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TAYLOR JOINT SPECTRUM FOR FAMILIES OF OPERATORS
GENERATING NILPOTENT LIE ALGEBRAS

A. 8. FAINSHTEIN

1. INTRODUCTION

The analytic functional calculus for commutative operator families was con-
structed in the papers of J. L. Taylor [7], [8].

Let a = (a1,...a,) be a commutative family of linear bounded operators in a
complex Banach space X. According to [7], the exactness of corresponding chain
Koszul complex Kos{a, X) is the generalization of the concept of invertibility from
one operator to commutative operator families. The Taylor joint spectrum of a is the
set a(a) of n-tuples A = (A1,..., ) € C" for which Kos(a — A, X) is not exact.

The analytic functional calculus is the continuous homomorphism of the algebra
O(U) of analytic functions into the algebra of bounded operators on X extending the
natural calculus for polynomials of n variables, with I/ an open set in C” containing
o(a). The image of ¢ € O(U) under this homomorphism is denoted by ¢(a).

An important property of the Taylor functional calculus is the following spectral

mapping theorem [8).

Let f:U — C™ be an analytic map generated by a m-tuple of analytic functions

and f(a) be the corresponding m-tuple of operators. Then
o (f(a)) = f(o(a))-

Remark that the spectral mapping theorem is not trivial in the case of a polyno-
mial map.
Another definition of the joint spectrum was given in the paper of R. E. Harte [3].

In contrast to Taylor’s definition, Harte’s one makes sense for arbitrary (not neces-
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sary commuting) operator families. Here is one of the versions of Harte’s definition
of joint spectrum.

The left joint spectrum of the operator family a is the set r(a) of A € C* for
which there exists a sequence of unit vectors {z;} C X with

lim ||(a,- —X)zg|[ =0, i=1,...,m
j
the Harte joint spectrum of a is the set
oa(a) = r(a) U r(a").

Note that for a commutative a, og(a) C o(a); besides, A € 7(a) if and only if
the operator a,_; of the complex Kos(a — A, X) is injective and has closed range,
and A € 7(a*) if and only if the operator ag of Kos(a — X, X) is surjective. (See the
first section for exact definitions of Koszul complex in a more general case}.

No analytic functional calculus is known for the Harte spectrum but for a com-

mutative @ and a polynomial map p the spectral mapping theorem is valid:

6y on (p(a)) = p(on(a)).

This result was proved in [1], (6] and in Harte’s paper [3] for another version of joint
spectrum®*).

In [4] Harte proved the spectral mapping theorem for operator families which he
called quasi-commutative. A family a is quasi-commutative if and only if

[a,-,[aj,ak]]zo, i,j,k:l,...,n

with [u,v] = wv — vu for operators u,v. The equality (1) is proved in [4] for the
version of Harte joined spectrum mentioned in the footnote and for polynomial maps
with non-commutative variables.

It is clear that any quasi-commutative operator family generates nilpotent Lie
algebra. A far generalization of Harte’s result was proved by Ju. V. Turovskii in [10]:
equality (1) was proved for infinite families a generating nilpotent Lie algebras, for
infinite families p of limits of rational maps and for all versions of the Harte spectrum.

In the paper [9], devoted to non-commutative functional calculus, J. L. Taylor
in fact defined a joint spectrum of arbitrary operator family in terms of associated
Lie algebra. We'll try to develop this approach here. We’ll study the Taylor joint

*) A belongs to this spectrum if and only if @ — A generates a proper left or right
ideal in the algebra of all bounded operators. For a Hilbert space X, this spectrum
is equal to oy (a).
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spectrum o(a) under the assumption that the Lie algebra generated by a is a nilpotent
one.

It is a consequence of [10] that in this case ogx(a) C o(a). The main result
of the paper is the spectral mapping theorem for finite families of non-commutative

polynomials p:
o(p(a)) = p(o(a))

proved under the condition that the Lie algebra generated by p(a) is finite-dimensional
(and, as a consequence, it is nilpotent). Obviously, the concept of joint spectrum we’ll
study here has good sense only for operator families generating nilpotent Lie algebras.

The structure of the paper 1s the following.

In the first section we recall the construction of the Koszul complex for module
over a Lie algebra and present homological facts, most of them known.

In the second section we present two definitions of joint spectrum and prove their
equivalence for operator families generating nilpotent Lie algebras. The first one is
more convenient to formulate and the second onc is used in the proof of the main
result.

In the third section we present a dual cohomological definition of the joint spec-
trum and prove its equivalence to the definitions of the second section, again in the
nilpotent case. As a consequence, we prove the coincidence of o(a) and o(a*).

In the fourth section we prove that if a generates nilpotent Lie algebra and p(a)
generates finite dimensional one, then p{a) really generates a nilpotent Lie algebra.

In the fifth section the main result is proved.

The results of this paper were repeatedly discussed with Ju. V. Turovskif at all
stages of the work. In fact, the work was joint at an early stage. In particular, Ju.
V. Turovskil proved the projection property of joint spectrum (Consequence 5.5) and
suggested Definition 2.1. The author is deeply grateful to Ju. V. Turovskii for this
help. The author wishes to thank V. P. Palamodov for the help in proving Proposition
2.5, and A. Ja. Khelemskiy, V. P. Palamodov, A. I. Shtern, V. S. Shul’man and D. P.

Zhelobenko for useful discussions.

2. PRELIMINARIES

In this section we present some necessary facts from homological algebra.

Let X be a complex vector space, and let £(X) be the set of all linear operators
on X. For a Banach space X, let £{X) be the set of all bounded operators. Let E be

a complex Lie algebra, and let X be an E-module. This means, by definition, that a
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Lie algebra homomorphism
pE— L(X)

is given. For u € E and z € X we shall write uz instead of p(u)z when p is obvious.

Denote by AFE the exterior algebra generated by E, and by AP E the p-th exterior
space of E. An element

ule"‘Aup GAPE

will be often denoted by u. Consider the chain Koszul complex Kos(E, p, X) (or
simply Kos (E, X)) generated by the E-module X:

0~ XIXQEE ... EXQAEE ...

