem, denoted in this paper by C(K;k1,%2) (see Section 4), the
extension problem is solved completely in the case of finite dimension.

The purpose of this paper is to describe another variant of the method of Naimark
and Krein in connection with the determination of minimal negative signatures of the
extension problem. In order to follow this method we extend factorizations instead of
partial isometries, because of the different behaviour of the factorizations of the type
X'X in Krein spaces and, respectively, Hilbert spaces.

The extending factorizations problem, denoted by EF(X,Y; k1, £2) is considered
in Section 3. Here the main result is Theorem 3.4 which gives explicit formulae for
the minimal negative signature. Using the remark in [15], we are led to consider the
problem C(K;ki,k2) as a problem of extending factorizations (see Proposition 4.6
and Proposition 4.10).

One of the basic tools used in this paper is the Krein space induced by selfadjoint
operators. This led also to the investigations of the relations between the Krein spaces
induced by a selfadjoint operator and a selfadjoint extension of it. This is done in the
first part of Section 4. ,

The main result in the last section is Theorem 5.5 which gives formulae for the
minimal negative signatures of the modified extension problem E,(T,T¢; k1, k2).
This problem allows Krein spaces with infinite signatures. In the case only Pontryagin
spaces are considered, using a slightly different aproach, the same formulae can be
obtained for the problem E(T,T,; k1, k2).

2. NOTATION AND PRELIMINARY RESULTS

The basic properties of Krein spaces and their linear operators we use in this
paper are contained in the monographs [8] and [12]. In this section we fix the notation

and recall some results which will be frequently used in this paper.
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2.1. GEOMETRY IN KREIN SPACES. If K is a Krein space then its inner product
is usually denoted by [+, ). For a fundamental symmetry (in brief f.s) of K we denote
by (-,-)s the corresponding positive definite inner product. Also x~[K] and x*[K]
denote the negative signature and, respectively, the positive signature of K.

More general, if £ is a subspace of K, denote by x~[£], xt[L] and «°[L] its
signatures. £ stands for the orthogonal companion of £ and £° = £ N £+ stands
for its isotropic part. We have x°[C] = dim[£°] and x*[L1] are also called the
cosignatures of L.

If H is a Hilbert space then we denote by [H & H] the Krein space obtained from
the Hilbert space H @ H with the f.s. J defined by

o =0 1.

Let K; and Ky be Kreln spaces. We denote by K1[+]K2 the Krein space direct sum
of K; and K.

A subspace £ of the Krein space K is called regular if K = £ + £*. In this case
we usually write K = L[+]L+.

Let T € L(K1,K2), where K; and K, are Krein spaces. Then T* denotes the
adjoint of T. If J; and J are fixed f.s. of K; and K5 we denote by T* the adjoint of
T with respect to the Hilbert spaces (K1,(:,-)s,) and (K2, (:,)J;)-

2.2. THE KREIN SPACE H 4. Let K be a Krein space and A € £(K) be selfadjoint,
ie. A= A'. If J is a f.s. of K then JA is a selfadjoint operator on the Hilbert space

(K, (-, -)1), hence we can consider its polar decomposition
(2.2) JA = SyalJA|,

where Sy4 = sgn(JA) is a selfadjoint partial isometry such that ker S;4 = ker A.
Then S;4 is a symmetry on the Hilbert space (R(J A), (-, )1) Denote by H4 the

Krein space (’R(JA), [, ]) where the inner product [-,] is induced by the symmetry

Ss4 as follows:
(23) [x,y] = (SJA:L‘,:U)J , T,YE HA-

Let us remark that the linear manifolds R(|JA|) and R (|JA|%) are dense in H4
and the strong topology on the Krein space H 4 is inherited from the strong topology
of the original Krein space K. Denote by £4: K — H4 the quotient mapping. Then
€4 € L(K,H4) and we have

(2.4) 694&4 =JSsa.
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The definition of the Krein space Ha does not depend on the f.s. J in the sense
that if a different f.s. is used, the two Krein spaces obtained in this way are unitary
equivalent.

Let K1 and K, be Krein spaces and T' € L(K1,K2). Fix fs. J; and J2 on K
and respectively, K3. Define the operators

(2.5) Jr =sgn(J1 —T"JT), Jp. =sgn(Jz - T T")

(2.6) Dp =|Jy = T*JoT|3, Dps = |Jo = THT*|3,

and using these elements define the space Dr = R(Dr) considered as a Krein space
with the f.s. Jr and, similarly, define the Krein space Dp. = R(Dg.) with the f.s.
Jre. The Krein spaces Dr and Dy. are called the defect spaces of T and clearly

(2.7) Dr =MHi-mvy, Dre =Hi_pp.

2.3. THE KREIN SPACE K4. Let X be a Krein space and A € £(K), A = AV
Define the inner product [-,-] on K,

(2.8) [z,4]a =[4z,4], zy€eK

where [+, -] denotes the inner product of the Krein space K.

Notice that ker A is the isotropic subspace of the inner product space (K, [, ]4)-
Fix J afs. of K and denote K = J(ker A)*. Then consider the Jordan decomposition
of the selfadjoint operator JA with respect to the Hilbert space (K, (-, -)s),

(2.9) JA=(JA)4 — (JA)-,
and denote K4 = (JA)+K and K_ = (JA)_K. Then we have

K=k++t-.

Notice that (K4, [, ]a) and (K_,~[,"]4) are pre-Hilbert spaces and denote by Kt
and K, their completions to Hilbert spaces. Define

(2.10) Ka=K}i[+lK3,

where the inner product is the extension by continuity of the inner product [-, ]4.
Then (Ka4,[,-]a) is a Krein space and (2.10) is a fundamental decomposition of K 4.
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Let m4 denote the quotient mapping K — K composed with the embedding of K into
K4. Then 74 € L(K,K4) and

(2.11) s = A

The next result is a direct consequence of the definitions.

LEMMA 2.1. If K is a Krein space, A € L(K) 1s a selfadjoint operator and J is
a f.s. of K used in the definition of the Krein spaces M4 and K4, then the linear

operator
(2.12) KadKoz— |JAlFzeR (|JAi%) CHa
extends uniquely to a unitary operator K4 — H,4. In addition

(2.13) |[JA|Fms = ea|JA|7.

The definition of the Krein space K 4 is independent of the f.s. J, modulo unitary

equivalence (see [21]).

2.4. OPERATOR SIGNATURES. Let K be a Krein space and A € £(K) be a
selfadjoint operator. The signatures of A are, by definition, the cardinal numbers

(2.14) - kE(A) = k*[Ka], &°(A) = dimker (4).

