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AN EXTENSION OF BEREZIN’S
APPROXIMATION METHOD

I. JANAS

1. INTRODUCTION

This work is intended as an attempt to extend the approximation theorem due
to Berezin [1]. Let us recall briefly his result. Suppose we are given a selfadjoint
operator B = B* in a Hilbert space K such that B > I. In what follows I always
means the indentity operator in a given space. Let H C K be a closed subspace of
K such that D(B) N H is dense in H, where D{B) denotes the domain of B. Define
the symmetric operator A in H by

Af = PBf, feHOD(B),

where P: K — H is the orthogonal projection. Let D{A):= H n D(B).
Fix t > 0. Berezin defined in [1] the sequence A, = An(t) of operators in H by

1
A, = / Pe~*¥2 BPpds,
1]

and proved about it two facts

a) A;! is strongly convergent to A~}, where A is a selfadjoint extension of A
independent of t,

b) for any fixed ¢ > 0 the sequence (Pe‘LnEP)n is strongly convergent to e~*4.

Motivated by our previous study of Toeplitz operators in the Bargmann-Segal
space [4], we are interested in extension of the above result to a more general context.
We shall find below such an extension. Moreover, our proof is based on different ideas
than Berezin’s and seems to be simpler even in the selfadjoint case, B = B*.

In what follows for a given 0 €< @ < %, Se = {z € C, |Argz| < O} denotes the

sector centered at the origin.



44 J. JANAS

We can now formulate the assumptions and the statement of our generalization.
Let B be a normal operator in K, see [5, p. 276] for the definition. Sl;ppose that
its spectrum o(B) is contained in a sector of the form 1+ Se, 0 <O < 5 Consider

the compression A of B to H given by
(1) Af = PBf, fe€HND(B),

where, as above H N D(B) is assumed to be dense in H. Put D(A) = H N D(B). It
is clear that A is a densely defined, closable operator in H.
Write
B=B;+i1B;, By =B, k=1,2.

Denote by |Ba| the absolute value of By. The above mentioned generalization of
Berezin’s result says as follows

THEOREM. If P|B;|P is bounded in H and (2cos ® — 1) cos© > sin© then
i) there exists a closed extension A of A wich generates a Co-semigroup,

n
ii) for any fixed t > 0 the sequence (Pe“ JgT-iﬁ_l") is strongly convergent to e™*4.

Later we shall give an application of this theorem to Toeplitz operators in the
Bargmann-Segal space.

In what follows for an operator S we denote by W(5), R(z,S) the numerical
range, the resolvent of S, respectively.

2. APPROXIMATION RESULTS

Fix ¢ > 0. Following [1] we define the sequece A, = An(t) of operators in H by

n 1B
@ nf =7 (£ - PeF).
It turns out that the sequence A, is in a sense convergent to A.

PROPOSITION 1. Let A, be given by (2). For any f € D(A) the sequences Ap f
and A}, f are convergent to Af and A* f, respectively.

Proof. Let B = f 2dE,. For f € D(A) we have

1
Anf = /Pe-%ngds =
0

1
iy ] / e~ % dE,Bfds= P / Fo(t, 2)dE; BS,
0



AN EXTENSION OF BEREZIN'S APPROXIMATION METHOD 45

where

F(t,2) = % (l—e"%) .

Note that F,(t, 2) — 1 for every z € 1 + S and can be majorized as follows
—00

(4 + 1)), e
Fn t: S
me < {5 #

Hence the Lebesgue dominated convergence theorem implies that
P/F,.(t, 2)dE,Bf — PBf = Af.
o=t OO
The same reasoning shows that A}f is also convergent to PB*f = A*f and this

completes the proof.

REMARK. We don’t know whether A%k is convergent to A*h for every h €
€ D(A*) D D(A).
Before proceeding further let us introduce the following notations:

B=1+B, A=1TI+ A, B,Jt):?—([—e""ﬂ&),

where Re B > 0, Ag:= PBP. We have
An(t) = an + e % An(t), Ba(t) = an + €7 By(t)

with a, = ; (1 —e” ﬁ) and A, B, are defined by analogous formulas as above. It
turns out that the numerical range of A, is contained in Seo.

PROPOSITION 2. The numerical range of B, is contained in S, for n = 1,2,...

