AN EXTENSION OF BEREZIN'S APPROXIMATION METHOD

J. JANAS

1. INTRODUCTION

This work is intended as an attempt to extend the approximation theorem due to Berezin [1]. Let us recall briefly his result. Suppose we are given a selfadjoint operator $B = B^*$ in a Hilbert space K such that B > I. In what follows I always means the indentity operator in a given space. Let $H \subset K$ be a closed subspace of K such that $D(B) \cap H$ is dense in H, where D(B) denotes the domain of B. Define the symmetric operator A in B by

$$Af = PBf, \quad f \in H \cap D(B),$$

where $P: K \to H$ is the orthogonal projection. Let $D(A) := H \cap D(B)$.

Fix t > 0. Berezin defined in [1] the sequence $A_n = A_n(t)$ of operators in H by

$$A_n = \int\limits_0^1 P \mathrm{e}^{-\frac{stB}{n}} B P \mathrm{d}s,$$

and proved about it two facts

- a) A_n^{-1} is strongly convergent to \underline{A}^{-1} , where \underline{A} is a selfadjoint extension of A independent of t,
 - b) for any fixed t > 0 the sequence $\left(Pe^{-\frac{tB}{n}}P\right)^n$ is strongly convergent to $e^{-t\underline{A}}$.

Motivated by our previous study of Toeplitz operators in the Bargmann-Segal space [4], we are interested in extension of the above result to a more general context. We shall find below such an extension. Moreover, our proof is based on different ideas than Berezin's and seems to be simpler even in the selfadjoint case, $B = B^*$.

In what follows for a given $0 \le \Theta < \frac{\pi}{2}$, $S_{\Theta} = \{z \in \mathbb{C}, |\operatorname{Arg} z| < \Theta\}$ denotes the sector centered at the origin.

We can now formulate the assumptions and the statement of our generalization. Let B be a normal operator in K, see [5, p. 276] for the definition. Suppose that

its spectrum $\sigma(B)$ is contained in a sector of the form $1 + S_{\Theta}$, $0 \le \Theta < \frac{n}{2}$. Consider the compression A of B to H given by

(1)
$$Af = PBf, \quad f \in H \cap D(B),$$

where, as above $H \cap D(B)$ is assumed to be dense in H. Put $D(A) = H \cap D(B)$. It is clear that A is a densely defined, closable operator in H.

Write

$$B = B_1 + i B_2, B_k^* = B_k, k = 1, 2.$$

Denote by $|B_2|$ the absolute value of B_2 . The above mentioned generalization of Berezin's result says as follows

THEOREM. If $P|B_2|P$ is bounded in H and $(2\cos\Theta-1)\cos\Theta > \sin\Theta$ then

- i) there exists a closed extension \tilde{A} of A wich generates a C_0 -semigroup, ii) for any fixed t>0 the sequence $\left(P\mathrm{e}^{-\frac{tB}{n}}P\right)^n$ is strongly convergent to $\mathrm{e}^{-t\tilde{A}}$.

Later we shall give an application of this theorem to Toeplitz operators in the Bargmann-Segal space.

In what follows for an operator S we denote by W(S), R(z,S) the numerical range, the resolvent of S, respectively.

2. APPROXIMATION RESULTS

Fix t > 0. Following [1] we define the sequece $A_n = A_n(t)$ of operators in H by

(2)
$$A_n f = \frac{n}{t} \left(f - P e^{-\frac{tB}{n}} f \right).$$

It turns out that the sequence A_n is in a sense convergent to A.

PROPOSITION 1. Let A_n be given by (2). For any $f \in D(A)$ the sequences $A_n f$ and A_n^*f are convergent to Af and A^*f , respectively.

Proof. Let
$$B = \int z dE_z$$
. For $f \in D(A)$ we have

$$A_n f = \int_0^1 P e^{-\frac{isB}{n}} B f \mathrm{d}s =$$

$$=P\int\limits_{0}^{1}\int \mathrm{e}^{-\frac{tsz}{n}}\mathrm{d}E_{z}Bf\mathrm{d}s=P\int F_{n}(t,z)\mathrm{d}E_{z}Bf,$$

where

$$F(t,z) = \frac{n}{tz} \left(1 - e^{-\frac{tz}{n}} \right).$$

Note that $F_n(t,z) \xrightarrow[n\to\infty]{} 1$ for every $z \in 1 + S_{\Theta}$ and can be majorized as follows

$$|F_n(t,z)| \leqslant \begin{cases} (\mathrm{e}^{-t\delta}+1)(t\delta)^{-1}, & |z| \geqslant n\delta \\ \mathrm{e}^{t\delta}, & |z| \leqslant n\delta. \end{cases}$$

Hence the Lebesgue dominated convergence theorem implies that

$$P\int F_n(t,z)dE_zBf\underset{n\to\infty}{\longrightarrow} PBf=Af.$$

The same reasoning shows that A_n^*f is also convergent to $PB^*f = A^*f$ and this completes the proof.