P . 3 . i,
with a(z@u) = Y (1) "lp(w)z ®§+ (=1 -le @ fui,u;] AU (cf. [9]; the
i=1 i<y

notations A and ‘/\) mean the omission of u; and u;,u; respectively; we omit also
indices in notations of boundary operators ). .

‘The homology spaces of Kos(E, X) are denoted by Hp(E,X), p=0,1,....

Let I be a Lie ideal of E. The space X ® Al is an E-module with respect to Lie
algebra homomorphism E 3 u — ©, € £(X ® AI):

Ou(z®) = pu)z @ u + f(—l)"lx ® v u] A

t=1

withz € X, v=v A...Av, €APL

Obviously, X is an I-module, and the associated complex Kos (I, X) is subcom-
plex of Kos (E, X). Boundary operators of Kos (I, X) are also denoted by a.

The next lemma is proved by direct computation.

LeMMA 1.1. The next diagram is commutative:

XoAN-1lI & XeANI
b e

XoAr-l] & X @APT

So the operators ©, define an endomorphism of the complex Kos (I, X). The
relative operators on H,(I, X) are also denoted by ©,,.
Let in particular I = F.

LemMMA 1.2, ©, are zero operators on Hy(E,X).

Proof. Introduce the operators

W XQANE - XQANTE, i(z@v)=2zQuAu.
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Direct computation proves that i,o+ aiy, = ©,. Now let oh = 0. Then ©,h = «aiyh.

Lemma is proved.

REMARK 1.3. The operators ©,, %, and lemmas 1.1, 1.2 are in fact known. They
are homological analogues of the relative operators and their properties considered in
[2] for cohomologies of Lie algebras.

The next lemma is a consequence of the main lemma of homological algebra on
the exactness of the long sequence of homology spaces for short exact sequence of

complexes (see [7] for the analogue of this lemma).

LEMMA 1.4. Let
0—X &Y —Z 0

be an exact sequence of E-modules.
Then the exactness of any two of the complexes Kos(E,X),Kos(E,Y) and
Kos(E, Z) implies the exactness of the third one.

Let (X, @):

06— XX & EX, e e

be a chain complex of vector spaces, and a sequence of operators # € £L(X,),p =
= 0,1,..., that defines an endomorphism of (X, «). The cone of 3 is the following
complex Con ((X, ), 8):

0= XodX, 0 XgLo - L o1 X, L

with y(x,y) = (az + By, —az) for (2,y) € Xp41 & Xp.
The next lemma is a particular case of Lemma 5.2 below. We wish to formulate
it here to show how the construction of the cone is associated with Kos (&, X).

LEmMMA 1.5. Let I be an ideal of Lie algebra E of codimension one, u € E\I and
X an E-module. Then

Kos(E, X) = Con (Kos(I,X),0,).

Lemma 1.5 may be used in the proof of the projection property of the joint
spectrum of a family of operators in a Banach space generating a nilpotent Lie algebra.
This is a particular case of the main result of this paper (see Consequence 5.5 below).

The following result of Z. Slodkowski [5] plays an important role in proving results
of the spectral mapping theorem type. It is convenient for us to formulate it in terms
of the cone of a continuous endomorphism 3 of a complex of Banach spaces X. Note
that for A € C it is natural to define the endomorphism 8 — A of X.
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LEMMA 1.6. [5] If the complex of Banach spaces X is not exact and f is a

continuous endomorphism then, for a certain A € C, Con (X, # — }) is not exact.

Consider now the notion of bicomplex and its totalization, and formulate the
necessary statements.
Let Xj5,¢,5 = 0,1,... be vector spaces and let a: Xq1 5 — Xij, 8: X j41 — Xi

be linear operators such that the following diagram

b b I

[e4
0e— Xoj = Xij = -+ — Xij

00— Xog <& X & o & Xy &
bl ls
0e— Xoo <& Xpo & o & Xip &
0 0 0

Is commutative and all rows and columns are complexes. In this case the system of
spaces X;; and operators «, 3 is said to be a bicomplex. Denote this bicomplex by
A, its j-th row and i-th column by (X;,a) and (AX;, B) respectively. The homology
spaces of rows H; (X}, a) and operators generated by operators § form under fixed i
the complex (H; (X;, ), B) and analogously homology spaces of columns and opera-
tors generated by o form the complex (H; (X;, 8),c) under a fixed j. Denote by
H; (H;(X;,a),p) and H; (H;j (X;,8) ,a) the homology spaces of these complexes.
The totalization of the bicomplex X is the following complex Tot (X):

Of——Tnglg—--‘lTplm

with 7, = ‘+® Xij, 72 = az + (—1)*Bz for z € X; ;.
i+j=p
It is easy to see that the cone of an endomorphism of a complex is a particular
case of totalization.

The following lemma is well known.

LEMMA 1.7. If all homology spaces H; (H; (X, ), B) or all H; (H; (X,0),«) are
trivial then the complex Tot (X) is exact.
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The condition of the next lemma is hold for bicomplexes appearing in this paper.

LEMMA 1.8. Let the triviality of H; (X, &) implies the triviality of all H;(X;, o),
j = 1,2,.... If the row (Xp,«) is not exact and the operators fB: H; (X1, o) —
— H; (Xo, a) are trivial then at least one column of the bicomplex is not exact.

Proof. Let Hp(Xy,a) # 0 and H;{Xp, @) = 0 for i < k. Let all columns of the
bicomplex be exact. Denote by Ker and Im respectively kernel and image of a linear
operator. For 2 € X} o, & € Ker o\Im & we construct, using the exactness of columns,

the sequence of elements
Trejj41 € Xko1541, J=0,1,...k
for which the following equalities are valid:
r = fzr1;

azy = BTr-1,2;

azry i = BTok+1-

The triviality of H;(A, ) implies the triviality of H;{Aj, &) hence we construct the
sequence

Ye-1445+1 € Xp—14j541, J=kE—1,...,1

for which the following equalities are valid:
Zo,k+1 = OY1,k+1;5

T1k = Pyie+1 = aY2.k;

Tr—1,2 — BYr-1,3 = OYx 2;
a(zr,1 — Pyr2) = 0.