Proof. Let c:= tan®. Since W(B,) = conve(B,) it suffices to show that
o(B,) C Se. Let z € o(By). We have

=" (1--2 B
F= (1 e ), where A € o(By).

Write A = 2z +iy. Then |y| < ez and

ty

[Imz|(Rez)"! = sin;—

iz ty\
s s 2) <
(e cos n) <

-1
t
()"
nc

.yl du R P
< sm; en —1) < sm;

Since z is arbitrary the proof is complete.
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It turns out that the sequence A, (%) has another crucial property

ProrPoSITION 3. The sequence

ReAn(t):= A_"(El;_Ar‘ﬁl

is ingreasing for n > (1 — ¢)~! max{c,2¢?), c=tan® < 1.
Proof. Since (Re An(2)f,f) = (Re Ba(¥)f, f), f € H, it is enough to show that

the sequence fu;(-) of functions given by

fn:(z) = ? (1 — Ree_'?‘“)

is increasing in 1 + Sp.

For the simplicity of notation we assume that ¢ = 1 (but the reasoning for
arbitrary ¢ is similar).

Let fa(2):= fa1(z). We have

Fat1(2) = fa(z) =1 = Re [(n + L)e” T —ne™=].
Therefore we have to prove that
(8) Re[(n+1)e™"F —ne %] g1, z€1+8s, n>(1—c) ! max(c,2c?).

Since Hy(z):= Re [(n + 1)e” = — ne~ %] is harmonic in 1+ Se is suffices to prove
(3) on the boundary of 1 + Sg. But Ha(2) = Ha(Z) and so (3) is equivalent to

(4) Hu(z):= Hulz, ez - 1)) 1

for z 2 1 and n > (1 — ¢)"t max(e, 2¢?).
Now we find (by the Mean Value Theorem) that

- [ ex=1)  e(z—1)
Hy(#) = ne~ =¥t [cos B i +

c(z;— 1) + o= 557 cos ez —1) _

(5) +n [e” ¥ — e~ %] cos 71

-1 - -1
= oz )e"ﬁ-_l sin 2, + nile'"’" cosc(z—nl—) + e~ 7 cos oz )

n+1"’
where _c(_x_—_ll < ZTp < dz-1)

o s <wn < E
We may consider three cases
1) e(z-1) > =n
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Since ze™” is decreasing for # > 1 and 2ze™" 4+ e7" < 1 for £ > 2 (5) implies

that

Hy(z )< dz-1) ’J“‘-F-‘)'l de=1) 1)e'c:f:F-11 fe S <1
+1 n41

2°) %13-+c<c:c<c+1rn

If = satisfies 2° then cos ELE:L) £ 0. Thus
n

Ha(z) < E%Jle"‘r’ <1

1
3°)c$cr§c+%n—
Let
P,,(a:)::eﬁ'f,
e(x - e(z —1) z e(z —1) c(z—1)
Ly(z):= +1 in - +n+lcos - + cos nr 1

Note that Pn(z) — La(z) 2> 0 implies that Hn(z) € 1, for z satisfying 3°). Let
Th:= P, = L,. Then

P P P
Ta(l)=¢ 1 ﬂ+1>0

We claim that T};(z) 3 0 for = satisfying 3°). We have

(n+ 1)T%(z) = e™7 — cos

e(z—-1) 2z—-1) e(z—1)
n on o

e (sin c(zn— 1) . c(:c - 1)) + 'n£ din c(a:;- 1)

n+ 1
Denote M a, ﬂrf—;—ll-l B, 1 =1+r,r>0. Then the last equality can be

n
written as follows:

/() = vl o P +8 ey
(n+1)T,(z) = e™¥T - cosax — cacos a 2csmn+1cos 3 +(a+n)sma.
Hence

(n+1)T,',(a:)>1+nL+1—cosa—cacosa—2csinnil>

>l—cosa+a n ccosa| + n ar — 2¢sin il
n+1 n+1 n

Taking n > (1 - ¢)~! max(c, 2¢?) we check that the above expression is positive. This
completes the proof.