REMARK. We don't know whether A_n^*h is convergent to A^*h for every $h \in D(A^*) \supseteq D(A)$.

Before proceeding further let us introduce the following notations:

$$B=I+\tilde{B},\;A=I+\tilde{A}_{0},\;B_{n}(t)=rac{n}{t}\left(I-\mathrm{e}^{-rac{tB}{n}}
ight),$$

where $\operatorname{Re} \tilde{B} \geqslant 0$, $\tilde{A}_0 := P\tilde{B}P$. We have

$$A_n(t) = \alpha_n + e^{-\frac{t}{n}} \tilde{A}_n(t), \ B_n(t) = \alpha_n + e^{-\frac{t}{n}} \tilde{B}_n(t)$$

with $\alpha_n = \frac{n}{t} \left(1 - e^{-\frac{t}{n}} \right)$ and \tilde{A}_n , \tilde{B}_n are defined by analogous formulas as above. It turns out that the numerical range of \tilde{A}_n is contained in S_{Θ} .

PROPOSITION 2. The numerical range of \tilde{B}_n is contained in S_{Θ} , for n=1,2,...

Proof. Let $c:=\tan\Theta$. Since $W(\tilde{B}_n)=\operatorname{conv}\sigma(\tilde{B}_n)$ it suffices to show that $\sigma(\tilde{B}_n)\subset S_\Theta$. Let $z\in\sigma(\tilde{B}_n)$. We have

$$z = \frac{n}{t} \left(1 - e^{-\frac{t\lambda}{n}} \right), \text{ where } \lambda \in \sigma(\tilde{B}_n).$$

Write $\lambda = x + i y$. Then $|y| \leq cx$ and

$$|\operatorname{Im} z|(\operatorname{Re} z)^{-1} = \left|\sin\frac{ty}{n}\right| \left(e^{\frac{tx}{n}} - \cos\frac{ty}{n}\right)^{-1} \le$$

$$\leqslant \left|\sin\frac{ty}{n}\right| \left(\mathrm{e}^{\frac{t|y|}{cn}} - 1\right)^{-1} \leqslant \left|\sin\frac{ty}{n}\right| \left(\frac{t|y|}{nc}\right)^{-1} \leqslant c.$$

Since z is arbitrary the proof is complete.

It turns out that the sequence $A_n(t)$ has another crucial property

Proposition 3. The sequence

$$\operatorname{Re} A_n(t) := \frac{A_n(t) + A_n^*(t)}{2}$$

is ingreasing for $n > (1-c)^{-1} \max(c, 2c^2)$, $c = \tan \Theta < 1$.

Proof. Since $(\operatorname{Re} A_n(t)f, f) = (\operatorname{Re} B_n(t)f, f), f \in H$, it is enough to show that the sequence $f_{nt}(\cdot)$ of functions given by

$$f_{nt}(z) = \frac{n}{t} \left(1 - \operatorname{Re} e^{-\frac{zt}{n}} \right)$$

is increasing in $1 + S_{\Theta}$.

For the simplicity of notation we assume that t = 1 (but the reasoning for arbitrary t is similar).

Let $f_n(z) := f_{n1}(z)$. We have

$$f_{n+1}(z) - f_n(z) = 1 - \text{Re}\left[(n+1)e^{-\frac{z}{n+1}} - ne^{-\frac{z}{n}}\right].$$

Therefore we have to prove that

(3) Re
$$\left[(n+1)e^{-\frac{z}{n+1}} - ne^{-\frac{z}{n}} \right] \le 1$$
, $z \in 1 + S_{\Theta}$, $n > (1-c)^{-1} \max(c, 2c^2)$.

Since $\tilde{H}_n(z) := \text{Re } \left[(n+1)e^{-\frac{z}{n+1}} - ne^{-\frac{z}{n}} \right]$ is harmonic in $1 + S_{\Theta}$ is suffices to prove (3) on the boundary of $1 + S_{\Theta}$. But $\tilde{H}_n(z) = \tilde{H}_n(\overline{z})$ and so (3) is equivalent to

(4)
$$H_n(x) := \tilde{H}_n(x, c(x-1)) \leq 1$$

for $x \ge 1$ and $n > (1-c)^{-1} \max(c, 2c^2)$.