As a consequence of Lemma 2.1 it follows
(2.15) &E(4) = k1 (Ha).

Let K3 and K2 be Krein spaces and consider T' € £(K1,K3). The cardinal numbers
k(I =TIT), k(I = TT"), k°(I — T'T) and «°(I — TT*) are called the signatures of
defect of T'. These signatures verify the following equalities (see [21])

(2.16) k(I = T'T) + k%[K3] = k¥ (I — TT) + 6¥[K4),
(2.17) k(I - T'T) = k(I — TTY).

2.5. SOME SPECTRAL PROPERTIES. Let # be a Hilbert space and A € L(H),
A = A*. A real number t is isolated on the left (on the right) with respect to the
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spectrum of A, here denoetd by o(A), if there exists ¢ > 0 such that (t—¢,t)No(A) = 0
(respectively, (t,t+¢€) No(A) = 0).

Let now K be a Krein space and A € £L(K), A = A'. If for some f.s. J of K, 0
is isolated on the left (on the right) with respect to o(JA) then the same is true for
any other f.s. of K.

Let K1 and Ky be Krein spaces and T € £(Ky,K2). With respect to fixed f.s. Jy
and Jz on K; and, respectively, on K2, we introduce the spectral properties:

(a)+ 0 is isolated on the right with respect to o(J, — T J2T),
(a)- 0 is isolated on the left with respect to o(J; — T* J,T).

The properties (a); and (a)- do not depend on the f.s J; and Jo. Moreover, if T
has either the property (a)4 or (a)_ then T? shares the same property (see [21]).

2.6. INDEFINITE FACTORIZATIONS. Let 4 € £(K1), A= A'and 4 € £(K3), C =
= C' be given. We are interested in factorizations of the type

(2.18) A=B'CB,

where B € L(K;,K2). Under certain conditions, this kind of factorizations produce
unitary operators acting between the Krein spaces induced by A and C. Here we
recall two criteria of different type. The first one is a consequence of a well-known
extension lemma [29], [33], [35], [23].

LeMMaA 2.2. Let B € L(K4,K3) be surjective and satisfy (2.18). Then:

(1) B induces a unitary operator in L(Ka,Kc).

(ii) If J; and Jy are f.s. with respect to which H, and Hc are defined, there

exists a uniquely determined unitary operator V € L(Ha,Hc) such that
V|J1 A% = |J.C|¥B.
For the proof of the second criterion see [21].

LEMMa 2.3. Let B € L£(K1,K2) have dense range and satisfy the equality

A=B'B.

Moreover, assume that for some (equivalently, for all) f.s. Jy of Ky, 0 is isolated on
the left or on the right with respect to o(J,A). Then:
(i) B induces a unitary operator in L(K4,K2).
(ii) If J1 is a f.s. of K1 used in the definition oh H 4 then there exists a uniquely
determined unitary operator V € L(H4,K2) such that

V|J1Al? = B.
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2.7. ELEMENTARY ROTATIONS. Let K; and K be Krein spaces and T €
€ L(K1,K3). An elementary rotation of T is a triple (U;K},K}) where K} and
K3 are Krein spaces, the operator U € L(K1[+]K], K2[+]K}) is unitary and extends
T,i.e.

P, UKL =T,

and one of the following minimality conditions holds
K2 VUKL = Ka[+]K,, K1V UuK:z = IC1[+]/C11.

For any operator T' € £(K1,K3) there exists an elementary rotation (cf. [6]). Here
we refer to a certain elementary rotation denoted by (R(T); D+, Dr) where

(2.19) R(T):[T Dr- ]

Dr —Lg«Jp-
Lr+ € L(D7+,Dr) being a uniquely determined operator (see [6], [21]).

2.8. A UNITARY EXTENSION. Let 1 be a Hilbert space and consider the Krein
space [H @ H] defined as in (2.1). Also, let K be a Krein space and T € L(H,K),
L =R(T). In this paper we will use the following result (e.g. see [7]).

LEMMA 2.4. In order to exist a unitary extension U € L([H & H],K) of T it is
necessary and sufficient that T be injective and L+ = L.

3. THE PROBLEM OF EXTENDING FACTORIZATIONS

The problem we are concerned with has the following statement:

( There are given Krein spaces H,G; and G and

operators X € L(H,G.), Y € L(H,G>) such that
X'X =YY = Z € L(H).

Given cardinal numbers x; and k3, it is required to

determine a quintuple (X, ¥; G}, G4; W) such that:

(7) G{ and G, are Krein spaces and

EF(X,Y; k1, K2) § k~[G1] = k1, k7[Gh) = k2.

(35) X € L(H,G1[+]G)) is an extension of X and

Y € L(H,Ga[+]G5) is an extension of Y such that
XX =YY =2

(#58) W € L(G1[+]G], G2[+]G5) is unitary such that
WX=Y.

{(iv) Gy VWG, = G1[+]G!.
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Before considering this extending factorization problem we need to recall a known
result (e.g. see [18]).

LeMMa 3.1. Let H and G be Krein spaces, X € L(H,G) and Z € L(H), Z = 2}
be such that
X'X =2z

If J denotes a fixed f.5. on H then X is uniquely represented by
(3.1) X=[V|JZ|? X0

where V:R(|JZ|})(C Hz) — G is isometric such that V|JZ|3 is bounded, X, €
€ L(ker Z,G) is such that R(X,) is neutral and included in R(V)*. In particular
R(Xo) = R(X)® (the isotropic part of R(X)).

Let X be an operator as in Lemma 3.1. In the following it will be needed to
consider a technical condition that we denote by (v):

() { The operator V from the representation (3.1) extends
v (uniquely) to an isometry in L(Hz,G).

LeEmMMA 3.2. Let X be as in Lemma 3.1. Then X has the property (7) if and only
if X|J(ker Z)* extends (uniquely) to an isometry in £L(Kz,G). In addition, if X has
the property (v), then R(X) is a pseudo-regular subspace of G and R(X) = R(Xo).

Proof. The first part of the statement is a direct consequence of Lemma 2.1. For
the second one, assuming that X has the property (), let V denote also the isometric
extension to the whole Krein space Hz and £ = VHz. Then L is a regular subspace
of G and, from Lemma 3.1, it follows that X has the representation

[ [V|JZ|% 0 ] ker Z £

0 Xo ' J(kerZ)-L—)[LtEI

Form here it follows immediately that
(3.2) R(X) = L[+]R(Xo)

then, this R(Xj) is also a neutral subspace and it follows that R(X) is pseudo-regular
and its isotropic part is R(Xo). [ |
We can now consider the problem EF(X,Y; k;, 2).

