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ON AN INEQUALITY OF HAAGERUP-PISIER
RICHARD V. KADISON

Dedicated to the memory of Marshall H. Stone, teacher and friend

1. INTRODUCTION

In {5; Section 3], Haagerup gives a simplified proof (with improved constant) of
some inequalities of Pisier [12]. Pisier, in turn, was proving a non-commutative version
of an inequality of Grothendieck [4,6], and as a consequence, affirmed a conjecture of
Ringrose [13].

The key to Haagerup’s results is his Theorem 3.2 of [5]:

Let 2 be a C*-algebra, and 1 be a bounded linear mapping of 2 into a Hilbert
space. Then there are states p and p’ of U such that

1) lIn(AI” < lInll*lo(A*4) + ' (44")] (A eq).

These inequalities and the circle of ideas associated with them have found im-
portant application in the work of Haagerup and E. Christensen, notably in moving
toward a solution [5] of the similarity problem [7], and the main cohomology problem
[3,8]. Especially for Christensen’s techniques [2,3], it is important to have a version
of (1) that applies to a von Neumann algebra or a represented C*-algebra and bro—
duces normal states p and p’ when 7 has appropriate weak continuity properties. One
purpose of this note is to prove such a result.

THEOREM A. If 2 is a C*-algebra acting on a Hilbert space H and 7 is a linear
mapping of 2 into a Hilbert space K continuous from 9 in its ultraweak topology to
K in its weak topology, then there are normal states p and p' of % such that

In(OI” < [Inl*[o(A"4) + p'(A4%)] (A €).
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Haagerup’s proof of (1) proceeds by establishing the inequality when # assumes
its norm at some unitary operator in 2. This argument produces normal states p and
p' with the hypotheses of Theorem A. The second stage reduces the argument to the
case where 7 assumes its norm at a unitary operator in 2{ by a clever use of Russo-Dye
[14] and “ultrapowers”. With the ultrapower argument, we no longer produce normal
states.

In the next section, Haagerup’s simplification of the Pisier argument is simplified
further; among other things, the need for ultrapowers is removed. {See Theorem B.)
We follow the proof of the Theorem B with Haagerup’s proof of the Pisier-Ringrose
inequality (with improved constant).

2. THE GENERAL CASE

Haagerup proves his result for unital C*-algebras and then uses properties of the
universal representation to pass to the non-unital case [5; Theorem 3.2]. The following
simplified proof of the unital case has a form that allows us to be reasonably explicit
about the states p and p’. The description of those states is included in the statement.

THEOREM B. If y is 2 non-zero, bounded, linear mapping of a unital C*-algebra
A into a Hilbert space H, there is a sequence of unitary elements {Uy,} in 2 such that
(Ul = ||nl|. There are weak* limit points of {||nli=2¢s} and {||nl|~%p.}, where

pn(4) = (n(Un A),n(Un)), ¢'(4) = (n(AU),7(Us)}  (A€).

If p and p’ are such limit points, then they are states of 2l and

(A < IInlP[p(A4) + p'(A4%)] (A €).

Proof. We may assume that ||n|| = 1. Let {A4,} be a sequence of elements of
norm less than 1 in 2 such that
nd -1

= <lln4n)*

m
From [10}, there are unitary elements V4, .. ., Vi, in 2 such that A, = 1 Z V;. Since

3

n3

nd—1\% ”
(Z5) <lntanii< & S Imcwi
i=1

there is some V; such that (r3 — 1)n=3 <||n(V;)||?. Let U, be V;.
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If H is a self-adjoint element in the unit ball (1); of %, then from spectral theory,

for each real t,
2 4
<14 —.

I—ﬁsz:itH
2 4

Let 7, (A) be n(Un A) for A in . Then ||n,}| <1 and

2 4

12 _ ¢
(1) = S a(H?) £itna(H)| <1+ 7.

From the parallelogram law,

£ N 2 ¢
nn(I)_'é'Tln(H) +1 H"In(H)“ <1+Z

and

' 4
e (DI = £ Re (1), (D) + 7 (B2 +2ma(EDIP <14+ 5.

Since {|na (D = ||n(Un)]|? 2 (n® — 1)n=3, it follows that

t PN , . 1 12 2

T ma(HD|” + () € matgt Re (nn (H"), na(I))
for each non-zero, real t. Choosing % for ¢, we have that

I (EDIP < 2 + Re pu(H?).