Now we find (by the Mean Value Theorem) that

$$H_n(x) = ne^{-\frac{x}{n+1}} \left[\cos \frac{c(x-1)}{n+1} - \cos \frac{c(x-1)}{n} \right] +$$

(5)
$$+n\left[e^{-\frac{x}{n+1}} - e^{-\frac{x}{n}}\right] \cos\frac{c(x-1)}{n} + e^{-\frac{x}{n+1}} \cos\frac{c(x-1)}{n+1} =$$

$$= \frac{c(x-1)}{n+1} e^{-\frac{x}{n+1}} \sin x_n + \frac{x}{n+1} e^{-w_n} \cos\frac{c(x-1)}{n} + e^{-\frac{x}{n+1}} \cos\frac{c(x-1)}{n+1},$$

where $\frac{c(x-1)}{n+1} < x_n < \frac{c(x-1)}{n}, \frac{x}{n+1} < w_n < \frac{x}{n}$. We may consider three cases

1°)
$$c(x-1) \ge \pi n$$

Since xe^{-x} is decreasing for x > 1 and $2xe^{-x} + e^{-x} < 1$ for x > 2 (5) implies that

$$H_n(x) < \frac{c(x-1)}{n+1} e^{-\frac{c(x-1)}{n+1}} + \frac{c(x-1)}{n+1} e^{-\frac{c(x-1)}{n+1}} + e^{-\frac{c(x-1)}{n+1}} < 1.$$

$$2^{\circ}) \frac{\pi n}{2} + c \leqslant cx < c + \pi n$$

If x satisfies 2° then $\cos \frac{c(x-1)}{n} \leq 0$. Thus

$$H_n(x) \leqslant \frac{c(x-1)}{n+1} e^{-\frac{c(x-1)}{n+1}} < 1.$$

3°)
$$c \leqslant cx \leqslant c + \frac{\pi n}{2}$$

Let

$$P_n(x) := e^{\frac{x}{n+1}},$$

$$L_n(x) := \frac{c(x-1)}{n+1} \sin \frac{c(x-1)}{n} + \frac{x}{n+1} \cos \frac{c(x-1)}{n} + \cos \frac{c(x-1)}{n+1}.$$

Note that $P_n(x) - L_n(x) \ge 0$ implies that $H_n(x) \le 1$, for x satisfying 3°). Let $T_n := P_n - L_n$. Then

$$T_n(1) = e^{\frac{1}{n+1}} - 1 - \frac{1}{n+1} > 0$$

We claim that $T'_n(x) \ge 0$ for x satisfying 3°). We have

$$(n+1)T'_n(x) = e^{\frac{x}{n+1}} - \cos\frac{c(x-1)}{n} - \frac{c^2(x-1)}{n}\cos\frac{c(x-1)}{n} - c\left(\sin\frac{c(x-1)}{n} - \sin\frac{c(x-1)}{n+1}\right) + \frac{cx}{n}\sin\frac{c(x-1)}{n}.$$

Denote $\frac{c(x-1)}{n} = \alpha$, $\frac{c(x-1)}{n+1} = \beta$, $\frac{1}{c} = 1 + r$, r > 0. Then the last equality can be written as follows:

$$(n+1)T'_n(x) = e^{\frac{x}{n+1}} - \cos\alpha - c\alpha\cos\alpha - 2c\sin\frac{\alpha}{n+1}\cos\frac{\alpha+\beta}{2} + \left(\alpha + \frac{c}{n}\right)\sin\alpha.$$

Hence

$$(n+1)T'_n(x) > 1 + \frac{x}{n+1} - \cos\alpha - c\alpha\cos\alpha - 2c\sin\frac{\alpha}{n+1} >$$

$$> 1 - \cos\alpha + \alpha\left[\frac{n}{n+1} - c\cos\alpha\right] + \frac{n}{n+1}\alpha r - 2c\sin\frac{\alpha}{n+1}.$$

Taking $n \ge (1-c)^{-1} \max(c, 2c^2)$ we check that the above expression is positive. This completes the proof.

COROLLARY 4. For any fixed t > 0 the sequence $[\operatorname{Re} A_n(t)]^{-1}$ is strongly convergent to a bounded operator S(t). Moreover, S(t) does not depend on t.

Proof. Since $\alpha_n \to 1$ and $\operatorname{Re} \tilde{A}_n(t) \geqslant 0$ it follows that $\operatorname{Re} A_n(t) \geqslant bI$, for a certain b = b(t) > 0 and n sufficiently large. Applying Proposition 3 we know that $[\operatorname{Re} A_n(t)]^{-1}$ is decreasing for n sufficiently large. Hence there exists S(t) in L(H) such that $[\operatorname{Re} A_n(t)]^{-1} \xrightarrow[n \to \infty]{} S(t)$ strongly.

