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FULL MULTIPLICITY ERGODIC ACTIONS OF COMPACT
GROUPS ON VON NEUMANN ALGEBRAS

FIACRE O'CAIRERE

1. INTRODUCTION

This paper considers the full multiplicity ergodic actions of the groups U(2),
SU(2) x B, and SO(3) x B on von Neumann algebras, where B is a compact abelian
group. An action « of a group G on a von Neumann algebra M is ergodic if the fixed
point algebra consists only of the scalars. Ergodic actions of compact abelian groups
have been completely classified in terms of bicharacters of dual groups by various
authors (e.g. [1], [9]).

The first major breakthrough in understanding ergodic actions of non-abelian
compact groups on von Neumann algebras was accomplished by the Finiteness The-
orem of Hgegh-Krohn, Landstad and Stgrmer [5]. They showed that if « : G —
— Aut(M) is an ergodic action, then the unique G-invariant faithful normal state
on M is a trace and the multiplicity of an irreducible representation = € G in M
is < dim7. In particular, M is a finite von Neumann algebra. They also showed
that M is hyperfinite. In fact M has to be a type I or type II algebra. The ergodic
actions on type I von Neumann algebras are the so called classical actions [12, Section
11]. This left open the problem of whether any non-abelian classical compact group
can act ergodically on the hyperfinite II; factor. Subsequently Antony Wassermann
[12] developed some general machinery for studying ergodic actions. Wassermann’s
Multiplicity Map Theorem {12, Theorem 17] and the associated multiplicity diagrams
play a crucial role in the study of ergodic actions. See section 2 for more details on
the general theory of ergodic actions of compact groups on von Neumann algebras.
In [14] Wassermann classified the ergodic actions of SU(2) (and hence SO(3)). He
showed that SU(2) (and hence SO(3)) can only act ergodically on type I von Neu-
mann algebras. In particular, SU(2) (and hence SO(3)) has no ergodic actions on the
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hyperfinite II; factor.

For an ergodic action « : G — Aut(M), the crossed product is type I with atomic
center (see [12, Corollary 1 to Theorem 4]). An important class of ergodic actions
are the full multiplicity ergodic actions. These are the ergodic actions for which the
crossed product is a type I factor. The expression “full multiplicity” is used because
an ergodic action « : G — Aut(M) is a full multiplicity ergodic action if and only if
every T € (G appears with maximum (full) multiplicity dim 7 in M [12, Theorem 15].
In [13] and [6] a theory is developed for full multiplicity ergodic actions of non-abelian
compact groups which parallels the classification theory of ergodic actions of compact
abelian groups. There it is shown that full multiplicity ergodic actions are classified
by cocyles and bicharacters of the group dual, with analogues of the non-degeneracy
criteria for the action to be on a factor. The quantum Yang-Baxter equations appear

as a consequence of the bicharacter relations [13, Lemma 26].

In this paper we show that every full multiplicity ergodic action of U(2) is induced
from a full multiplicity ergodic action of a maximal torus (Theorem 2). We show that
every full multiplicity ergodic action of SU(2) x B is induced from a full multiplicity
ergodic action T x B (Theorem 1(a)). In particular, every full multiplicity ergodic
action of SU(2) x T” is induced from a full multiplicity ergodic action of a maximal
torus. Consequently U(2) and SU(2) x B have no full multiplicity ergodic actions on
a factor. We also show that SO(3) x B has no full multiplicity ergodic actions on
a factor (Theorem 1(b)). In [14] and [15] Wassermann has obtained results on full
multiplicity ergodic actions of the groups SU(2),SO(3),SU(2) x SU(2) and SU(3).

The SU(2) x B and SO(3) x B cases will be dealt with by an application of the
commutation relations between the fundamental unitary eigenmatrices. In the U(2)
case we obtain an ergodic action of the finite covering group SU(2) x T (this is the
finite cover approach) and determine the possible multiplicity diagrams which will be
very tractable because of the constraints. We then pass to a semidual action and use
the method mentioned in the SU(2) x B case above.

2. GENERAL THEORY

In this section we discuss some general theory of ergodic actions of compact
groups on von Neumann algebras. Let G be a compact second countable group.
All integrals will be with respect to Haar measure. An action of a group G on a
von Neumann algebra M is a group homomorphism « : G — Aut(M) such that
9 — ay(z) is o-weakly continuous for z € M. The fixed point algebra {z € M :
: ag(z) = 2, Vg € G} is denoted by M. The action « is ergodic if the fixed point
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algebra consists only of the scalars, i.e. M = Cl,.

Let M be o-finite von Neumann algebra. Let & : G — Aut(M) be an action.
Let G be the equivalence class of irreducible unitary representations of G. For 7 € G,
let Vx be the representation space of 7 and define

Er(z) =/C;dim1r'l‘r7r(y)a,(a:)dg, reEM.

The spectral subspace My corresponding to 7 is defined to be the linear span of all
the G-invariant subspaces of M isomorphic to V,. E, is a projection onto My which
is o-weakly closed and My N M, = {0} for 7 # v. M is the o-weak closure of the

direct sum of its spectral subspaces, i.e. M = @ M. Let ¢ be a faithful normal
reG

state on M and define n(z) = [ p(a,(z))dg, 2 € M. 7 is a G-invariant faithful
normal state on M and we can defire a G-invariant inner product on M by setting
(z,9) = n(y*z). M, is orthogonal to M, for © £ v. M, is the o-weak closure of
a direct sum of pairwise orthogonal G-invariant copies of 7, and the multiplicity of
7 in M is defined to be the maximum number of pairwise orthogonal copies of 7 in
M. An ergodic action & : G — Aut{M) is called a full multiplicity ergodic action
if and only if every = € G appears with maximum (full) multiplicity dim# in M (see
[12, Theorem 15] for equivalent conditions).