For arbitrary 4 in (%), A+ A and i(4 — A*) are self-adjoint elements of (%);.
Thus

7 (A + |72 (A" = -;- [l (A + A + lI7aG(A = AP ] <€
<3 [E+Re(oal(A+ A + (A - 4] =
= Repn(A"A + AR") + .
It follows that
1(Un AP < Re (n(Un A° A + Un AA"), n(Un)) + 2
for each A in (). Replacing A by U7 A, we have that
AP < Re (1Un A*Unl3 A + UaU3 AT, n(U)) + 2 =

= Re [ pn(A°A) + 9, (A4%) ] +%.



60 RICHARD V. KADISON

Under the assumption that [|5|| = 1, the functionals p, and pf, lie in the unit ball
(%#); of the norm dual of 2. Since (A#); is weak* compact, there are cofinal subnets
of {pn} and {p},} with the same indices tending to functionals p and p’, respectively,
in (A#);. As

,_n¥—1
13 pa(D) = In(U)I > 225,
we have that 1 = p(I) = p/(I). It follows that p and p’ are states of 2.
Since p and p’ are states of 2 and are weak* limit points of {p,} and {p,},

respectively, we conclude that
[2(A)]I* S Re [ p(A*A)+ p'(AA™) |= p(A"A) + F/(AA") (A€ (2)y)

Dividing by 4[| A||?, we have the same inequality for all 4 in 2. |

CoroLLARY C. With 2, n, and H, as in Theorem B, there is a state py of U
such that
(A < 2lnlpo(A*A + AA*) (A €).

Proof. From Theorem B, there are states p and p’ of U such that
(NP < lInl*lo(A* 4) + £ (AA%)])  (Ae).
1
Let pg be §(p+ p'). Then p< 2pp and p’ < 2pp. Thus

(A < Hnll*[p(4° 4) + 4/ (AAT < 2l [P po( A" A + AA®) (A € D). =

THEOREM D. (Pisier-Ringrose) If ¥ is a bounded, linear mapping of one C*-
algebra 2 into another C*-algebra B, then

il »
D AT A; + A A3
i=t

D (A (A + V(A7) A <4AlhIP
=1

for each finite set {A;,..., A,} of elements A; of .

Proof. We may assume that B acts faithfully on a Hilbert space . Let z be a
unit vector in 7 and n(A) be y(A)z. With A in 2 and ||A|| <1,

(A = lIv( Azl < v =l < [l

Thus [|n|| < [|7]|. From Corollary C, there is a state p, of 2 such that

In(A1? = (Y(A4;) 1(Aj)z, 2) S 2|nl[Pp=(A; 4; + A; A)).
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Summing, we have

< (Z 7(Aj )*V(AJ' )) z, m> < 2”’7”295 (Z A;Aj + AjA;) <

Jj=1 j=1
n
<2 (Y A5 45 + A 43
j=1

This result applied to the mapping n* of U into H, where #*(A) = y*(A)« (and
7*(A) = ¥(A*)*), and to the elements A},..., A} yields

< (Z 7(Aj)“r(Aj)‘) I,r> 2P | D A5 A5 + A5 A

j=1 i=1

Thus

7
S AA; + A4
i=1

j=1

< (Z Y(A5) v(45) + 7(A;)v(A;s )"‘) z, z> <4l

n
As the preceding inequality holds for each unit vector in X and Z‘y(A,- Yy(4;)+
i=1
+7(A;)v(A;)* is positive, we have that

n n
DoAY A) + (A (A | SUMP (S As4; + 4,47 .
i=1 j=1

3. WEAK CONTINUITY

We establish Theorem A in this section. Three proofs are given. The first uses
Haagerup’s result in conjunction with a direct appeal to the properties of the univer-
sal representation. The second, suggested by Christensen and Haagerup, employs a
technique used in similar circumstances by each of Christensen and Haagerup. We
extract an assertion, which we call the “Christensen-Haagerup Principle”, from this
technique and then apply it to the present situation to give our second proof. The
third proof (again suggested by Christensen and Haagerup) follows from an applica-
tion of the (much harder) result of Haagerup [6] proving the Grothendieck conjecture.