The proof of independence of S(t) on t is the same as in [1] and therefore it is omitted here.

What can be said about $\text{Im } A_n(t)$? We don't know the answer in general. However, under additional assumption on B one can prove that $\text{Im } A_n(t)$ is strongly convergent to A_2 .

Namely, suppose that

(*)
$$D(A) \ni f \longrightarrow P|B_2|f$$
 extends to a bounded operator in H .

PROPOSITION 5. If B_2 satisfies the condition (*) then for any t > 0 Im $A_n(t)$ is strongly convergent to A_2 , where $A_2 = PB_2P$.

Proof. Let $h \in D(A)$. We know (by Proposition 1) that $A_n(t)h \xrightarrow[n \to \infty]{} Ah$ and $A_n(t)^*h \xrightarrow[n \to \infty]{} A^*h$. Hence

(6)
$$\operatorname{Im} A_n(t)h \xrightarrow[n \to \infty]{} A_2h,$$

where

$$A_2h:=\frac{1}{2i}(A-A^*)h.$$

Now

$$(\operatorname{Im} A_n(t)h,h) = \frac{n}{t} \int e^{-\frac{tx}{n}} \sin \frac{ty}{n} d(E_{x,y}h,h) = \int_{\{(x,y),y\neq 0\}} G_{nt}(x,y) d(E_{x,y}h,h),$$

where

$$G_{nt}(x,y) = e^{-\frac{tx}{n}} y \frac{\sin \frac{ty}{n}}{\frac{ty}{n}}.$$

Fix $\varepsilon > 0$ take $\delta > 0$ so small that $\frac{\sin a}{a} \leqslant 1 + \varepsilon$ for $|a| \leqslant \delta$. For the above δ define the sets

$$Z_{n\delta} = \left\{ (x, y) \in \sigma(B), \ \frac{t|y|}{n} \leqslant \delta \right\}.$$

If $(x,y) \in Z_{n\delta}$ then

(7)
$$|G_{nt}(x,y)| \leq |y|(1+\varepsilon), \quad n=1,2,...$$

On the other hand for

$$(x_1,y_1)\in\sigma(B)\cap(C\backslash Z_{n\sigma})$$

(8)
$$|G_{nt}(x_1, y_1)| \leq \frac{|y_1|}{\delta}, \quad n = 1, 2, ...$$

Both (7) and (8) imply that

(9)
$$|G_{nt}(x,y)| \leq M|y|, \quad n=1,2,..., \quad (x,y) \in \sigma(B),$$

where $M = \max(1 + \varepsilon, \delta^{-1})$. Hence

$$|(\operatorname{Im} A_n(t)h,h)|\leqslant M\int |y|\mathrm{d}(Eh,h)=$$

$$= M(|B_2|h, h) = M(P|B_2|h, h) \leqslant M||P|B_2|h|| \cdot ||h||.$$

If follows that $\|\operatorname{Im} A_n(t)\|$ is uniformly bounded. But we know that $\operatorname{Im} A_n(t)h$ is convergent to A_2h , for any $h \in D(A)$ (by (6)) and the result follows easily.

Now we are going to prove that the whole sequence $A_n(t)^{-1}$ is strongly convergent and to find its limit.

PROPOSITION 6. The sequence $A_n(t)^{-1}$ is strongly convergent to an operator T such that

- i) $Ker T = \{0\}$
- ii) $T^{-1} \supset A$
- iii) $(-T^{-1})$ generates a C_0 -semigroup in H.

Proof. Let

(10)
$$A_n(t) = S_n(t) + i R_n(t),$$

where $S_n(t)^* = S_n(t), R_n(t)^* = R_n(t).$

The sequence $S_n(t)$ is increasing for $n > (1-c)^{-1} \max(c, 2c^2)$ (by Proposition 3). Hence

$$S_n(t)^{\frac{1}{2}} \leqslant S_{n+1}(t)^{\frac{1}{2}}$$

and so

$$S_n(t)^{-\frac{1}{2}} \geqslant S_{n+1}(t)^{-\frac{1}{2}}.$$

Since $S_n(t)^{-\frac{1}{2}}$ is bounded from below (by zero) it must be strongly convergent to S(t). Repeating the reasoning given in [1] one can prove that $S(t) \equiv S$ i.e. S(t) does not depend on t. In what follows we omit the t-variable. Rewrite (10) as

$$A_n = S_n^{\frac{1}{2}} \left(I + i S_n^{-\frac{1}{2}} R_n S_n^{-\frac{1}{2}} \right) S_n^{\frac{1}{2}}.$$

Thus

$$A_n^{-1} = S_n^{-\frac{1}{2}} \left(I + \mathrm{i} \, S_n^{-\frac{1}{2}} R_n S_n^{-\frac{1}{2}} \right)^{-1} S_n^{-\frac{1}{2}}.$$

Now

$$S_n^{-\frac{1}{2}} R_n S_n^{-\frac{1}{2}} \xrightarrow[n \to \infty]{} SA_2 S$$

in the strong topology.