(It is clear how to find y; k+1; after that:

a (T = By1k41) = @1k — By r41 = Boks1 — Poyi k1 =

= Bxor+1 — Bror+1 =0 => 21k — Py k41 = aYaz.)

Now use the triviality of the operator 8: Hy (X1, ) — Hy (Xo, &) . We have

=Pz = pf(zr1— Bur,2) € Ima
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because of 21 — PByr2 € Kera. This contradiction shows that the columns of the

bicomplex are not exact. The Lemma is proved.

2. THE JOINT SPECTRUM OF OPERATOR FAMILIES

In this section we give two definitions of the joint spectrum of finite operator
families and prove their equivalence in the case when the Lie algebra generated by
the operator family is n’ilpotent.

Let @ = (ai1,..., @) be an operator family on the vector space X, A = (Ay,...
s A) €CY a—A=(a3— A,...,@, = Ag), E(a) be the Lie algebra generated by
a in the algebra £(X). We shall use a notation Kos(a, X) for the Koszul complex
generated by the F(a)-module X. The following definition was suggested by Ju. V.
Turovskil.

DEFINITION 2.1. The joint spectrum of a is the set o(a) of those A € C™ for
which the complex Kos (¢ — A, X) is not exact.

Now let £ be the complex Lie algebra with generators e, . .., e, and p: B — L£(X)
the Lie algebra homomorphism with p(e;) = a;, 7 = 1,...n. Obviously p defines the
E-module structure on X.

If X € C" is such n-tuple of complex numbers that the map e¢; — A;, =1,...,n
extends to the Lie algebra homomorphism E — C then we say X is admissible and
consider the Lie algebra homomorphism py: E — £(X) with py (e;) = a; — A, ¢ =

=1,...,n.

DEFINITION 2.2. The E-joint spectrum of the operator family @ = (a1,..., @)
is the set op(a) of all admissible A € C™ for which the complex Kos (E, px, X) is not
exact.

The main result of this section is the following.
THEOREM 2.3. If the Lie algebra E is nilpotent then o(a) = ag(a).

REMARKS 2.4. 1°. FE is finite dimensional as nilpotent Lie algebra with finite
number of generators. On the other hand the Theorem 2.3 will be proved as a conse-
quence of more general results on infinite dimensional nilpotent Lie algebras.

2°. Definition 2.2 is more convenient than definition 2.1 because for given a it
Is easier to take E than to describe E(a). For example let a = (aj,a2) be such pare
of operators that [a1, [a1,az]] = [az, [a1,az]] = 0. Then we can take E to be the Lie
algebra with the basis ey, es, f and equalities [e1, es] = f, [e1, f] = [e2, f] = 0. The
homomorphism p maps e; into a;, i = 1,2. On the other hand E(a) depends of the
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concrete properties of a: it can have any dimension from 1 to 3. Note that E(a) and
E(a — X) may be different Lie algebras while E is the same one for all admisssible A.

Let I and F be Lie algebras, let h: F — E be a Lie algebra epimorphism, let X

be an E-module: hence X is an F-module. Denote G = Ker .

PROPOSITION 2.5. Let [G, F] = 0 .Then the complexesKos (E, X} and Kos (F, X)
are simultaneously exact.

Proof. Denote by AYG A APF the subspace APTIF penerated by g1 A+ A goA
Aft A=< A fp with g3,..., 94 € G. It is easy to check that the following sequernce

(2.1) 0 —AIGRAPE & ALGANF S AMGAANTIF 0
with inclusion ¢ and

h(g@fin--Af)=g@h(A)A-- Ah(f)

is exact.

Consider the following diagram

0 — XQOA-'G@APHIE & X @A IGANYIF e X QMGAMNF — 0

la’@l la J'a
0 — XQAN-IGOMNE & XQAIGANF «— XQ@MNGAANTIF — 0

Here the rows are tensor products of (2.1) and the identity on X. The first column
is the tensor product of a: X @ APHE — X @ AP*771E and the identity on AT"'G,
and the second and the third one are the restrictions of a: X @ APHF — XQAPTITLE,
(The conditions GX = 0 and [G, F] = 0 imply the correctness of this construction).

The commutativity of this diagram is also a consequence of the conditions GX =
= 0 and [G, F] = 0.

Continue the columns at two sides and get the following short sequence of com-
plexes:

0 <.—/\4_1G®Kos(E,X) — AITYG AKos (F, X) — ATGAKos (F, X) — 0.

Consider the associated long sequence of homology spaces for every ¢ 1. Denote
for simplicity the homology spaces of complexes Kos (£, X), A!G A Kos (F, X) by
H;, H} (¢ >0) respectively.
It is clear that
H; (/\qG ® Kos (E, X)) = H; ® AG.
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We have the following sequences of homology spaces:
0—Hy—H] —0—Hy « HY — H} ~ Hy — H} — H} — H3 — - ;

0—Ho®G—Hj—0~HQ®G—H —H —H®G — H} — H} —
—H3QG —---;

0 — Ho®A'G — Hf — 0 — HiQN1G — H — HIt"' — H,0N'G — HI — HIY!

We have to show that H; = 0,i = 0,1,... implies H? = 0,¢ = 0,1,... and
viceversa. Let H; = 0,7 = 0,1,.... Then H] = 0 and Hf = H} , with ¢ =
=0,1,...,7=1,2,.... By an obvious induction we get HY=0.

Now, let H? = 0,7 =0,1,.... Then from the first sequence of homology spaces
we have Hy = H; = 0 and H; = H} ,,i>2, and further from every sequence we get
H§ =0,¢>1. Hence Hy = 0. Further HY = H{*' =0, ¢ > 1 implies Hs = 0. Again
by induction we get H; =0,¢=0,1,.... The proposition is proved.