Before beginning the proof, we note that the Kaplansky density theorem [11] (see
also [9; Theorem 5.3.5]) can be reformulated to state that the unit ball of the von
Neumann algebra generated by a *-algebra g of operators on a Hilbert space is the
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strong-operator #-closure of operators in the unit ball of %o. That is, with T" in the
unit ball of 25 and strong operator neighborhoods of T and T assigned, there is a
To in the unit ball of 2o such that T lies in the given strong-operator neighborhood
of T and T} lies in the given strong-operator neighborhood of 7*. In the proofs of
[11] (and [9; Theorem 5.3.5)), the approximation is first made with T self-adjoint; the
case of general T is dealt with by (Halmos’s suggestion to Kaplansky of) considering
the *algebra of 2 x 2 matrices with entries in %y together with the matrix having
0 diagonal entries and 7" and T* at the off-diagonal entries. The strong-operator
*density can be read from this.

Proof of Theorem A. We note, first, that 5 is bounded. To see this, let z be a
vector in K. By hypothesis, A — (n(A), z} is an ultraweakly continuous linear func-
tional on 2. Since the norm topology on 2 is stronger than the ultraweak topology,
this functional is norm continuous and, therefore, bounded. Thus for each continuous
linear functional f on K, the set { f(7(A)) : A € (%)1} is bounded in C. From the
uniform boundedness principle (cf. [9; Corollary 1.8.11]), {n(A4) : A€ (A1} isa
bounded subset of K, whence 9 is bounded.

At the same time, the functional A — {n(A), z) has an unique ultraweakly con-
tinuous extension p; to U~ which has the same norm (since (2); is ultraweakly dense
in (A~); by the Kaplansky density theorem). With z and y in K, a a scalar, and A
in 2, we have that

Paz+y(A) = (n(A), az + y} = (@ps + py)(4),

whence par4y = @pz + py by ultraweak continuity of psr4+y — @pz — py and the ultra-
weak density of 2 in ™. Moreover,

lp=(A) < lln(AHlz < linll 1Al l]=I];

thus |p(T) < |71 {Inllliz]] for T in A=. It follows that z — p (T) is a bounded
conjugate-linear functional on X and corresponds to a vector 7(T°) such that po(T) =
= {fj(T), ). From this equality, 77 induces a mapping from weakly continuous func-
tionals on K (e.g. the one corresponding to z) into the ultraweakly continuous func-
tionals on A~ (in the case of z, the functional p;). Thus 7} is continuous from 2~ in
its ultraweak topology to K in its weak topology. With a a scalar and T'and S in %™,

(ii(aT + 5),z) = po(aT + §) = a{i(T), ) + {i(5), z)

for each z in K. Thus
#(aT + 8) = afi(T) + 7(5).
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Since py(A) = {n(A), z), for each z in K, when A € %, we have that 7(A) = n(4). Of
course, ||n]| <||7ll. With A in (U);, we have that

i(A4), 2) = [(n(4), 2) < (Al izl < Il =1l

for each z in K. Since (%); is ultraweakly dense in (A~); and 7 is ultraweakly
continuous, this same inequality is valid for each 7" in (2); (and each z in K). Thus
FCT) < 7l fox each T in (% )s, and |[fl| < |- Henee [l7l] = |Inl. (Arguing as in [5;
Lemma 10.1.10], another proof of these extension and bound conclusions can be given.
That proof relies on general results extending uniformly continuous mappings from
uniform structures to their completions and makes use of the uitraweak compactness
of (2~); and the weak compactness of (K); and, hence, their completeness in the
associated uniform structures. The Kaplansky density theorem remains the key to the
proof.) Let & be the universal representation of 2 on H,. Since @ is a *isomorphism
(hence, an isometry) and each bounded linear functional on &() is (weak-operator,
hence) ultraweakly continuous [9; Proposition 10.1.1], the mapping

&(A) —{(no @) (@A), z )=(n(A)z) (A€

is ultraweakly continuous. Thus 7o ®~! is continuous from ®(%) in its ultraweak
topology to K in its weak topology. From the preceding paragraph, n o ®-! has a
(unique) linear extension 7 to ®(A)~ that is continuous from ®(2A)~ in its ultraweak
topology to K in its weak topology and [jno ®~!|| = [|7]|. Since @ is an isometry,
llno =2 = |nll. Thus linll = 17l = 1l

Let P be the central projection in ®()~, which is described in [9; Theorem
10.1.12], such that A — ®(A)P extends to a x-isomorphism ¥ of %~ onto &(™A)~ P
and #'(T) be (¥ ~1(TP)) for each T in ®(A)~. Since ¥ is a *isomorphism of A~ onto
®(A)~ P, ¥ is ultraweakly continuous (see [9; Remark 7.4.4]) and 7’ is an ultraweakly-
weak continuous linear mapping of ®()~ into K. Note that, for each A in %,

i (®(4) )= (THB(A)P) )= ii(4) = n(4) =(no @7 ) (2(4) )=7 ((4)) -

Combining this equality with the ultraweak-weak continuity of 7' and % on ®(%)~,
we have that 7' = 7. It follows that

7 (T - P))=# (T(I - P))=7(¥"* (T(I - P)P))=0.