Applying [5, Corollary 1.6, p. 489] we have

$$\left(I + i S_n^{-\frac{1}{2}} R_n S_n^{-\frac{1}{2}}\right)^{-1} \xrightarrow[n \to \infty]{} (I + i S A_2 S)^{-1}$$

strongly. It follows that

$$A_n^{-1} \underset{n \to \infty}{\longrightarrow} T := S(I + i S A_2 S)^{-1} S.$$

The same reasoning shows that A_n^{-1} converges strongly to T^* . We claim that $\text{Ker}T = \{0\}$. In fact, for $f \in H$ and $g \in D(A)$, by applying Proposition 1, we have

$$(f,g)=(A_nA_n^{-1}f,g)=(A_n^{-1}f,A_n^*g)\underset{n\to\infty}{\longrightarrow}(Tf,A^*g),$$

and the claim holds.

Moreover, $T^{-1} \supset A$. This is immediate by the following identities.

Let $h \in D(A)$ and $k \in H$. Then

$$(h,k) = (A_n^{-1}A_nh, k) = \left(A_nh, A_n^{-1*}k\right) \underset{n \to \infty}{\longrightarrow} (Ah, T^*k).$$

Finally, $T = (S^{-2} + i A_2)^{-1}$ and so $T^{-1} = S^{-2} + i A_2$.

Since $S^* = S \geqslant 0$ and $A_2 \in L(H)$ it is clear that $-T^{-1}$ generates a C_0 - semigroup in H.

REMARK. Note that $-A_n$ and $-T^{-1}$ belong to the $\mathcal{G}(1,\beta)$ class of generators of C_0 - semigroups, for some $-1<\beta<0$, see [5, p. 487]. Indeed, by Proposition 2, $W(A_n)\subset 1+S_\Theta$ and so for any $\gamma>\beta$ we have

$$||(A_n + \gamma)^{-k}|| \le \frac{1}{\operatorname{dist}(\gamma, W(-A_n))^k} < \frac{1}{(\gamma - \beta)^k}, \quad k = 1, 2, ...$$

Now, for any $\alpha > 0$ and $n \in \mathbb{N}$

$$||(I+\alpha A_n)^{-1}|| \leqslant \frac{1}{\operatorname{dist}(1,W(-\alpha A_n))} < 1.$$

Hence

$$\lim_{\alpha \searrow 0} \|(I + \alpha A_n)^{-1} f - f\| = 0, \quad f \in H$$

uniformly in n. Th. 2.17 given in [5, p. 505] yields that $-T^{-1} \in \mathfrak{G}(1,\beta)$ and this proves our Remark.

The above Remark and Proposition 6 enable us apply Theorem 2.16 from [5, p. 504] and we have

COROLLARY 7. For any $f \in H$ and t > 0

$$\lim_{n \to \infty} e^{-tA_n} f = e^{-tT^{-1}} f.$$

However, we need to know more, namely, whether $\left(I - \frac{tA_n}{n}\right)^n f \underset{n \to \infty}{\longrightarrow} e^{-tT^{-1}} f$. It turns out to be true under some additional assumption on Θ (it should not be too large).

Proposition 8. Fix t > 0. Under the above assumptions we have

$$\lim_{n \to \infty} \left\| e^{-tA_n} - \left(I - \frac{tA_n}{n} \right)^n \right\| = 0$$

provided that

$$(W) (2\cos\Theta - 1)\cos\Theta > \sin\Theta.$$

Proof. Fix t > 0 and take $\Theta < \Theta_1 < \frac{\pi}{2}$. Let $c = \tan \Theta_1$. Note that

$$(\operatorname{Re} A_n(t)f, f) \leqslant (1+c)\frac{n}{t}||f^2||.$$

In fact, $F_n(x,y) = 1 - e^{-\frac{tx}{n}} \cos \frac{ty}{n}$ is harmonic in $1 + S_{\Theta_1}$ and so

$$\sup_{1+S_{\Theta},} F_n(x,y) = \sup_{x\geqslant 1} \left[1 - \mathrm{e}^{-\frac{tx}{n}} \cos \frac{ct(x-1)}{n} \right] \leqslant 1 + c\mathrm{e}^{-\frac{tx_n}{n}} \leqslant 1 + c,$$

where

$$\cos\frac{ct(x_n-1)}{n}+c\sin\frac{ct(x_n-1)}{n}=0 \quad \text{and} \quad \sin\frac{ct(x_n-1)}{n}>0.$$