PROPOSITION 2.6. If the Lie algebra F is nilpotent then the complexes Kos (E, X)
and Kos (F, X) are simultaneously exact.

Proof. Consider the sequence of ideals of the Lie algebra F:
[F1G] = Gl) [FIGI] = G2: "':[FﬁGn—l] = Gﬂ'

Using the identities F/G = E and (FIGy)/(Gr-1/Gk) = F/Gj-1 with k21, Gy =
G, consider the following exact sequences of Lie algebras:

0—G/Gy — F|G, — E — 0,

0—-*G1/Gz—>F/G2-—+F/Gl—>O,

OﬁGn_llGan/Gn'—)F/Gn_lﬁO,
0—-Gp—F—F/G, —0.

Since X is an E-module, X becomes a F/Gi-module and because of [F/Gy,
Gr-1/Gy] = 0 for every epimorphism F/Gj — F/Gg_; the assumption of Proposi-
tion 2.5 is fulfilled.
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Hence.the complexes
Kos (E, X), Kos (F/G1,X),...,Kos (F/Gp, X}, Kos(F, X}

are simultaneously exact.

REMARK 2.7. The analogue of Propositions 2.5 and 2.6 may be proved under the
assumptions F = G @ E, [G,E] = 0, and h is the projection of F' onto E.

LEMMA 2.8. Let E be Lie algebra with generators ey,...,e,, and let po B —
— L(X) be a Lie algebra homomorphism with p(e;) = s, i =1,...,n. If X € 0(a),
then A is admissible for p.

Proof. We shall show that if A is not admissible for p then the Lie algebra E(a—A)
contains the identity operator; hence, according to Lemma 1.2, Hp (E(a — }), X) =0
ie. X ¢ o(a). Consider the factor space E/[E,E] and let &;,...,é, be images of
e1,...,en under the natural projection ¥ — E/[E, E]. The vectors €;,...,&, may
be Imearly dependent It is clear that X is admissible if and only if the equality

Z ;€ = 0 implies Z o; ) = 0. Let X be not admissible i.e. for certain ay,...,0n
=1 i=1

n n
zaiéi =0 and Zaili =1.
i=1 i=1 '

n
The first equality implies Y a;e; = ¢ € [E, E]. Hence
i=1

Y aiai = p(c) € [E(a), E(a)] = [E(a — A}, E(a = A)].
i=1

So it is clear that

I=p(c)= > ai(a;— X) € BE(a— ).
i=1
The lemma is proved.

The proof of Theorem 2.3 is a consequence of Proposition 2.6 and Lemma 2.8: if
X € og(a) apply Proposition 2.6 to the epimorphism py: E — E(a — A); if A € o(a)
then A is admissible by Lemma 2.8 and again apply Proposition 2.6 to p(}).

REMARKS. 2.9. 1°. Theorem 2.3 is false without the assumption that E is a
nilpotent Lie algebra. Let £ be a Lie algebra with the generators ey, €2 and equality
[e1,e2] = €2, and let p: E — L£{X) be a Lie algebra homomorphism with p(e1) =
= a, p(ez) = 0. The associated Koszul complex Kos (E, X) is the following:

e XX BXEX 0,
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with g (21, 22) = azy, ayz = (0, (a + 1)z). The complex Kos (a, X) is the following:
0 —XEX 0.

It is clear that the invertibility of a is not equivalent to the exactness of Kos (E, X).
Hence the sets o(a,0) and ¢g(a,0) do not coincide in general.

2°. It is easy to prove that in the case of a nilpotent Lie algebra E(a), the
spectrum o(a) includes the Harte spectrum og(a). Indeed, let N = dim E(a), and
consider the boundary operator a1 of Kos(a, X). There exists a basis uj, ..., ux of
E(a) such that [u;, uiH] belongs‘ to the linear subspace generated by u;4441,- .-, uN.

We have [u;, uj] Aug AT /\ uny = 0, and hence

N .
an_1(ZQ@uiA--Auy) = Z( 1)' luiz @ ui™ Auy.
i=1
Thus 0 € 7(u1, ..., un) if and only if the operator any_1 is not a topological inclusion.

It is clear that 0 € 7(a) if and only if 0 € 7(u,...,un). Hence r(a) C afa). It
is proved analogously that 0 € 7(a*) if and only if the boundary operator ao of
Kos (a, X) is not surjective. Hence 7(a*) C o(a).

3. THE DUAL DEFINITION OF THE JOINT SPECTRUM

It is known [2] that the cochain complex and cohomology spaces are associated
with a module over a Lie algebra. Hence we get a dual notion of joint spectrum.
We’ll show in this section that for a nilpotent Lie algebra the dual definition of the
Joint spectrum is equivalent to the original one. As a corollary, we prove that the
Joint spectrum of the operator family generating a nilpotent Lie algebra is equal to
the joint spectrum of the adjoint operator family.

Let X be a vector space, let E be a Lie algebra and let p: E — £(X) be Lie algebra
homomorphism defining the structure of an E-module on X. Denote CPE,X) =
= L(A’E, X) and consider the operators

p:CP(E, X) — CP*Y(E, X),

(5f)(2)=§( 1)~ p(w) f ()-f—Z(:( 1)’"“f([u,,u,]/\u)
r= 1<}

with f € C?(E, X), u € A’E. 4
The spaces CP(E, X) and the operators § form a coachain complex C(E, X).
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PROPOSITION 3.1. Let E be a finite-dimensional nilpotent Lie algebra. Then the
complexes C(E, X)) and Kos (E, X) are isomorphic.