COROLLARY 4. For any fixed t > 0 the sequence [Re An(t)] ! is strongly conver-
gent to a bounded operator S(t). Moreover, S(t) does not depend on t.
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Proof. Since o, — 1 and R)e.f"in(t) > 0 it follows that Re A,(t) > bI, for a
certain & = b(t) > 0 and n sufficiently large. Applying Proposition 3 we know that
[Re An(t)]~! is decreasing for n sufficiently large. Hence there exists S(t) in L(H)
such that [Re A,,(t)]‘lﬂ-:;o S(t) strongly.

The proof of independence of S(t) on t is the same as in [1] and therefore it is
omitted here.

What can be said about Im A, (¢)? We don’t know the answer in general. How-
ever, under additional assumption on B one can prove that Im A,(t) is strongly
convergent to As.

Namely, suppose that

(*) D(A) 5 f — P|Bs|f extends to a bounded operator in H.

PROPOSITION 5. If B, satisfies the condition (%) then for any t > 0 Im An(2) is
strongly convergent to As, where A; = PB3P.

Proof. Let h € D(A). We know (by Proposition 1) that An(t)hn—;Ah and
A,,,(t)"h”-_—.-.;o A*h. Hence

(6) Im A, (t)h — Ash,

where ]
Agh:= —2:(/1 — A%)h.

Now
(man@h ) =5 [e¥oinZaEuh )= [ Guule,n)d(Baghb)
{(z.¥),y#0}
where
_1e Sin %:'f-

Gn'ﬂ(m:y):‘e ~ Yy ty -

n

Fix € > 0 take § > 0 so small that -S%q < 1+ ¢ for |a| < 6. For the above 6 define

the sets
‘t‘
Zos= {9 €o®), W s}

If (z,y) € Zns then
(7) IGﬂﬂ(z:y)l < |y|(1 + 5)’ n=12..

On the other hand for
(z1,91) € o(B) N (C\Zyps)
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(8) IGnt(‘rl;yl)l < !_yél_l, n=12..

Both (7) and (8) imply that
9) |Gre(2, )| < Mlyl, n=12,.., (z,y)€(B),

where M = max(1 +¢,671). Hence
(m A ()b, I < M [ Iyla(Eh ) =

= M(|B:zlh, ) = M(P|Bz|h, h) < M||P|By|h]| - ||A]-

If follows that ||Im A,(¢)|| is uniformly bounded. But we know that Im A,(t)h is
convergent to Agh, for any A € D(A) (by (6)) and the result follows easily.

Now we are going to prove that the whole sequence A, (t)~! is strongly convergent
and to find its limit.

PROPOSITION 6. The sequence A,(t)™? is strongly convergent to an operator T
such that

i) KerT = {0}
H)7-'>A
iii) (—=T=1) generates a Cy-semigroup in H.
Proof. Let
(10) An(d) = Snlt) +i Ra2),

where Sp ()" = Sa(t), Ra(f)* = Ry(t).
The sequence Sy (1) is increasing for n > (1—¢)~! max(e, 2¢2) (by Proposition 3).
Hence
5a(t)? < Sora(®)?
and so
Sa(t)% 2 Spea(t)73.

Since Sy,(t)~% is bounded from below (by zero) it must be strongly convergent to
S(t). Repeating the reasoning given in [1] one can prove that S(t) = S i.e. S(t) does
not depend on . In what follows we omit the ¢t-variable. Rewrite {10) as

4 =5} (1+is7 R.S7Y) 8h.

Thus -
A =gt (I+iSZ%RmSZ%) sq 3.
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Now
s;%Rns;fnSAzs

in the strong topology.
Applying [5, Corollary 1.6, p. 489] we have

(1+i534Ra8a) T — (1 +154,8)™
strongly. It follows that
A7l — T:= S(I + iS4,8)71S.

The same reasoning shows that A;" converges strongly to 7*. We claim that
KerT = {0}. In fact, for f € H and g € D(A), by applying Proposition 1, we have

(£,9) = (And5"1,0) = (471, A29) — (T, A),

and the claim holds.
Moreover, T=! O A. This is immediate by the following identities.
Let h € D(A) and k € H. Then

(h, k) = (AZ1Aph, k) = (A,.h,A;l‘k) — (4h,T*F).

-+ 00

Finally, T = (S~24+1A45) ! and so T-1 = §-2 + i 4,.

Since $* = § > 0and A € L(H) it is clear that —T"~! generates a Cj - semigroup
in H.