Choose $\Theta_1 > \Theta$ so close to Θ that $(2\cos\Theta_1 - 1)\cos\Theta_1 > \sin\Theta_1$. This is possible by (W). For this Θ_1 fix r > 0 so large that

$$\left[2\cos\Theta_1 - \left(1 + \frac{1}{r}\right)\right]\cos\Theta_1 > \sin\Theta_1.$$

It follows that

$$(W_1) 2\cos\Theta_1 > 1 + c + \frac{1}{r},$$

where $c = \tan \Theta_1$.

Appling Proposition 5 we know that $||\operatorname{Im} A_n|| \leq C$, for a certain C > 0, n = 1, 2, ...Choose $n_0 = n_0(C, r, t)$ such that

(11)
$$\frac{1}{2}\frac{n}{tr} > C + c + 1, \quad \text{for } n \geqslant n_0.$$

Let $T_n := \frac{n}{t}(1+c)$, $S_n := T_n + \frac{n}{rt}$. If $n \ge n_0$, we define the contour $\Gamma := \Gamma_+ \cup \Gamma_- \cup \Gamma_n$ by the following picture

By Proposition 2 and the above choice of n_0 we know that $\sigma(A_n)$ is contained in the set $\{z \in \alpha_n + S_{\Theta}, z = x + i y, x \leq T_n, |y| \leq C\}$, where $\alpha_n = \frac{n}{t} \left(1 - e^{-\frac{t}{n}}\right), n \geq n_0$, and C > 0. Hence, by a direct computation and using the choice of n_0 we have

(12)
$$\operatorname{dist}(z, W(A_n)) > \frac{n}{2rt}, \quad z \in \Gamma_n, \ n \geqslant n_0.$$

Let $z \in \Gamma_{\pm}$. By the definition of Γ_{\pm} we easily obtain the following estimate

(13)
$$\operatorname{dist}(z, W(A_n)) \geqslant \alpha_n \sin \Theta_1 > (1 - \rho) \sin \Theta_1,$$

for a certain $\rho > 0$ and $n \geqslant \tilde{n}_0$.

Fix ε and choose R > 0 so large that

$$[2\pi \sin(\Theta_1 - \Theta)]^{-1} \int_{R}^{\infty} e^{-pt\cos\Theta_1} \frac{\mathrm{d}p}{p} < \varepsilon$$

and

(15)
$$4[\pi \sin(\Theta_1 - \Theta)Rt \cos \Theta_1]^{-1} < \varepsilon.$$

Write

$$e^{-tA_n} - \left(1 - \frac{tA_n}{n}\right)^n = \frac{1}{2\pi i} \int_{\Gamma} \left[e^{tz} - \left(1 - \frac{tz}{n}\right)^n\right] R(z, A_n) dz.$$

Note that

$$||R(z, A_n)|| \leq [\operatorname{dist}(z, W(A_n))]^{-1}, \quad z \in \Gamma.$$

Therefore we want to estimate

$$\left| e^{-tz} - \left(1 - \frac{tz}{n} \right)^n \right| \text{ for } z \in \varGamma.$$

Since $\left(1 - \frac{tz}{n}\right)^n$ is uniformly convergent to e^{-tz} on compact sets, there exists $n_1 = n_1(\varepsilon, R) \ge \max(n_0, \tilde{n}_0)$ such that

(16)
$$\sup_{|z| \leqslant R} \left| e^{-tz} - \left(1 - \frac{tz}{n} \right)^n \right| \leqslant \frac{\pi \varepsilon (1 - \rho) \sin \Theta_1}{2R}$$

for $n \geqslant n_1$.

Denote $H_n(z) := e^{-tz} - \left(1 - \frac{tz}{n}\right)^n$. Direct computation and (12) prove that

(17)
$$\frac{1}{2\pi} \int_{\Gamma_n} |H_n(z)| ||R(z, A_n)|| |dz| \leq$$

$$\leqslant \frac{1}{2\pi} \left(\int_{\Theta_1}^{\Theta_1} e^{-tS_n \cos \omega} d\omega + 2\Theta_1 \alpha^n \right) \cdot \frac{2t\tau}{n} \cdot S_n,$$

where

$$\alpha := \left[1 - 2\left(1 + c + \frac{1}{r}\right)\cos\Theta_1 + \left(1 + c + \frac{1}{r}\right)^2\right]^{\frac{1}{2}} < 1.$$

But $\frac{2tr}{n} \cdot S_n \leq 2r \left(1 + c + \frac{1}{r}\right)$, and so the above integral is less than ε for n sufficiently large, say $n \geq n_2 = n_2(\varepsilon, \Theta_1)$.