LEMMA 3.3. Assume that both of X and Y have the property (v). If EF(X,Y;
K1, K2) has solutions then the following identity holds:

(3.3) k1 +rank(X|ker Z) + k™[R(X)1] = k2 + rank (Y |ker Z) + " [R(Y)1].
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Proof. Let (X,Y;g;,gg;w) be a solution of the problem EF(X,Y; 1, k2).

Then X has the representation
(3.4) X=[X Xi]"H—Gi[+]G;

such that
XX =x'Xx+Xx,=2=Xx'X,

hence X! X; =0, i.e. R(X1) is a neutral submanifold of G;.
Consider now the representation (3.1) of X and, since X has the property (v),

we have the decomposition (3.2), where £ is regular. Denoting
(3.5) Xo = [Xo X1]':ker Z — Gi[+]G!,

it follows that

(3.6) R(X) = L[+]R(Xo),

in particular the subspace R(X) is pseudo-regular and R(Xp) is the isometric part of
R(X).
Similarly, ¥ has the representation

(3.7) Y =[Y YiJ''H — Ga[+]G5

such that Y7 has neutral range and, taking into account that ¥ has the property (v)
and denoting

(3.8) Y =[¥, Yi]':kerZ — Go[+1G,

where Yy = Y| ker Z, it follows that

(3.9) R(Y) = S[+]R(Yo)

in particular this means that R(Y) is a pseudo-regular subspace and R(Y;) is the
isotropic part of R(Y).
Taking into account the factorization relation
WX =Y,
since W is unitary we obtain WR(X) = R(Y) and then, using (3.6) and (3.9) it
follows

(3.10) R(Y) = WLHR(Yo)-
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The identity (3.3) is now a consequence of the identity
K7 [L = kT [(WL)H,

where the orthogonal complements are computed with respect to the Krein spaces
Gi1[+]G} and, respectively, Go[+]G5.
Indeed, from (3.6) we obtain

£~ [L1] = k7 [G{] + rank (X |ker Z) + £~ [R(X)]*]
(this time we consider R(X) as a subspace of G1), and similarly, from (3.10) we obtain
k™ [((WLY] = k7 [Gh] + rank (Y |ker Z) + &~ [R(Y)]*]

(viewing R(Y') as a subspace of G,). ]

The main result concerning the problem EF(X,Y; k1, k2) is the computation of
the minimal negative signatures ; and k2.

THEOREM 3.4. Assume that X and Y satisfy the property (v) and, in addition,
(3.11) rank (Y |ker Z) < oo, rank (Xl|ker Z) < oo.

Then, the set of pairs (1, k2) for which the problem EF(X,Y; k1, k2) has solutions,

has a minimum which Is simultaneously attained and given by

(3.12) &1 = rank (Q(I — P)) + max{0, k™ [R(Y)*] — k™ [R(X)1]},

(3.13) KPP = rank (P(I — @)) + max{0, k™ [R(X)*] — «~ [R(Y)*]},

where, with respect to a fixed f.s. J on 'H, we denote P = P17zi( X3y Q= P%(Yo') and
Xo=Xlker Z, Yo = Y|ker Z.

Proof. Let k1 and k2 be cardinal numbers for which the problem EF(X,Y; k1, k2)
has solutions and let (X ,Y;61,G5: W) be a solution. Then we consider the represen-
tations (3.4) and (3.7) of X and Y and consider the operators X, and Yy with neutral
ranges, introduced in (3.5) and (3.8). Restricting the operator identity WX = ¥ to
the subspace ker Z it follows

(3.14) WX, =Y.

We fix now f.s. J, Jq, Jo, J1, J5 on H,G1,Gs,G1 and, respectively, G5 and consider the
corresponding Hilbert spaces.
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With respect to these Hilbert spaces, we obtain from (3.14) that
(3.15) R(X3) = R(YS).

Consider now the decomposition

(3.16) R(X5) = R(X5) NR(Yy) & R(P(I - Q)),
and
(3.17) R(Yp') = R(X5) NR(Yy) ® R(Q(I - P)),

with the remarks that the assumptions (3.11) imply that both of P and @ have finite

ranks. Taking into account that

R(P(I-Q)NR(QU - P)) =0,
from (3.15) and (3.17) we obtain
(3.18) k1 = &~ [G}] 2 rank (X;) > rank(Q(I — P))
and similarly, from (3.15) and (3.16) we obtain
(3.19) K2 = £~ [G5] > rank (Y;) > rank(P(I - Q))

Let us remark that form (3.16) and (3.17) it follows

(3.20) rank (Xo) = rank (X3) = rank (P A Q) + rank (P(I — @))
and
(3.21) rank (Yp) = rank (Yy') = rank (P A Q) + rank (Q(I — P)),

where P A @ denotes the orthogonal projection onto R(Xg) NR(Yy). Using (3.20)
and (3.21), from Lemma 3.3. we obtain

(3.22) k1 +rank (P(I - Q)) + &~ [R(X)1] = k2 + rank (Q(I — P)) + k™ [R(Y)*]

and finally, from here, (3.18) and (3.19) we obtain k; > ;™" and &3 > &P'", where
kPi" and k" are introduced in (3.12) and (3.13).

Conversely, let £ and xJ'® be given in the formulae in (3.12) and (3.13). We
will construct in the following a solution of the problem EF(X,Y; k1, k2).
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Let us notice that the following decomposition holds,
G1 = LI+](R(Xo) & J1R(Xo))[+]L,
where £ = VHz is a regular subspace of G, and
R(X)+ = R(Xo)[+]L’

and, similarly,
G1 = S[+](R(Yo) ® J2R(Y0))[+.S",

where § = UH 7z is a regular subspace of G, (U corresponds to V in the decomposition
(3.1) of Y) and
R = R(Yo)[+]S'.

We consider now H; a copy of the Hilbert space R(Q(I — P)) and take X; the natural

embedding onto the first component
X1:R(QI - P)) — [H1 ® H,]
Then extend X; trivially onto the whole ker Z and define
Xo=[Xo Xi1]':ker Z — Gi[+][H1 ® H,).