REMARK. Note that —A, and —7~! belong to the G(1, 8) class of generators of
Co - semigroups, for some —1 < 8 < 0, see [5, p. 487]. Indeed, by Proposition 2,
W(An) C 1+ Se and so for any ¥ > 8 we have

1 1

An+7)7F)| < = < , k=12, ..
I N7N< dist(y, W(—4n))* = (v—B)*
Now, for any @ >0 and n € N
-1 1
(I + adn)™t < 1.

dist(1, W(—adn)) <

Hence
lim (1 + ada) " f ~ Fl=0, feH
a\0

uniformly in n. Th. 2.17 given in [5, p. 505] yields that -7~ € G(1,8) and this
proves our Remark.
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The above Remark and Proposition 6 enable us apply Theorem 2.16 from [5, p.
504] and we have

COROLLARY 7. For any f € H andt > 0

. - -1
lim et~ f=e~T7 f,
n—+00

; tA\" -
However, we need to know more, namely, whether (I - T" fome T
N=—+00

It turns out to be true under some additional assumption on @ (it should not be too

large).

ProPoSITION 8. Fixt > 0. Under the above assumptions we have

lim [le~t4» — (1 - tﬁ) =0
n—+oo n

provided that

(W) (2¢c08@ —1)cos @ >sin O.

Proof. Fixt > 0 and take © < O; < 12{
Let ¢ = tan @,. Note that

(Re An(t)f, f) < (1+ ) ZIIF2I)-

ty . ..
In fact, Fu(z,y) =1— e ¥ cos —n‘y is harmonic in 1 + S¢, and so

ct(z—1 ton
sup Fy(z,y) =sup [1 —e~% cos (z—)] <1+ ce™ "% £l+e,
14Se, 221 n
where ot ) ) 1
- . ot - . ct -
cos (:1:,:1 ) + esin (z:,; ) =0 and sin ctzn — 1) > 0.

Choose ©; > @ so close to @ that (2cos@; — 1) cos @; > sin @;. This is possible
by (W). For this ©; fix r > 0 so large that

[2 cos @) — (1 + ;—)J cos @1 > sinO;.
It follows that

1
(Wh) 2¢0s@1 >14+c+ o
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where ¢ = tan ©;.
Appling Proposition 5 we know that ||Im A, || € C,foracertainC > 0,n=1,2....
Choose np = no(C, r,1) such that

1n
(11) -2=i7>0+c+1, for n > ny.

Let Tp: = -;3(1+c), Spi=T, +§t-. If n 22 no, we define the contour I''= LU U,
by the following picture

A

v

By Proposition 2 and the above choice of ng we know that o(A,) is contained in the
. n

set {z € an+ So, 2=z +1iy, 2 < Ty, |y| < C}, where a, = n (l—e‘%), n 2 ng,

and C > 0. Hence, by a direct computation and using the choice of ng we have

(12) dist(z, W(4,)) > 5% 2 €, n>no.
Let 2 € I'y. By the definition of I'y we easily obtain the following estimate
(13) dist(z, W(An)) > ansin®; > (1 — p)sin 6y,

for a certain p > 0 and n > ig.
Fix ¢ and choose R > 0 so large that

(14) [27 sin(@; — ©)]7! / ¢-ptcos 9P <e
J p

and

(15) 4[rsin(@; — O)Rtcos @] ' < e.

Write

(¢4

e < )

n T 27
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Note that
[R(z, An)li < [dist(z, W(An))]"', z€T.

Therefore we want to estimate

‘e—tz___ l_t_z "
‘ n
n

. tz . . ; .
Since (1 - ;) is uniformly convergent to e~** on compact sets, there exists n; =

forze I

= ny(¢, R) 2 max(no, fig) such that

- tz\"| _ me(l —p)sin®;
(16) sup |e~% — (1 - —) § —
z€ly
for n 2 n,.

n
Denote H,(z):=e™* — (1 - %) . Direct computation and {12) prove that

() - j (a2 1Rz, An) 121 <

2t
< 21r (/ -tSncoswdw+2ela ) . ___7; Sm

1 12
=[1—2(1+c+;)cos61+(1+c+;>] <1
2tr

But —.S, < 2r (1 +c+ %) , and so the above integral is less than ¢ for n sufficiently

where

large, say n 2> na = na(e, ©1).
On the other hand,

1 1 ‘
32 | ARG Aol = o | [ IR A a1 | +
F+ {ZEP+|I"'I<R}
1
e | [ 1EGIIRG A4
zEP+,|z|<R}