On the other hand,

$$\frac{1}{2\pi} \int_{\Gamma_{+}} |H_{n}(z)| \, ||R(z, A_{n})|| \, |\mathrm{d}z| = \frac{1}{2\pi} \left[\int_{\{z \in \Gamma_{+}, |z| \leq R\}} |H_{n}(z)| \, ||R(z, A_{n})|| \, |\mathrm{d}z| \right] + \frac{1}{2\pi} \left[\int_{\{z \in \Gamma_{+}, |z| \leq R\}} |H_{n}(z)| \, ||R(z, A_{n})|| \, |\mathrm{d}z| \right].$$

The first of the integrals is less than $\frac{\varepsilon}{2}$ (by (13) and (16)). The second integral of the right-hand side can be estimated as the sum

$$[2\pi\sin(\Theta_1-\Theta)]^{-1}\left(\int\limits_R^{S_n}\left\{e^{-pt\cos\Theta_1}+\left[\left(1-\frac{pt\cos\Theta_1}{n}\right)^2+\frac{(pt)^2\sin^2\Theta_1}{n^2}\right]^{\frac{n}{2}}\right\}\frac{\mathrm{d}p}{p}\right)$$

By applying (14) the first integral is less than ε . The second integral may be written as $I_{1n} + I_{2n}$, where

$$I_{1n} := \left[2\pi \sin(\Theta_1 - \Theta)\right]^{-1} \int_{R}^{s_n} \left[\left(1 - \frac{st \cos \Theta_1}{n}\right)^2 + \frac{(st)^2 \sin^2 \Theta_1}{n^2} \right]^{\frac{n}{2}} \frac{ds}{s},$$

$$\begin{split} I_{2n} &:= [2\pi \sin(\Theta_1 - \Theta)]^{-1} \int\limits_{s_n}^{S_n} \left[\left(1 - \frac{st \cos \Theta_1}{n}\right)^2 + \frac{(st)^2 \sin^2 \Theta_1}{n^2} \right]^{\frac{n}{2}} \frac{\mathrm{d}s}{s}, \\ s_n &:= \frac{n}{4} \cos \Theta_1. \end{split}$$

Here we take n so large that $s_n > R$.

Note that

$$\frac{s^2t^2}{n^2} - \frac{st\cos\Theta_1}{n} \leqslant 0, \quad R \leqslant s \leqslant s_n.$$

Hence

$$I_{1n}\leqslant \int\limits_{B}^{s_{n}}\left(1-\frac{st\cos\Theta_{1}}{n}\right)^{\frac{n}{2}}\frac{\mathrm{d}s}{s}[2\pi\sin(\Theta_{1}-\Theta)]^{-1}.$$

Put

$$p:=1-\frac{st\cos\Theta_1}{n}.$$

We have

$$\int_{R}^{s_n} \left(1 - \frac{st\cos\Theta_1}{n}\right)^{\frac{n}{2}} \frac{\mathrm{d}s}{s} = \int_{P_1}^{P_n} p^{\frac{n}{2}} \frac{\mathrm{d}p}{1 - p},$$

where

$$P_1 := 1 - \cos^2 \Theta_1, \ P_n := 1 - \frac{tR\cos \Theta_1}{n}.$$

Now

$$[2\pi\sin(\Theta_1-\Theta)]I_{1n}\leqslant \int\limits_{P_1}^{P_n}p^{\frac{n}{2}}\frac{\mathrm{d}p}{1-p}<\int\limits_{0}^{P_n}p^{\frac{n}{2}}\frac{\mathrm{d}p}{1-p}<\frac{2}{Rt\cos\Theta_1},$$

and so by (15)

$$(18) I_{1n} \leqslant \varepsilon.$$

If $s_n \leq s \leq S_n$ then the function

$$s \longrightarrow 1 - 2 \frac{st \cos \Theta_1}{n} + \frac{s^2 t^2}{n^2}$$

is majorized by $\alpha^2 < 1$ (see the line below (17)).