Similarly, consider H3 a copy of the Hilbert space R(P(I—Q)) and take Y; the natural
embedding onto the first component

Yi:R(P(I - Q)) — [H1 © Haj,
then extend Y; trivially onto the whole ker Z and define
Yo =[Yo Yil':ker Z — Go[+][H2 @ Ha).
With this definitions it is now easy to check that
R(X3) = R(¥S),

hence there exists a (uniquely determined) invertible operator T:R(Xo) — R(Yo)
such that
TXQ = ?0.

Using Lemma 2.4 we extend T to a unitary operator

W: (R(Xo0) & J1R(Xo))[+][H1 & Ha] — (R(Y0) ® J2R(Y0))[+][H2 ® Ho],
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in particular we also have
WX, = Ys.
We define X € L(H,G1[+][H1 @ Hi]) and ¥ € L(H, Go[+][H2 ® Ha)) by

X =[V|JZ|? X
and
Y=[UJz? Y.
Extending the unitary operator W such that
WIL=UV"hL—8

we have

(3.23) WX =Y.

Finally, let S € £(L', ') be such that
K~ = 88" = max{0, k™ [R(Y)*] - k™ [R(X)*]}
k[ ~ 8'S] = max{0, s~ [R(X)*] — s~ [R(Y)]},

extend W with an elementary rotation of S, say it (R(S), Ds-,Ds) (see (2.19)) and
notice that (3.23) still holds. Denoting

gi = [H1 & H1}[+]Ds-,
Gy = [H2 & H2][+]Ds-,

it follows that
k7[G1] = KT, £7[G3] = K.
Then (X, ¥;G},G4; W) is a solution of the problem EF(X,Y; gTin, gin), [ ]
An important particular case of the problem EF(X,Y;sPi" k) is for k; =
= k2 = 0; in this situation we write simply EF(X,Y). Before specializing Theorem
3.4 to this case it is worth noticing that we can state EF(X,Y) in the following
equivalent form:
( There are given Krein spaces H,G1, and G2 and
operators X € L(H,G1), Y € L(H,G>) such that:
X'X =YY = Z € L(H).
It is required to determine a triple (G}, G5; W)
such that:
(7) G} and G} are Hilbert spaces.
(#3) W:G1[+]G] — G2[+]G5 is a unitary
operator such that
WX =Y.
[ (#13) GV WG, = Gi[+]G].

EF(X,Y) T
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Indeed, this follows from the remark that, since G{ and Gj are Hilbert spaces, in this

case the extended operators X and Y are trivial extensions of X and, respectively, Y.

COROLLARY 3.5. Assume that X and Y satisfy the property (v) and also that
the conditions in (3.11) hold. Then, the problem EF(X,Y') has solutions if and only if
R(XE) = R(Yy) and £~ [R(X)1] = k~[R(Y)1], where Xo = X|ker Z, Yy = Y|ker Z
and the * operation has to be understood with respect to a fixed f.s. J on H.

Proof. Indeed, using Theorem 3.4 it follows that EF(X,Y) has solutions if and
only if P = gP" = 0, and using formule (3.12) and (3.13) this means Q(I — P) =
= P(I-Q) = 0 and £~ [R(X)*] = &~ [R(Y)1]. It remains to notice that Q(I - P) =
= P(I — Q) =0 if and only if R(X}) = R(Yy). ]

4. THE COMPLETICON PROBLEM

In this section we will consider a selfadjoint completing of a certain type partial
block-matrix. As a first task, we investigate the relations between the induced Krein
spaces of a selfadjoint operator and that of a'compression to a regular subspace.
Without restricting the generality, we can consider the spaces onto which this block-
matrix acts to be Hilbert spaces, instead of Krein spaces, since otherwise we can use
fundamental symmetries.

Let H; and Hs be Hilbert spaces and a selfadjoint operator H € L(H1 & H2)
given by the following block-matrix:

o n=[2 7).

Consider a linear operator xg,c € L(H2, Hy) defined by
(4.2) xmch=|H|?h, heH,.
Then, it is easy to show that

(4.3) Xy oxme =C

hence, using Lemma 3.1 with respect to the decomposition Hy = (HzSker C)@ker C

we have the representation
(4.4) xumc =[VICIF xzclkerCl,

where V: R (C’i;ﬁ) (C He) — My is isometric.
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By definition, we say that the Kreln space H¢ is canonically embedded into the
Krein space Hy if the isometry V is bounded and, in this case, H g has to be identified
with the regular subspace VHc of Hy.

Consider now the operator py,c € L(Hz, Hy) defined by

(4.5) pH’ch =ngh, h€EH-.
Then we also have
(4.6) p”H,CpH,C =C

and from here it follows that the linear operator pp,c|H26ker C: Ha28ker C (C K¢) —
— K g is isometric.

By definition, the Krein space K¢ is canonically embedded in Hy if the isometry
pH,c|H2 © ker C is bounded, in this case the Krein space Ky being identified with
the regular subspace ppg,cKc of K.

LEMMA 4.1. H¢ is canonically embedded in Hy if and only if K¢ is canonically
embedded in Kg .

Proof. From the definitions of ps,c and x#,c we have
VIC|5h = |H|}puch, h€HzOkerC.

Taking into account that |C|3 € L(K¢,Hc) and |H|? € L(Ky,Hy) are unitary
operators, it follows that the isometric operators V and pg,ch|H2 © ker C are simul-

taneously bounded. u

Also as a consequence of Lemma 3.1, R (xm,clker C) is the isotropic part of
R (x#,c) and similarly, R (pu,c |ker C) is the isotropic part of R (pa,¢). The dimen-
sions of these isotropic parts can be computed in terms of the data of the selfadjoint
block-matrix H.

LEMMA 4.2 rank (xg,clker C) = rank (Blker C) = rank (pa,clkerC).
Proof. Let us denote By = Blker C. Then for h € ker C, hy € H; and hs € H»

we have

[xm,ch, |H|%(h1 ®ha)lsy = (Hh,hi®hs) = (Bah, h1®h2) = (HPE@‘;")“h,M ® hz) =

= [XH,chh, |H|3(h1 & hz)] i

This implies the first equality. The second one follows in a similar way. |
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We present now two criteria, of different features, which insure the existence of
the canonical embeddings. For this purpose it is convenient to introduce the notation

4.7 B; = Bl[H; ©kerC, B; = BlkerC.

Then, the selfadjoint operator H in (4.1) is represented by

A B, B,
(4.8) H=|{B; C 0
B 0 0

LEMMA 4.3. Assume that By = I'C for a certain T' € L(H2 & ket CH,). Then
K¢ is canonically embedded in Ky and, in addition,

k*[R(pmc)t] = * (PkerB; (A — TCT*)|ker B;) .