The first of the integrals is less than < (by (13) and (16)). The second integral of the
right-hand side can be estimated as the sum

. . 3
[278in(0; — @)1 (,;j {e—p:cosel + [(1 _ ptcr;sé’:)? + (pt)zzgnz 61] } %p)
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By applying (14) the first integral is less than €. The second integral may be
written as I, + Is,, where

wls

3o

24in2 9, |
Lo = 2 sin(O, 99)]_1‘/ ( st cos 91) + (st) len @, %,
R
Sarp

( st cos 91) (st)2 sin® 0, 17 ds

n? s

Iy = [27sin(©; — @))7!

&n

Spi= —cos@l
. t

Here we take n so large that s, > R.
Note that

5212 stcos @
T S0 R
Hence ,
F £3
Iin Q/(l__—stcc;sel) %{27rsin(‘91—9)]_1.
R
Put
) 1_stcosel
pi= n
We have -
Aq % n
/(l_stcosel) d_sz.[p% dp ’
n s 1-p
R Py
where Roos©
Pii=1— cos? 8, If’f.:=1=-15 c:)ls L
Now
" T d 2
2 sin(6) — O)Iin < | p% L / 3 2
[TSID( 1 )]ln\/pzl_p< pgl—p<RfCOS@1’
Py 1]
and so by (15)
(18) hn<e
If sp € 5 € S, then the function
242
s-——->1—25tcosgl +%
n

is majorized by a? < 1 (see the line below (17)).
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Thus .
fds : -1 _
Ion < a% 5 B [27!'81]1 61 - 6)] =

sa
= [2xsin(@; — 0)]"laf In [(1 +c+ %) (cos 61)'1] .

Consequently, applying (18) we have

(19) Ln+4 Ly £e+e, forn 2 ng(@4,R,€) 2 n;.

Finaly, by combining (17) and (19) we can write

e-thn _ (7 thn "]
n

for n > ng. The proof is complete.

<s+2(§+e+s) = be

In this way we have proved our Theorem for A:= T-1.

ProOBLEM. We don’t know whether the above theorem holds without the as-
sumption (W).

3. AN APPLICATION

In this section we shall give a straightforward application of our Theorem. Let F
be the Bargmann-Segal space of entire functions in C" square integrable with respect
to the Gaussian measure du(z) = 7~ "e~1?dV(z), dV(z) denoting the Lebesgue
measure in C”. Denote by P: L?(y) — F» the orthogonal projection of L?(z) onto
F,. For a measurable function ¢ on C", the multiplication operator M,, in L2(y) is
defined by M, f = ¢f. The Toeplitz operator T,, is defined in F> by

T‘pf=PM¢f, fer'
The Berezin transform 7, of T, (see [1], [2]) is given by
To(N) = (phr, kx) = 5(),

where

n
ka(z) = eEN-N2(p 3y = PR
=1

To apply our Theorem we have to impose on ¢ the following conditions.
. T
(a) ¥ = w1 +ips, where ¢1(2) > 1, |pa(2)| € p1(z)tan @, 0K @ < 3
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(b) the Toeplitz operator Tj,, is bounded and (2cos @ — 1) cos @ > sin O.
Recall that Tj,, is bounded if and only if its Berezin symbol |@2|(:) is bounded
in C*, [2], [3]. Thus |¢2| need not to be bounded but may induce bounded Tj,,!
We are now in position to apply our Theorem. In fact, the conditions (a) and
(b) guarantee that all the assumptions of the Theorem hold. If additionally T, is
selfadjoint then as we know (by Proposition 5) A = T, Hence in this case we have

CoRrOLLARY 9. Let ¢ satisfy (a) and (b). Suppose that T, is selfadjoint. Then

e T = hm (T :ﬁg)N.

REMARK. Proposition 3.7 from [4] implies that T,,, is surely selfadjoint for ¢
satisfying
lp1(2) — pr(w)] < C(1 + |z — wl).
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