Proof. Let e1,...,e, be a basis of E. Let E’ be the dual space of E and let
el ...,e"” be the basis of £/, dual to €j,...,€e,. Denote by V the operator from E’
into E' A E' dual to the Lie brackets considered as operator from £ A E into E.
Obviously

Vet = Y Chel Ao
i<

where Cf; are the structure constants of E. Further the complex C(E, X) is isomor-
phic to the complex T'(E, X) of spaces X ® APE’ and coboundary operators

v XQNE - X@ANHE,

n P v
Y(zQu) = Zp(ei)x@)e; A+ Z(—l)"x@\'/'u” AT

i=1 v=1
with @ = w A --- A uP € APE’. The isomorphism of complexes is realized by the

following operators:
R X®ANE — CP(E,X), R(z @ p)(u) = p(u)r

with z € X, « € APE, ¢ € NP E' = (APE)’.

We have to show that Ry = §R. It is convenient here and below to represent the
operators «, 8,y as sums oy + aq, 6; + 82, v1 + 72 according to their definitions. We
prove that Ry; = 6 R.

Indeed,

(Bn)(z®e* A--Aedr) = R(Zp(ei)a?@Ci A€l /\"'/\ejp) (e, A Aex,y,).
i=1
The right part of this equality is equal to 0 if {ji,...,Jp} is not a subset of
{k1,..., kps1}, and is equal to (—=1)'"1p(er,)z if k1 = j1,..., kec1 = Ject, kegr =
= jt,---, kp41 = jp. Further

(1R) (2@ A---Ael?) (e, Ao -Aep,,,) =

p+1 i
=R(z® LA A ej”) (Z(—-l)"'le;cl ATTA ekp+1)
i=1

is equal to the same thing.
We prove now that Ry; = 62 R. Really,

(Ry2)(z @€ Ao AEP?) (en, A Aep,,,) =
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P
=R Z m®z J""/\ef/\eh A ele (er, A Aer,,,)-
=i i<y
The right part of this equality is equal to 0 if the set {ji,...,jp} contains more
than one element which does not belong to {ky,...,kp41}. If there is precisely one
element j, with this property, let k, and k; with s < ¢ which do not belong to
{71,-..,Jp}. Then we get

14

(_1)uci::Vk‘ (8k. Aekc /\ ejl /\A /\ ejp) (ekl /\ P Aekp-{-l) T

If {j1,- .-, dp} C {k1, . kpyi1}let ks & {j1,...,Jp} and we get

)4
D DC (e A A Nelt) (ek, A Aer,y,) T

r=1
Now consider
(62R) (2@ A---Ael?) (en, A--- A em,) =

3.2 ’ :
( ) =R{z® &* A e“ Z( 1 i+ ‘ek 2 €k ] /\e;‘,1 /\e;,p_H

i<

We discuss two cases analoguously and prove the coincidence of the right parts
of (3.1) and (3.2).

Now let E be a nilpotent Lie algebra. We prove the isomorphism of the complexes
Kos (£, X) and T'(E, X). Since E is nilpotent, the basis e;, ..., e, may be chosen so
that Cik,j = 0 for k € max{i, j}. The following isomorphism of complexes Kos (E, X)
and I'(E, X) is used in the commutative case in [8):

e XQNE - XQN'PE

go(m ®ej A -‘/\ejp) = (—1)-"‘+"‘+"”+pz®ej; A Aein-p

with {j/,.. -+ Jh-p} the tuple of indices complementing {ji,...,Jjp} in {1,...,n}. We
have to show that pa; = 71 ¢.
Note that

(par) (z@ej, Ao Nej,) = (Z( 1) lp(es )z ® €5, A /\ejp) =

v

i v=ldj1+ Hip+p-1 . ; i
=3 =0T T e )z @ei A Adi A NI,
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(me) (z@ej, Ao Aej,)=m (( Lyt +intrp @ edi A - e’"") =

n
= (=1)r+Hirtp Zp(es)-T?@ AN Aein-s,
s=1

In fact in the last sum the index s € {j1,...,Jp}. Hence it is sufficient to verify
that
(_1)"+]’+W+]”+pefi Ao Nelr Ao Aeinms = (=11 HeHPeiv p gii A peinms,
Indeed, let j; < j, < j{y;. Then it is clear that j, = {+v and the equa.hty is verified.
We show now that pas = 4.

k.m
(paz) (z@ej, A Aej,) = ¢ (Z(—l)kJ'm_l:c ® [ejesein] Aej, AT /\e,-p) =
k<m

k,m

=y Z( 1)k+m-1 Z Chi2®esNej, A7 Mg |

In fact in the last sum g € {7.:5, > jm}-
Let j, < ji, < js41. Then

k,m
kbme—1dsdiit - Hiphil4p=l
(paz) (2 @ ¢, A---Nej,) = Z Z (-1) » ]
k<M jL>im
Cjkj c@el A ATFA - AeIm A Aein-s,

Further

(r20) (z®ej, A--Aej,) =72 ((—1)"‘*““"*% @A A ej:‘-») =

- _qyrHittipte iy -
= E (—1)r+an r E Citim :c®e“Ae""/\e“A TAeins,
Je<im<j},

Let ji < jk < jiq1, Jr < Jm < jp41- Then

(10) (z®@ej, Ao Aej,) =
~ s , . e .
=Z Z (_1 vtji+- +Jp+P+t+rC;:j e A AdEA- Al AT A ein—s,
v=lje<jm<j)
It remains only to compare the signs at every summand. It is sufficient to notice
that j, = v+ s, jr = k+1, jm = m+ r. The proof is finished.
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REMARK 3.2. Proposition 3.1 is false without the assumption that £ is a nilpotent
Lie algebra. For example, let E be Lie algebra with basis e, €3 and equality [e1, e5] =
= ez, X an F-module, and p (e;) = a;, ¢ = 1,2. It is easy to verify that the complexes
Kos(FE,X) and I'(E, X) (which is isomorphic to C( £, X)) have the following structure:

—uy
(a1,a2) (¢1+1

00— X X Xe—X 0,

(=a2,01—1) (:;)
0—Xe—r—XpXe—r— X 0.
It is clear that the exactness of one complex does not imply the exactness of the
other one.

Now we can prove the statement on the spectrum of adjoint operator family.