Proof. If By = I'C then using the representation (4.8) we obtain the factorization
of H as

I T o][A-TrcT* 0 B [I o
01 0 0 c o||r
0 0 I B3 0 0 0 0
Defining R € L(H; ® Hz) by
I 0
R=|T* I 0
0 0

and using Lemma 2.2, it follows that R~! induces a unitary operator
Kel+Kra _rors Bz] - Kg.
[ B3 0

Since this unitary operator is an extension of py,.c|H2 © ker C, it follows that K¢ is
canonically embedded in Kg. Moreover,

e [Ripno)] = * ([A—I‘Cr* Bz]) _

B 0

= k% (Per p, (4 — TCT*)[ker By ),

and the proof is finished. [ ]
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LEMMA 4.4. Assume that By = A|C|? for a certain A € L(Hz ©ker C,H1), and,
in addition, assume that 0 is isolated either on the left or on the right with respect
to o(H). Then Hc is canonically embedded in Hy and

k* [R(xmc)t] = &t (Pkew; (A — AScA*)|ker B;) .

oy e . .
! Proof. We consider the decompositions

H, = ker B3 @ (H1 © ker B3),

ker C = (ker C © ker B;) @ ker B,

and, with respect to the first decomposition let A be represented by A = [A; A,]'.
Then (4.8) becomes

A1l Az 0 0 ACPE
Agy Azs By 0 AC)3

(4.9) H= 0 B3 0 0 0
0 0 0 0 0

lclas [ClzA3 0 0 C

We consider now the Krein space Ha,,-a,sca;[+][R(B2) ® R(B2)][+]Hc = K with
the specified f.s.

sgn (Au - AlscAI) 00 0
wp i e 0 0I 0
(4.1 =
(4.10) I 0 10 0
0 0 0 Sc¢
Define the operator T' € L(H1 & H2, K) by
|A11 — A1ScAf|% 0 0 0 0
: 0 I 0 0 0
4.11 T=
(1) Az — A3ScA} (A2 —A2ScA3) B2 0 0
Sc A} ScAj 0 0 [C|?

Using (4.9)-(4.11) it is easy to verify that the following factorization holds
H=T"JT.

Since T has dense range and 0 is isolated either on the left or on the right with respect
to o(H), using Lemma 2.3. it follows that there exists a uniquely determined unitary
operator U € L(Hp,K) such that

UIH|? =T.
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Taking into account the definition of 7" it follows that
U~YC|3h = xa,ch, h€H20kerC,

hence Hc¢ is canonically embedded in Hy. Also, using the unitary operator U it
follows

&¥[R(xm,c)t] = 6% (A1 — A1ScA})
The proof is finished. [ ]

Remark. Just from the definitions of py ¢ and xu,c it follows
1
|H|%pH,c = xH,C-

Considering |H|? as a unitary operator in L(Kx, Hy) (see Proposition 2.1) it follows
that R(pm,c)t and R(xm,c)! and unitary equivalent, hence their signatures are the
same. m

We are now in a position to formulate the completion problem.

( Let Hj, M2 and Hg be Krein spaces and,
with respect to the Krein space H;[+]H2[+]Hs,
let be given the selfadjoint partial block-matrix

A B
K=|B' ¢ D
D! E
Denote 4 B c D
Hz[B“ C’] andG:[Du E]

Given cardinal numbers k; and k3, it is required
C(K; k1,K2) { to determine a triple (F;G{,G5), where

F € L(H3,H,), and G{,Gj are Krein spaces,
such that:

(&) &7[G1]) = 81, £7[G] = e

(i?) considering the selfadjoint completion of K,

A B F
K(F)={B' ¢ D
Ft D' E

we have, modulo canonical embeddings, that

{ KkFy = Kg[+]G] and Kk (ry = K[+]G5-

We will first show that the problem C(Kj;«;, k2) can be restated into the framework
of a problem of type EF(X,Y; k1, £2).
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To this end, let (F; G, G3) be a solution of the problem C(K; k1, k2). By defini-
tion, there exist unitary operators wy: Kg(ry — Kg[+]G] and wy: Kg(ry — Ka[+]G)
such that w;11 is an extension of the canonical embedding of Kg into Kg(r)y and, sim-
ilarly, wal is an extension of the canonical embedding of K¢ into Kg(Fy. Define the
unitary operator W € L (Ku[+]G}, Ks[+]G5) by

(4.12) W =wewy',

and then define the operator X € £L(Ha, Ka[+]G}) by
(4.13) X = wamg | Ha,
and, similarly, let ¥ € L(H2, Kg[+]G,) be defined by

(4.14) Y = wemk(r)|Ha,

PROPOSITION 4.5. Let (F';G{,G5) be a solution of the problem C(K; k1, k2) and,
let X, Y and W be defined as in (4.12)-(4.14). Then (X‘,ff;g;,gg; W) is a solution
of the problem EF(pu,c, pg,c; k1, K2).

Proof. Let us first remark that from (4.6) it follows
X'x=v'vy=C

where X = pgc and Y = pg, ¢, hence the problem EF(X,Y; k1, k3) makes sense.
It remains to prove that the quintuple (X,Y;G!,G5; W) constructed as indicated in
(4.12)—(4.14) is a solution of the problem EF(X,Y; k1, k2).

Condition (i) in EF(X,Y; k1, k3) is clearly satisfied since it coincides with the
condition (i) in C(K; &1, k2).

In order to prove that the condition (ii) holds, let us first note that X =
= wHpK(F),c hence

X'X = pry,cPr(P)C = C.

Similarly we obtain

Yy =C.

Let h € Ho, by € H, and hy € Hy. Then

[%h i@ ha] = [ommairyh, by @ hal y = [racryh, ol (@ ha)] =

= [whmah, Sy ® o) = lrh, b © halig = [Xh, I © hola,
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which proves that X is an extension of X. Similarly one proves that Y is an extension
of Y and thus the condition (ii) also holds.
Taking into account the definitions of W, X and Y we have

KgV WUK:G =Ky VwHw”GICG =Wy (wLICH anG,CG) =

=wg (tx(F)(H1 ® H2) V mx(r)(H2 @ H3)) =
= warg(r) (M1 @ He & H3) = waKk(r) = Ku[+]6;.
We proved that (X, Y;gg,g;; W) is a solution of the problem EF(X,Y;x;1,£2). W
LEMMA 4.6. Assume that K¢ is canonically embedded in both of Ky and K¢.
If the problem C(K; k1, k2) is solvable then the following equality holds
%1 + rank (Blker C) + k™ [R(pr,c)t] =

= k3 + rank (D'|ker C) + &~ [’R,(pG,c)'L] .