Hence 7(T) = 7(TP), for each T in @(A)~.
From [5; Theorem 3.2] (or Theorem B), there are states of $(2) and, hence, unit
vectors  and y in H, such that

() 17 (@A) ) 12 < IInll? [we (B(A™A)) +wy (2(A4"))]
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for each A in U. We shall show that
3 [ADIP € Ill* = (T*T) + wy(TT)]

for each T in $(2)~. By Kaplansky density and the ultraweak-weak continuity of %,
given T' of norm 1 in $(A)~ and a positive ¢, we can choose Tj in the unit ball of
$(*A) so close to T in the strong-operator *-topology that

| w 273, L
lInll 11 To2ll? + T3 olI*1 < llall WIT2I + 1T 9l%)3 + 5e

and at the same time, so close to T in the ultraweak topology that

(3T, 7T < ), AN + 5l
With this choice of Tp, we have, from (2) that
17T~ %tfllﬁ(T)ll < {A(To), FIW < (D) 7 Zo)] <

ni L | — [ T3 e L 1 .
<D all 1 Tozl|? + T3 P12 < I [l UT21? + 1T* 91} + Zelli( D

Thus
IHDN< Nl IT2]? + 1T ul?1E + ¢

for each positive ¢, from which (3) follows for each T in ®(2)".
From (3), for each T in ®(2)~, we have that

I = (TP < lPlwe. (T*T) +wp, (TT*)].

If either of Pz or Py is 0, this inequality is valid with an arbitrary unit vector (in
particular, one in P(H,)) in place of that 0 vector. If neither Pz nor Py is 0, both have
norm not greater than 1 (since z and y are unit vectors). Thus, with u = ||Pz||~!Pz
and v = ||Py|[~* Py,

wp, < illpm”—szx = Wy, wa < ”Py”—zw}’” =Wy
It follows that the states w, | ®()~ and w, | ®(A)~ satisfy
DI < nlPfwu(T*T) + wo(TT*N (T € 2(A)7)

and Pu=u, Pv=w.
Let p(S) be wu(¥(S)) and p'(S) be w,(¥(S)) for S in A~. Then p and p’ are
normal states of 2, since ¥ is a *isomorphism of 2~ onto ()~ P and

p(1) = wu(P) = 1 = wy(P) = #(I).

Moreover, for each A in %,
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(A = (AN = 17 (¥ (@(AP) ) I = 17 (@A = M@ <
<linlf? [wa (2(4°4)) +w, (2(447))]=
= |lmll* [wu (2(A*A)P) +w, (S(AA)P)]=
= ||pll? [we (R(4°4)) +w, (¥(A4%))]= [0l [p(474) +p(447)]. @

The next proof we give of Theorem A is based on a technique of Christensen [1]
and Haagerup [6]. It relies on universal representation techniques to the extent that
it cites properties of that representation in connection with the decomposition of a
bounded functional on a von Neumann algebra as a sum of a singular component and
an ultraweakly-continuous component. We begin with a codification of that technique

in the following result.

CHRISTENSEN-HAAGERUP PRINCIPLE. Let f and g be continuous, real-valued
functions on C*™ and C*", respectively, 61, ...,0m be ultraweakly continuous, linear
functionals on a von Neumann algebra R acting on the Hilbert space H, and p1, ..., pn
be bounded linear functionals on R such that, for each A in R,

(4) f(o1(A), 01(A%), o1(AA*), 61(A%A),. . ., om(A), om(A*), om{AA*), om(AA)) <

< 9(p1(A), p1(A"), p1(AA*), p1(A7 A), . .., pr(A), Pn(A"), pr(AA"), pa(A" A)).
Then (4) holds when each p; is replaced by its ultraweakly continuous component pj.