ProrosiTioNn 3.3. Let ¢ = (aj,...,0,) be an operator family on the Ba-
nach space X generating 2 nilpotent Lie algebra. Then c(a) = o(a*), where a* =

= (ai,...,a},) is the adjoint operator family.

Proof. Let E be the Lie algebra generated by a. Consider the complex (K os(E, X))
adjoint to Kos(E, X). There is a natural isomorphism between (Kos (E, X))" and
C(E,X™). The exactness of a complex of Banach spaces is equivalent to the exactness
of its adjoint [5]. Hence the exactness of Kos(E, X) is equivalent to the exactness of
C(E,X™). According to Proposition 3.1, the exactness of C(E, X*) is equivalent to
the exactness of Kos(E, X*).

4. ON LIE ALGEBRAS GENERATED BY OPERATOR. POLYNOMIALS

Let @ = (a1,...,0,) be an operator family in a vector space X generating a -
nilpotent Lie algebra E. Let p(a) = (p1(a),- .., pm(a)) be a family of polynomials of
a generating a finite-dimensional Lie algebra F' C £(X). Our aim is to show that in
fact F is a nilpotent Lie algebra.

Denote by U(E) the universal enveloping algebra of E. It is clear that F is
the image of a certain Lie subalgebra of U(E). Hence F is isomorphic to a certain
Lie factor-algebra of a Lie subalgebra of U(E). Since F is finite-dimensional, its
nilpotence is a consequence of the following proposition.

Denote Ay = U(E), Ar4r = [A1, Ax],, k2 L.

ProprosiTION 4.1. Let E be a nilpotent Lie algebra. Then

M Ae = {0}.

k=1
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Proof. Let ey, ..., e, be such a basis of E with the associated structure constants
C,-kj = 0 for k£ < max{z,j}. We introduce the notion of order for a basis element of
U(E). Let u = e ...ekr. The order of U is defined as

n
ordu = Z k2171
i=1

According to Poincaré-Birkhoff-Witt theorem, the elements c'fl ...ekn form a basis of
U(E). Denote by Ji the linear subspaces of U/(E) generated by the basis elements of

o0
order 2 k. (It will be clear that Ji are ideals of U(E). Obviously, [ Jr = {0}.) We
k=1
show that
Je - Im € Jetm-

Indeed, consider the product of two basis elements u - v with

— k.l k — M m

u=-et - -er, v=e" el
Then

u-v:e’fl"'ml-uefl""'m“-%-w

where w is obtained from a series of transformations of the products e;ej in e’f’ s eﬁ"-

€™t . ..ep~ with ¢ > j into

n
k
e;e; + E Ci,jek-
k=i+1

It is clear that after every such transformation the number

zn:kgzi-l
i=1

becomes larger for every monomial summand of uv, where k{ is the number of oc-

curences of e; in the monomial. So
ord (e’f‘+m‘ x -eﬁ“'*m“) =ordu+ordv

and w is decomposed 1nto basis elements of order larger then ordu + ordv. Hence

A C Jy and ﬂ Ar C ﬂ Jr = {0}.

The propkos:tlon is proved

CONSEQUENCE 4.2. Let @ = (a1, ...a,) be an operator family on a vector space
X generating a nilpotent Lie algebra, and let p(a) = (pi(@), ..., pm(a}) be a family
of polynomials of a. If p(a) generates a finite-dimensional Lie algebra, then this Lie
algebra is nilpotent.
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We give here a simple condition for the nilpotence of Lie algebra generated by

operator polynomials.

PRroOPOSITION 4.3. Let the operator family a = (a1,...,a,) generate a nilpo-
tent Lie algebra, and assume that the center of this Lie algebra consists of nilpotent

operators. Then every family of polynomials of a generates a nilpotent Lie algebra.

Proof. Since the center of E(a) consists of nilpotent operators, we have b, - - -by =
= 0 for a certain N and any b;,...,by form the center of £(a). The nilpotence of

E(a) implies that for certain m and any polynomials p;(a), ..., pm(a),

[pl(a')’ sy [pm—l(a’):pm(a')] o }

belongs to the ideal of the algebra of all polynomials of a generated by the center of
E(a). Hence for any polynomials p;(a), .. ., pmn(a),

[p1(a), vy [pmN—l(a)aPmN(G)] ...]=0.

5. PROOF OF THE MAIN RESULT

The main result of this work is the following.

THEOREM 5.1. Let a = (ai,...,a,) be a family of linear bounded operators on
the Banach space X generating a nilpotent Lie algebra, and let p = {p1,...,pm) be a
family of polynomials of n variables. Assume that the Lie algebra E{p(a)) generated
by p(a) is finite-dimensional. Then E(p(a)) is nilpotent and the following equality Is

valid:

a(p(a)) = p(o(a))-

In order to prove Theorem 5.1 we introduce the following construction of a bi-
complex.

Let E be a Lie algebra, let ' be Lie subalgebra of the universal enveloping algebra
U(E), let I be an ideal of E, and let X be an E-module. Hence X ® AT also has
the structure of an EF-module. The Lie algebra homomorphism £ — L£(X ® AE)
generates the homomorphism U(E) — L (X @ AE). The image of F under this
homomorphism will be denoted by F. So X ® Al is an F-module.

We introduce the bicomplex B(I, F, X). Its rows are the complexes Kos (I, X)®
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® A F, its columns are the complexes Kos (F, X @ A"I):

b b G

0 — XOAIF & XQIQAF &£ ... & XQANIQAF & ...
l % %
& Ik Ik

0 — X®F & XQIQF <& .. & XQ@ANIQF & -
[ g Js

0 — X & XelI & & X QAT ML
l |

0 0 0
The commutativity of this diagram is a consequence of Lemma 1.1, since the
elements of F' are polynomials of operators ©, with u € F acting on X ® I, and every
operator ©, commutes with the boundary of the complex Kos (7, X).
The totalization of B(I, F, X) is denoted by Tot (I, F, X).
The following remarks are necessary for the proof. For every p the bicomplex
B(I, F, X) generates the complex with the g-th space

H, (Kos (I, X) @ AF) = Ho(I, X) @ AOF

and the boundary operators induced by the operators 3 (also denoted by 8).