Proof. As before, we take X = py.c and Y = pg ¢. Just from the definitions it
follows that X has property (v) if and only if K¢ is canonically embedded into Kg.
Thus, assuming that K¢ is canonically embedded into K and Kg it follows that X
and Y have the property () hence we can apply Lemma 3.3, via Proposition 4.6, and
get the required equality. |

For the choice X = py ¢ and Y = pg ¢, we have now to show how the solutions
of the problem EF(X,Y; k1, k2) produce solutions of the problem C(Kj;«k;, k). We
need first two preliminary results.

LEMMA 4.7. Let (X,Y;G},G%; W) be a solution of the problem EF(X,Y ; k1, k2),
where X = pgrc andY = pg ,c. Define F € L(H3, H1) by

(4.15) F = Pyl P, Whng|Ms,
and Ty € L (Hy[+Ha[+]Hs, Ku[+]G]) by
(4.16) Ty = [nulMy X W n6|Hs| .

Then Ty has dense range and satisfies the following equality

A B F
(4.17) B! C D|=TLTa.
F' D' E
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Proof. From the definition of the operator Ty we have
R(Tw) = R(mu|H1) + R(X) + R(Wirg|Hs).
Since X is an extension of X = g |H2 it follows that
R(Tyg) 2 R(mw).
Since Y is an extension of Y = mg|H2 and WY = X it follows that
R(Tg) 2 (Whng).

Taking into account the minimality condition (iv) in the problem EF(X,Y; k1, £2),
we obtain thus that R(T) is dense in Kg[+]G].
In order to prove the equality (4.17) we compute the entries of T}“ITH regarded

as a block-matrix with respect to the decomposition
Hi[+][Ho[+]Hs.
To this end let h;, k; € H;, i =1,2,3. Then
[Tﬁ,Tth, kl] = [rgh, ekig = [Hhi, k] = [Ahy, ki1].

Since X is an extension of X = wg|Ha we have

|Th Tiaha, ki | = [Xho, waks] = (ruha, wakily = [Hha, bi] = [Bha, k).
Also, since X!'X = C it follows

[T}‘,T,,hz,kz] - [Xhz,sz]H = [X'“X'hg,kg] = [Cha, k3.
Using the definition of F in (4.12) we have
(T4 Tk, k1] = [Winghs, mks] = [Fha, ki].
Taking into account that X = W!Y and ¥ is an extension of 7g|Ha, it follows
[T};Tghs,kz] - [WﬁwG,sz]H -
= [moha, WXka| = [nohs, Vka| _ = [rohs, nakslg = [Dha, kil

and finally

[T Tiahs, ks| = [Winghs, Winghs) , = [mohs, akslg = [Ehs, ks).
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We thus proved the equality (4.17). .

LEMMA 4.8. Let (X,7;G},Gh; W) be a solution of the problem EF(X,Y; k1, &2),
where X = pg,c andY = pg,c. Define F by (4.15) and then define

Tec € L (7‘(1[+]7‘lz[+]7‘l3, ICG[+]GQ)
by
(4.18) To = [Wrnltty ¥ wale] .

Then T has dense range and satisfies the following equality

A B F
(4.19) B C D|=T.Ts.
Ft D! E

The proof of this lemma is similar with that of Lemma 4.8 and will be omitted.

PROPOSITION 4.9. If F € L(H3, M) is defined as in (4.15), where (X,Y;G},G5;
W) is a solution of the problem EF(X,Y; k1, k2), with X = pg ¢ and Y = pg ¢, and
assuming that the operator Ty in (4.16) (equivalently the operator T¢ in (4.18)) has
the property (), then (F';G}{,G}) is a solution of the problem C(K; ky, k2).

- Proof. Let us first remark that from (4.16) and (4.18), it follows
WTy =1Tg,

hence Ty and Tg have simultaneously the property (y). Assuming that these hold,
since Ty and T have dense ranges, it follows using Lemma 2.3 and (4.17) that
Ty uniquely induces a unitary operator wy: Kk (ry — Kg[+]G] and, similarly, from
(4.19), Ty uniquely induces a unitary operator wg: Kk (ry — Kg[+]G5.

On the other hand, from (4.16) it follows that Ty |H1[+]H; is an extension of mg
hence w}, is an extension of the canonical embedding of Ky into Kk (r). Similarly
one proves that qu is an extension of the canonical embedding of K¢ into Kg(ry.

Thus we proved that (F;G1{,G5) is a solution of the problem C(K; &y, &2). [ ]

REMARK. Assume that H;, Hq, Hs are finite dimensional Hilbert spaces. Notice
that in this case, with respect to the decompositions Hy = ker C @ (M3 © ker C), we
have the representations

B=[B, AiCl],

and
D= [D2 ICI%Az] ,
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and denote
Azz = PkerB; (A - AlscAI)lkeI‘ B;,

Eqy = PkerD;(E - A;SCA2)|ker Ds.

Also, let P and @ be the ofthogonal projections of ker C onto R(B3%) and, res-
pectively, R(D3). Using Proposition 4.10 and Theorem 3.4 we get

min {n‘(K(F))|F € E('Hs,')'h)} =

= k~(C) + rank (P) + rank (Q(I — P)) + max {x™ (A22), " (E22)} .
(compare with [20], Theorem 4.1).

5. THE EXTENSION PROBLEM

In [19] it was considered the following extension problem with prescribed negative

signatures of defect.

( There are given Krein spaces K1, K2, K}, K5
and two linear operators T, € L(K1[+]K{, K2)
and T, € L(K1, K2[+]K}%) such that
T, 1K1 = Pe,Ts.
E(T,,T.; k1, k%) { Given cardinal numbers £} and &5 it is required
to determine an operator T' € L(K1[+]K}, K2[+]K5)
such that:
(2) T|IC1 =T. and P;c,’f’ =T,.
\ (i) k= (I = T'"T) = k= and &k~ (I — TT) = «}.

Motivated by the approach adopted in this paper, we formulate a modified ex-

tension problem as follows

 Assume that Ky, Ko, K{, K are Krein spaces and
and T, € L(K1[+]K),K2) and T, € L(K1, K2[+]K5)
are operators such that
T 1K1 = P, Te.