Thus

$$\begin{split} I_{2n} \leqslant \alpha^{\frac{n}{2}} \int\limits_{s_n}^{S_n} \frac{\mathrm{d}s}{s} \cdot [2\pi \sin \Theta_1 - \Theta)]^{-1} = \\ &= [2\pi \sin(\Theta_1 - \Theta)]^{-1} \alpha^{\frac{n}{2}} \ln \left[\left(1 + c + \frac{1}{r} \right) (\cos \Theta_1)^{-1} \right]. \end{split}$$

Consequently, applying (18) we have

(19)
$$I_{1n} + I_{2n} \leqslant \varepsilon + \varepsilon, \quad \text{for } n \geqslant n_3(\Theta_1, R, \varepsilon) \geqslant n_2.$$

Finaly, by combining (17) and (19) we can write

$$\left\| e^{-tA_n} - \left(I - \frac{tA_n}{n} \right)^n \right\| \leqslant \varepsilon + 2 \left(\frac{\varepsilon}{2} + \varepsilon + \varepsilon \right) = 6\varepsilon$$

for $n \ge n_3$. The proof is complete.

In this way we have proved our Theorem for $\tilde{A} := T^{-1}$.

PROBLEM. We don't know whether the above theorem holds without the assumption (W).

3. AN APPLICATION

In this section we shall give a straightforward application of our Theorem. Let F_2 be the Bargmann-Segal space of entire functions in \mathbb{C}^n square integrable with respect to the Gaussian measure $d\mu(z) = \pi^{-n}e^{-|z|^2}dV(z)$, dV(z) denoting the Lebesgue measure in \mathbb{C}^n . Denote by $P: L^2(\mu) \longrightarrow F_2$ the orthogonal projection of $L^2(\mu)$ onto F_2 . For a measurable function φ on \mathbb{C}^n , the multiplication operator M_{φ} in $L^2(\mu)$ is defined by $M_{\varphi}f = \varphi f$. The Toeplitz operator T_{φ} is defined in F_2 by

$$T_{\varphi}f = PM_{\varphi}f, \quad f \in F_2.$$

The Berezin transform \tilde{T}_{φ} of T_{φ} (see [1], [2]) is given by

$$\tilde{T}_{\varphi}(\lambda) = (\varphi k_{\lambda}, k_{\lambda}) = \tilde{\varphi}(\lambda),$$

where

$$k_{\lambda}(z) = \mathrm{e}^{(z,\lambda)-|\lambda|^2/2}, \quad (z,\lambda) = \sum_{s=1}^n z_s \overline{\lambda}_s.$$

To apply our Theorem we have to impose on φ the following conditions.

(a)
$$\varphi = \varphi_1 + i \varphi_2$$
, where $\varphi_1(z) > 1$, $|\varphi_2(z)| \leqslant \varphi_1(z) \tan \Theta$, $0 \leqslant \Theta < \frac{\pi}{2}$;

(b) the Toeplitz operator $T_{|\varphi_2|}$ is bounded and $(2\cos\Theta - 1)\cos\Theta > \sin\Theta$.

Recall that $T_{|\varphi_2|}$ is bounded if and only if its Berezin symbol $|\tilde{\varphi}_2|(\cdot)$ is bounded in \mathbb{C}^n , [2], [3]. Thus $|\varphi_2|$ need not to be bounded but may induce bounded $T_{|\varphi_2|}!$

We are now in position to apply our Theorem. In fact, the conditions (a) and (b) guarantee that all the assumptions of the Theorem hold. If additionally T_{φ_1} is selfadjoint then as we know (by Proposition 5) $\tilde{A} = T_{\varphi}$. Hence in this case we have

Corollary 9. Let φ satisfy (a) and (b). Suppose that T_{φ_1} is selfadjoint. Then

$$e^{-tT_{\varphi}} = \lim_{N \to \infty} (T_{e^{\frac{-t\varphi}{N}}})^{N}.$$

Remark. Proposition 3.7 from [4] implies that T_{φ_1} is surely selfadjoint for φ_1 satisfying

$$|\varphi_1(z) - \varphi_1(w)| \leqslant C(1 + |z - w|).$$

Acknowledgment. This work was started when the author visited Macquarie University in the fall of 1989. We are deeply indebted Professor Alan McIntosh for his hospitality and numerous discussions.

REFERENCES

- BEREZIN, F. A., Covariant and contravariant symbols of operators, Izw. AN SSSR, 35(1972), 1134-1167 (in Russian).
- BERGER, C. A.; COBURN, L. A., Toeplitz operators on the Bargmann-Segal space, Trans. Amer. Math. Soc. 301(1987), 813-829.
- JANAS, J., Toeplitz and Hankel operators on Bargmann spaces, Glasgow Math. J. 30(1988), 315-323.
- JANAS, J., Unbounded Toeplitz operators in the Bargmann-Segal space, Studia Math T. 99(1991), 87-99.
- KATO, T., Perturbation Theory for Linear Operators, Springer Verlag, Second Edition, (1976).

JAN JANAS
Institut Matematyczny,
Polskiej Akademii Nauk,
Oddziat w Krakowie,
Ul. Sw. Tomasza 30,
31-027 Krakow,
Poland.