It is clear that this complex may be identified with Kos (F, Hy(I, X)). Now let
I = E. What can we say about Kos (F, Hpo(E, X))? According to Lemma 1.2, 6,
with u € E acts on H,(F, X) as the zero operator. Hence f € F acts on H,(E, X)
as a scalar operator equal to the free member of the polynomial f. It is easy to see
(use again Lemma 1.2) that Kos (F, Hp(E, X)) is exact if and only if F contains a

' polynomial f (O, ,...,0,,) with f(0,...,0) # 0.

More generally, let A\: F — C be a homomorphism of Lie algebras, and let p: E —
— L(X) be a Lie algebra homomorphism defining an £-module structure on X. Then
X has another E-module structure defined by the homomorphism gy = p~ \: E —
L(X).

Consider the bicomplex By(I, F, X) with the rows Kos (I, px, X) @ A?F and the
columns Kos (F, X @ API} as in the bicomplex B(I, F, X). Its totalization is denoted
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by Tot A(, F, X). It is clear that the complex Kos (F, H, (E, px, X)) is exact if and
only if for a certain f(Ou,,...,04,) € F, f(A(u1),...,A(ug)) # 0. Lemma 1.8
implies that this condition is sufficient for the exactness of Tot A(E, F, X).

The next lemma establishes the connection between Tot (I, F, X') and Tot (J, F, X)
in the case when I and J are ideals of E', I C J and dim J/I = 1.

LemMMA 5.2. Let I and J beideals of E, I C J, dimJ/I =1, ¢ € J\I. Then for
a certain endomorphism §, of the complex Tot (I, F, X), one has

Tot (J, F, X) = Con (Tot (I, F, X), 6.) .

Proof. Decompose APJ into the direct sum:
APT
ANPJ= &
cAAP—L]
The following operator
-1 : -1 2D
(XOANTTQAIF) & (X @API@A"IF) e X @ N°J @ AIF

which is a part of the complex Tot(J, F,X) can be represented by the following
diagram: '

(X@NII@AF)® (XONIOAF) L X@NIQAF
& 3&\4\ ®

(XQ@cANTHQAF)® (X @cANTTIQAIF) & X@cAN-UQANF

We have to define the operator associated with every arrow. (Two other arrows
with the origin in X @ API ® AYF correspond to zero operators). It is clear that
a+(~1)P B transforms X @ APIQAIF into (X @ AP~ I @ AYF)@® (X @ APT @ AI™1F)
so the first arrow is o + (—1)P3.

Consider the action of & + (—=1)?Bon X @ c AAP~LI Q@ AIF:

(et (-1 (t@cAuiv) =plc)z@ud v+
p—1 i
+Y (-)p(w)z @ cAL® v+
i=1
p—1 i
+ ) D)z @ e, w] AT® vt

i=1

s i,
+Z(—1)’+"1x ® [ui, u;]AcA L ® v+
i<j
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g k
+) (1Pl (2 @A) @D+
k=1

Lo
-~

+Z(__1)P+k+1‘1x Rchu® vk, m]A 2.
k<!

Note that for every v € Flv (2 ®@cAu) = cAv(zQu)+w with w € X ® AP].
We have:

(0 + (=18 (z@cAunp)=—cAla+ (-1’78 (z@u®v)+

+0.(z@u)@vtw(z@uey).

So the second arrow is — (a4 (—1)P~2B), the third one is ©, and the fourth
one is w. At last it is clear that ¢ A AP] is isomorphic to A?I. Hence the complex
Tot (J, F, X) is isomorphic to Con (Tot (I, F, X), 6.) with §, = @, + w. The lemma is
proved.

Next we have some remarks about the operator §,.

1°. Let A: E — C be a Lie algebra homomorphism. The operator &, is the sum
of p(c) ® 1 and a certain operator defined only by commutators of c. Hence if we add
a scalar summand to p, §, will also change by a scalar summand. So the following
equality is valid:

Tota(J, F, X) = Con (Totr(I, F, X), 6. — A(c)) .

2°. The operator é; on the direct sum @& X®API®A!F has a block-triangular
ptg=k

form with the operators ©, on the diagonal. Moreover if E is a nilpotent Lie algebra,

©. and §. are triangular operator-matrices with the operators p(c) on the diagonal.

In this case we have
7 (6:) = o (p(c)) .

From this moment assume that E is nilpotent and finite-dimensional. Denote
by Fy the image of I in L(X) under the homomorphism induced by p. Consequence
4.2 implies the equivalence of the properties of Fg (and F) to be nilpotent and finite-
dimensional. The following lemma states that if Fy is finite-dimensional then F is

also finite-dimensional.

LEMMA 5.3. If the Lie algebra Fy is finite-dimensional then the Lie algebra F is

also finite-dimensional.

Proof. Since E is a nilpotent Lie algebra, it is clear that for every u € E the
operator ©, on X ® AE is the triangular operator matrix with the operator p(u)
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on the diagonal. Hence for every polynomial ¢ € F the corresponding operator on
X ® AE is the triangular matrix with the operator p(g¢) on the diagonal. For

ge Fm = [F, _F,[F,F]..]

with Fém) = 0, it is clear that p(g) = 0. Hence F™) is nilpotent and, as a conse-
quence, a finite-dimensional Lie algebra. But the factor-space F/F®) s also finite-
dimensional. Hence F' is a finite-dimensional Lie algebra. The lemma is proved.

Thanks to the fact that F' is a finite-dimensional space, X ® A?F are Banach
spaces and the application of Lemma 1.6 is possible. Moreover, the nilpotence of
F and the natural epimorphism F — Fy imply that the complexes Kos (Fy, X) and
Kos(F, X) are simultaneously exact. (cf. Proposition 2.6)

LemMaA 5.4. If the complex Kos(F, X)) is exact, then the complexes Kos(F, X®
® AP E) are also exact.