Given cardinal numbers «; and k3, 1t is required
E, (T, T,; k1, k2) § to determine a triple_(f’; G1,G3) such that

T € LK1 [+]K,, K2[+]K}) satisfies
() T|K1 = T. and P, T =T,.
(i) £7[G1] = k1 and £7[G)] = &2,
(4é7) modulo canonical embeddings, we have
\Ry_psr = Ky_grp.[H1G1 Ki_pde = Kp_p, 12 [+]52.
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It is clear that if (T';G},G5) is a solution of the problem E,(Ty, T¢; 1, k2) then
T is a solution of the problem E(T;,T,; &}, &5) where

5.1 K, =k1+ k(I =T'T), &y = ke + k(I = T.TH).
1 c 2

Conversely, if (5.1) holds and 7 is a solution of the problem E(T},T:;«}, 5) then
T produces a solution of the problem E..(T;,Te; k1, k2) if and only if IC,_Tch and
K;_r ¢ are canonically embedded in Kf_ 545 and, respectively, K;_77; and k; and
K2 coincide with the negative cosignatures of K I-TiT, and, respectively, £ 1T, T with
respect to these canonical embeddings.

The following result illustrates a situation where the two extension problems do
coincide.

LEMMA 5.1. Assume that
(5.2) k) =k~ (I-T!T,) < 00, ky =~ (I - T,T}) < 0.

Then any solution T' of the problem E(T, T:; £}, k%) produces a solution of the pro-
blem Ep,(T;,T;0,0).

Proof. Let T be a solution of the problem E(T;,T; x|, k). Then T is a row

extension of T,, hence

T= [T, #]
and this produces a representation
I
[T — [I TIT, *]
* *

where we have denoted by “x” the operator entries which are of no importance

here. Taking into account the first condition in (5.2) it follows that the mapping
Pr_faf 1_TiT, (see (4.5) for the definition) induces a densely isometric operator acting
between Pontryagin spaces of the same negative signature hence, using a Pontryagin
Lemma type argument (e.g. see [18], Corollary 1.3) it follows that this isometric
operator is bounded, i.e. K [-TtT, is canonically embedded into K;_4y5. Also, there
exist a Hilbert space G} such that, modulo the canonical embedding,

Ki g = Ky_qog, [+1G1.

Similarly, using the second condition in (5.2), we prove that there exists a Hilbert
space G4 such that, modulo the canonical embedding,

Ki_ g0 = Kp_pqi[+]G2.
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Thus (f; g1, gg) is a solution of the problem E,,(7;,T.;0,0). [ ]

We will now embed the problem E(T;,T¢; %, x5) into a completion problem as

the one studied in Section 4. For this reason let us denote
Tr|IC1 = P}Cch =Te [:(’Cl,’(:z).

Then there exist uniquely determined operators B € L(K1,K}), D € L(K{,K3) such
that

(5.3) T.=[T B), T, =[T D).

Using these objects we consider the selfadjoint partial block-matrix K acting on the
Kreln space KH[+]Ko[+]K1[+]K) and defined by

I 0 B
0 I T D
5.4 k=
(54) B' " I 0
Dt 0 I

Also, let us remark that 7' € L(K1[+]K}, K2[+]K}) satisfies
Tllcl = Tc; PKI;,T =T,

if and only if for some F' € £(K{, K5) we have

55 r=[7 ).

PROPOSITION 5.2. The formula (5.5) establishes a bijective correspondence be-
tween the set of solutions (T; G1,G4) of the problem E., (T, T,; k1, k2) and the set of
solutions (F; G}, G3) of the problem C(K; k1, k), where K is defined as in (5.4).

Proof. Let F € L£(K!,K}) be arbitrary, consider 7" as in (5.5) and define the
selfadjoint operator

I 0 B F
0 I T D
5.6 K(F) =
(5.6) (F) BT I o0
Ft DV o T
Then,

(5.7) K(F) = [,ﬂ 1]



396 TIBERIU CONSTANTINESCU AND AURELIAN GHEONDEA

and the following factorization holds

I 0] [I 0 1T
5.8 K(FY=]| . . T .
68) &) [Tﬂ I}} [0 I—T”T] [0 I]
Then, using Lemma 2.2, from (5.7) we obtain a unitary operator
(5.9) Ky = Ki[+K2[+K;_gos-

In accordance with the notation in Section 4 we denote

I 0 B I T D
(5.10) H=|0 I T|,G=|T" 1 0
B TV I DY 0 I

We notice that the following representation holds

[I Tc]
H=|. ,
T I

and using a factorization of H similar with that in (5.7) we obtain a unitary operator
(5.11) K — Ka[+Ka[+K; _par, -

Let now (F'; G}, Gb) be a solution of the problem C(K; k1, k2) and define 7" as in (5.5).
By definition, we have a unitary operator

(5.12) Ku[+Gi — Kk ),

which extends the canonical embedding of Kg into Kk (r). Using this operator and
the unitary operators in (5.8) and (5.10) we obtain a unitary operator

2K [+K _par [+]G1 = K3[HKa[HIK -

This unitary operator maps K4[+]K, onto itself and extends the canonical embedding

of ’CI—TSTC into K;_f4, hence, modulo this canonical embedding, we have
Ky_gip = Kp_qip [+1G1.

Similarly we prove that K [-T,T? is canonically embedded into K;_z7, and modulo
this embedding, we have
Ki_t50 = Ky_p, 12 [+193-

Thus (T; G},G5) is a solution of the problem En, (T}, T¢; &1, £32).
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Conversely, if (T'; G;,G4) is a solution of the problem Ep,(T;, T;; k1, £2) then (5.5)
uniquely determines F' € £(K1,K5). We use again the unitary operators in (5.8) and
(5.10) to produce a unitary extension of the canonical embedding of Ky in Kk (ry as
in (5.11). Similarly we get a unitary extension of the canonical embedding of K¢ into
Kk (ry, with the complementary Krein space G3. Thus (F';Gj,G3) is a solution of the
problem C(K; k1, k2). [ ]

As it was pointed out during Section 4, the problem C(K;y, &2) is stated into
the framework of a problem EF(X,Y; x1,42). In accordance with the notation in

previous sections, we consider the selfadjoint operators H and G as in (5.9) and, in

I T
C= .
B
LEMMA 5.3. Assume that either K1+~ (I =T!T.) or ko +x~ (I-T,T}) are finite.
If (X,?;g{,gg; W) is a solution of the problem EF(X,Y; x1,k;), with X = pyc

and Y = pg,c, then, letting F' be defined by (4.12) and T as in (5.5), (T,G,,G}) is a
solution of the problem E,(T;,T,; k1, K2).

addition,

Proof. Assume that k) +x~(I~T!T.) is finite. We first prove that if T is obtained
from a solution (X ,?;g;,gg; W) as indicated in the statement of the lemma, then
k™ (I — T'T) is finite.