Proof. Let p} 4 p} be the (unique) decomposition of p; as the sum of a linear
functional p} ultraweakly continuous on R and a linear functional p} singular on R (cf.
[9; Theorem 10.1.15)). Each non-zero projection E in R has a non-zero subprojection
E; in R such that p§(E;A) = 0 for each A in R. To see this, express p} as a linear
combination of singular states of R [9; Proposition 10.1.17] and apply the result of
[9; Exercise 10.5.15] to these states (in succession starting with E). Now find E, a
non-zero subprojection of 1 in R such that po(E2A) = 0 for each A in R. Continuing
in this way, we arrive at a non-zero subprojection Eq of E such that p}(EoA) = 0 for
each A in R and each j in {1,...,m}. Let {E;}sca be a maximal orthogonal family
of non-zero projections in R such that p$(E,A) = 0 for each 4 in R, each a in A, and

each jin {1,... m}. By maximality, Z E, = I. Let B be the set of finite subsets of
a€cA
A ordered by inclusion. With b in B, let F} be Z E,. Then {F)}sep is an increasing

net of projections in R with strong-operator lirt;lei:, I such that p}(FyA) = 0 for each b
in B, each Ain R, and each jin {1,...,m}.

In (4), replace each p; by p} + p} and A by FyAF; to arrive at
(5) f(o1(FAR),...,on(FA*FAF)) <g ( (AR, ... pa(FRA*FAR) ) .
Since {F};} is strong-operator convergent to I and multiplication is (jointly) strong-
operator continuous on bounded sets, we have that
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FyAF, — A, FyAF  A*Fy — AA*,
FyA*Fy, — A%, EByA*FyAF, — A*A,
where convergence is in the strong-operator and, hence, the ultraweak topologies over
the respective (bounded) nets. The continuity of f and g and the ultraweak continuity
of each 0; and each p}; yields

F(1(A) ., om(A* A) (A (A) ., A5 (A° A))
on passing to the limit, Fy — I, in (5). |

To apply the Christensen-Haagerup Principle in our situation, we construct 7, as
in the first proof of Theorem A, and note that for each unit vector « in X and each
A in %A, we have

(H(A), 2)* < A < [Inll*[p(AT A) + ' (AA")].

From the ultraweak continuity of 7j on 2{~, we have that the linear functional A —
—{ fi(A),z ) (= a(A)) on A~ is ultraweakly continuous. If p* + ¢° is the decompo-
sition of p as the sum of an ultraweakly continuous and a singular linear functional,
then p" and p* are positive linear functionals on 2~ [9; Theorem 10.1.15] since p is a
state. Thus p*(I) < p(I) = 1 and p* < pU(I)~1p" (= p1). (If p*(I) = 0, let p; be any
normal state of ~.) With similar notation, we have that p™ < p}{. Both p; and p}
are normal states of ~. From the Christensen-Haagerup Principle, we see that, for
each A in 2™, and each unit vector z in H,

(A, 2)P < [InlP[0" (4% A) + p™(AAN € [Inl*[pr(A* A) + A (AA7)).

Since this inequality holds for each unit vector  in #, we have that, for each A in %,

(A < lnll*le1 (A" 4) + pL(AA")].

The third proof that we note, again proposed by Christensen and Haagerup,
follows directly from Proposition 2.3 of Haagerup’s [6] with a small amount of work.
We proceed as in the first proof of Theorem A to the point where i has been shown to
be bounded and extended (uniquely) to 7 on 2~ with the same norm as 7. We then
define the bilinear form V on 2~ x U~ with values in C by means of the equation

V(4, B) ={ ij(A),#(B") ),

and note that V is separately ultraweakly continuous with norm equal to ||5][?>. From
Haagerup’s [6; Proposition 2.3}, there are normal states p;, p2, 61, 62 on 2~ such that
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V(4, B) < IVI| (pr(A* A) + pa(44%) ) (01(B*B) + 2(BB*) ) ¥ <
<AIVI (p1(A"4) + pa(A4) + 01(B*B) + 02(BB") )

for all A and B in 221‘ To complete this proof of Theorem A, choose p to be
—(p1 + a32), p' to be §(pz + 01), and B* to be A. The drawback to this approach is
tha.t [6: Proposition 2.3] is proved by specializing the Christensen-Haagerup Principle
to [6; Theorem 1.1] which has a more difficult proof than Theorem B (even more

difficult than the proof Haagerup gives of his [5; Theorem 3.2]).
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