Proof. Analogously to the proof of Lemma 5.3, consider the operators on X ®@AP E
as triangular matrices and conclude the statement from Lemma 1.4 by induction on

the dimension of matrices.

Now we prove Theorem 5.1. Let E be a nilpotent Lie algebra with the generators
ei,...,en, and let p: E — L£(X) be a Lie algebra homomorphism with p(e;) = a;, 1 =
=1,...,n. Let p1,...,pm be polynomials of noncommuting variables, and let F
be the Lie subalgebra of the universal enveloping algebra U(E) generated by the
corresponding polynomials of ey, ..., e,. The Lie algebras F and Fp have been defined.
Obviously Fy is the Lie algebra generated by the family p(a) of polynomials of a.
According to Theorem 2.3, o(a) = ogg(a).

Proof of the inclusion p(o(a)) C e(p(a)): It is enough to prove that 0 € o(a) and
p(0) = 0 imply 0 € 6(p(a)). In other words, we have to prove that if Kos (E, X) is not
exact and p(0) = 0 then Kos (Fp, X) is not exact. Consider the bicomplex B(E, F, X).
The condition p(0) = 0 implies that the operator

B: Hy(E,X)® F — Hy(E, X)

is equal to zero (cf. the remarks to the definition of the bicomplex). Hence the
assumptions of Lemma 1.8 are fulfilled (in particular, the property of the rows of
the bicomplex is obvious). Lemma 1.8 implies that at least one of the columns
Kos (F, X ® A*E) is not exact. Hence, according to Lemma 5.4 Kos(F, X) is not
exact, and according to Theorem 2.3 Kos (Fp, X) is not exact too. So 0 € o(p(a)).
Proof of the inclusion o(p(a)) C p(c(a)): We start from the reduction to the case

when ej,...,e, is such a basis of £ that the relative structure constants ‘Cs‘k.j =0
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with k € max{¢, j}. Assume that the basis e, ..., ey has this property and p(e}) =
=a,,i=1,...,N,d = (af,...,a)y). After a linear change of variables e;,..., e,
in the polynomials p,...,pm, we get the family of polynomials ¢ = {(g1,...,¢m) of
variables e}, ..., efy. The following equalities will be proved:

a(p(a)) = o(q(a’)) = g(o(a")) = p(o(a)).

Here the first equality is obvious, the second will be proved as the main result, and the
third one is the consequence of the results of the second section. Indeed A € o(a) =
= og(a) if and only if X; = X (es),i=1,...,n with X a Lie algebra homomorphism:
E — C, and the complex Kos (E, py, X) is not exact. Analogously, A’ € o(a’) if and
only if M, = X(e}),i=1,...,N and the complex Kos(E, px, X) is not exact. It is
clear that g (A") = p()) which proves the third equality.

So we consider eq,...,e, to be a basis of E with relative structure constants

Czl‘:j = 0 with k& € max{i, j} and prove the inclusion
e(p(a)) C p(e(a))-

It is enough to prove that 0 € ¢(p(a)) implies p(A) = 0 for a certain A € o(a). Denote
by Ii the ideal of F generated by ey, ...,e,. Obviously

E2113123'*'31n=cen

and dim Iy /I = 1.
We find A € o(a) with p(A) = 0 in the following way. Since 0 € o(p(a)), the
complex Kos (F, X) is not exact. By Lemma 5.2

Tot (I, F, X) = Con (Kos(F, X),8..).
By Lemma 1.6 for a certain A, € C, the complex
Toty (I, F, X) = Con (Kos (F, X), 6., — An)

is not exact, ‘
Continuing this process by induction we get at the (n — k + 1)-th step such
Ak, Ak+1, - ., Ap that the complex

Tot), (Ik,F,X) = Con (Tot)‘ (Ik+1,F,X) y 0o — Ak)

1s not exact. So we get A = (A1,...,A,) such that the complex Toty(E, F, X) is not
exact.

~
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To be sure that our construction is correct, we have to show that the map e; —

— Ai, = 1,...,nis extended to a Lie algebra homomorphism E — C. Let ej, ..., e,
be a basis of [E, E]. Then the map e; + J; is extended to a Lie algebra homomorphism
if and only if A; = --- = A, = 0. The fact that the complex

Con (Toty, (Tr41, F, X)), 8e — k)

is not exact implies that A\, € o (6., — Ax) = o (ar). But ax € [E(a), E(a)]. Hence
o(ar) = {0} {10]. So Ay = --- = A, = 0.
Lemma 1.8 implies that if the complex Tot,(E, F, X) is not exact, then one of

the complexes

Kos (F, Hy (E, pr, X))

is not exact. Hence p(A) = 0 (cf. the remarks to the definition of the bicomplex).

Theorem 5.1 is completely proved.

The following property of joint spectrum is called the projection property. It is a
consequence of Theorem 5.1. Ju. V. Turovskii proved it as a consequence of Lemma
1.5 and Lemma 1.6.

CONSEQUENCE 5.5. Let a family a = (ay,...,a,) of linear bounded operators
on the Banach space generate a nilpotent Lie algebra, a’ = (a1,...,an_1), m:C" —
— C"~1 be the projection to the first n — 1 coordinates. Then o(a’) = n(o(a)).

Proposition 4.3 shows that the assumption of Theorem 5.1 is fulfilled if the center
of E(a) consists of nilpotent operators. It is also fulfilled in the following example. |

EXAMPLE 5.6. Let a,b be bounded linear operators in a Banach space with
(e, [a, 8] = [b, [a, 8] = 0.

It is easy to check that ab commutes with ba.

Theorem 5.1 implies that
o(ab,ba) = {(Ap, pA): (X, p) € o(a,b)}.
So the spectrum of the commutative operator family (b, ba) is calculated through

the spectrum of a non-commutative (but generating a nilpotent Lie algebra) operator
family (a, b).
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10.
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