To this end, let us consider the unitary operator in (5.8) and denote by S the
regular subspace of Kk (ry which is mapped to this unitary operator onto K5[+])Ka,

in particular we have
(5.14) k~(I-T'T) = k™ [S*].

From (5.7) it follows that S = mx(r)(K5[+1K2) C R (7x(r))-
We consider now the operator Ty € L (K4[+]1K2[+]K1[+]K], Ku[+]G]) defined
by

(5.15) Ty = [mulky X W wguc;].

and using Lemma 4.8 we obtain that Tx induces an isometric operator wy with
domain R(7k(r)) and dense range in K [+]G]. An argument of Pontryagin Lemma
type shows that

(5.16) &[S <k [(wrS)] -

Let us consider now the representation (3.4) of X. Remark that R(X;) is a neutral
subspace of G1, hence it has finite dimension. From (5.14) it follows

wiS + R(Xo) = T (K3[+]K2) + R(X1) 2 7r(K5[+K2).
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Making use of the unitary operator in (5.10), this yields
K~ [(wHS + ’R(Xl))J'] k14 &~ (I -TIT.)

and finally, from here, (5.13), (5.15) and the fact that R(X) is finite dimensional, we
conclude that k= (I — T*T) is finite.

Since k= (I — T4T) is finite it follows that 7" has the property ()-. Taking into
account the factorization (5.7), it follows that the hypothesis of Proposition 4.10 are
fulfilled, hence (F';G1,G5) is a solution of C(K; k1, k2) and using Proposition 5.2 we
conclude that (T; g;,gg) is a solution of E, (T, T;; k1, K2). [ ]

We focus now on determining the minimal negative signatures for which the
extension problem is solvable. For this purpose we need to fix f.s. Jy,J{, J2 and J}
on K1,K, K2 and respectively K5. With respect to these f.s. we consider the defect
operators Dr and Dr. (see (2.6)).

There exist uniquely determined operators A; = J;Blker Dy and T';: R(Dr) —
— K} such that

(5.17) , J3B =[A; T2Dr],

and similarly, there exist uniquely determined operators A; = Pyerp,. J5D|: K] —
— ker Dp and I'1: R(Dr-) — K{ such that

(5.18) D*Jb = [A} T\Dr.].
LEMMA 5.4. Assume that the operators I'; and I'} defined in (5.16) and (5.17)

are bounded, and denote I'y = I} € L(K{,Dr.). Then, in order for the problem
E..(T;, T;; k1, k2) to be solvable, the following equality must hold

K1+ rank (Az) + Kk~ (errA;(Jé - F2JTF;)|kel‘ A;) =
= kg + rank (A1) + &7 (Prera, (J{ — T1JreT1)|ker Ay).

Proof. Using Lemma 4.3, since I'; and I'; are bounded, we obtain that K¢ is
canonically embedded into both of Kz and K¢, equivalently, pg,c and pg,¢c have the

property (7y) (see Section 3). In addition, also from Lemma 4.3, we obtain
(5.19) &~ [Rlpe,c)*] = k7 (Prera, (J{ — T J7-T1)|ker A1),
and

(5.20) K~ [’R,(pH,c)'L] =K~ (PkerA;(Jé - F2JTI'§)|kerA;) .



EXTENDING FACTORIZATIONS AND MINIMAL NEGATIVE SIGNATURES 399

We apply now Proposition 5.2 and Lemma 4.7, taking into account the formula (5.18),
(5.19) and the definitions of A; and A; and get the required formula. [ |

THEOREM 5.5. Assume that the hypothesis of Lemma 5.4 are fulfilled and, in
addition, that A; and A, have finite ranks and also that s~ (I-T!T;) and k= (I-T,T})
are finite. Then, the set of pairs (k1, kg) for which the problem Ep,(T;, T;; k1, K2) Is
solvable has a minimum, simultaneously attained, which is given by the following

formulse

Kxinin = rank (Q(I — P)) +ma.x{0, K™ (})ker/\l(‘]{ - FIJT‘Fl)lkerAl)

(5.21) ,
~&~ (Prera,(J3 — T2JrT3)|ker A3)}

and

(5.22) k2" = rank (P(I - Q)) + max {0, K~ (Pker,\;(Jé —T2JrT3) |ker A3)

—K" (H(GI‘AI(J]I_ - FIJT‘Fl)IkeI’Al)}

where we have denoted P = Pr(a,) and Q = Pj,rr(a3)-

Proof. First recall the considerations during the proof of Lemma 5.4. Then notice
that since A; and A, have finite ranks and k= (I — TYT.) and x~ (I — T, T}) are finite,
in order to determine the minimal signatures of the problem E,, (T, T; k1, k2), taking
into account Lemma 5.4, it follows that we are interested only in those pairs (k1, £3)
such that either k; and k- is finite. Thus, Lemma 5.3 works in this case and we can
apply Theorem 3.4. It remains only to notice that the orthogonal projections P and
@ can be considered as in the statement of the theorem, since the partial matrix K

in (5.4) gives the same bound for x; and k2 as the partial matrix K’

I 0 B
(5.23) K' = 0 1 0 D
B 0 I-T'T -T'D
D -D'T I
The proof is finished. u

Remark. In formule (5.20) and (5.21) we optionally can take P = Pj per(a,)
and @ = Pg(az)- This follows by considering instead of K’ in (5.22) the partial
block-matrix

I -BT' B
(5.24) g |~TB I-TT' 0 D
Bt 0 I 0
0

Dt I
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JOROLLARY 5.6. Assume that the hypothesis of Theorem 5.5 are fulfilled and

let &} and &% be defined as in (5.2). Then the problem E,(T,,T.; k1, k%) is solvable
if and only if

(5.2

and

5) R(A1) = J2TR(A3)

(5.26) K~ (PkerAl(J{ - I“{JT.I‘l)|ker Al) =K (PkerA;’(Jé - I‘zJTI‘;)“SeI‘ A;) .

5.1]

10.
11.
12,

13.

Proof. This is a consequence of Lemma 5.1 and Theorem 5.5. ]

We conclude by noticing that Corollary 5.7 is a generalization of [18, Theorem
(see also Remark 5.6 in {19] and Remark 5.7 in [20]).
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