Let H be a closed subgroup of G, and let & : H — Aut(M) be an action of H
on a von Neumann algebra M. We define the induced algebra as

indgigM = {f € L®(G, M) : f(gh) = a;'(f(g)) h€H, geG},

with the induced action inda of G given by left translation. See [7], {10], or [12] for
more details on induced actions.

If a : G — Aut(M) is an action, then define the crossed product by MxG =
= (M® B(L*(G)))*®44* where ) is left translation on L%(G). Let o : G — Aut(M)
be an ergodic action. From [12, Corollary 1 to Theorem 4] we have M xG = @ B(H,).

Let e; be a minimal projection in B(H;) and let e = Ze.-. Following [12, Section 8]

we set M1 = e(M ® B(L?(G)))e and define the pertu;bed action ¢’ to be the action
of G obtained by restricting & ® Ad) to M;. We have that M = I (1< ng )
Let e1,e3,e€3,. .. be the minimal projections in M‘f' and set ¢; = Tr(e;), 0 < ¢; < 0.
Let m;; () be the multiplicity of 7 € G in ;M ¢; and extend

M:G— M, (2)

™ = (my;(7))
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additively to a map M : R(G) — M,(Z), where R(G) is the representation ring of
G. If # € R(G), then the matrix M(x) is called a multiplicity matrix. The follow-
ing Multiplicity Map Theorem of Wassermann is fundamental. It provides powerful
product formulas for the multiplicities of spectral subspaces. See [12, Theorem 17]

for the proof.

MULTIPLICITY MAP THEOREM (WASSERMANN). (a) M : R(G) — M,(Z) is
a ring ¥-homomorphism, i.e. M(r ® v) = M(m)M(v) and M(¥) = M(xn)* for any
7, v € R(G), where T is the conjugate representation to 7.

(b) M(7)¢c = dimwc for all 7 € R(G), where ¢ is the vector (¢1,¢,...)%, i.e.
Z mix(m)er = dimwc;. This equation s called the multiplicity matrix equation.

k

We also have that the action o : G — Aut(M) is equivariantly isomorphic to the
action of G obtained by restricting o’ to the algebra e, M;e; for some e;.

Let 7 be any representation of (G. There is an associated multiplicity diagram
for 7 [12, Section 10].

3. FACTS ABOUT COMPACT GROUPS

In this section we gather some information on the compact groups which we will

be looking at later on. We denote the group 2 x 2 unitary matrices with determinant

SU(2) = {(_‘% g) laf? + |87 = 1}.

Denote the circle group by T = {z € C: |z| = 1}. The only proper closed subgroups

one by

of T are the finite cyclic subgroups. Let 7, be the m + 1 dimensional irreducible
representation of SU(2), and let xx, k£ € Z, be the irreducible representation of T
such that xx(z) = z*. Define Ym,k = Trn ® Xk. This is an irreducible representation
of SU(2) x T and any irreducible representation of SU(2) x T is of this form. Denote
the group of 3 x 3 orthogonal matrices with determinant one by SO(3). There is a
double cover & : SU(2) — SU(3), this is a group homomorphism with kernel {1, -1},
the center of SU(2). There are nine types of closed subgroups of SU(2) (unique up
to conjugation) [14, page 316]. The only non-trivial closed normal subgroup of SU(2)
is {1,-1} [4, page 136]. SO(3) has no non-trivial closed normal subgroups. The
7m € SU(2) which give irreducible representations of SO(3) are those for which m is
an even integer. Note that
2m

T Q Ty, = @w,._m+2j for r 2 m.
j=0
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Denote the group of 2 x 2 unitary matrices by U(2). See {2], (3], [11], or [14] for more
details on the above.

4. FULL MULTIPLICITY ERGODIC ACTIONS OF SU(2) x B AND SO(3) x B

Let B be a compact abelian group. In this section we show that every full
multiplicity ergodic action of SU(2) x B is induced from a full multiplicity ergodic
action of T x B (Theorem 1(a)). In particular, every full multiplicity ergodic action of
SU(2) x T" is induced from a full multiplicity ergodic action of a maximal torus. We
also show that SO(3) x B has no full multiplicity ergodic actions on a factor (Theorem
1(b)). First some notation. If & : G x B — Aut(M) is an action then define

£:G— Aut(M) g o)
B:B — Aut(M) b aq

Note that G acts on MP via €. Let G be SU(2) or SO(3). If ¢ : G x B — Aut(M)
is a full multiplicity ergodic action, then for § € B, 7y ® 6 has a unitary eigenvector
us € M such that a(,)(us) = 6(b)us. Z(M) will denote the center of M.

LEMMA 1. (a) If o : G X B — Aut(M) is a full multiplicity ergodic action, and
ug is as above, then MP and {u; : § € B} generate M as a von Neumann algebra.

(b) The restrictions of the automorphisms Adu;s to Z(MP) define an action of
B on Z(MP) commuting with the action of G.

Proof. (a) By [12, Corollary to Theorem 14] we have that M, _ gs, (where & is
the trivial representation of B) and My,gs generate M. However My, g5 C M?
and Mz,@s = M®u; since a(,3)(2) = §(b)z implies that zu; € M®. Furthermore
M* C MP and this completes the proof of (a).

(b) Notice that Adus (restricted to Z(M?P)) commutes with Adu,, € B, since
the commutator ujufusu, € MP commutes with Z(MP). |

In the following Lemma we consider G-equivariant automorphisms of L>®(G/H),
where H is a closed subgroup of G, G acts by left translation on L®(G/H), {r)
denotes the subgroup generated by », Ng(H) denotes the normalizer of H in G, and
C(G/H) is the C*-algebra generated by the spectral subspacs of L®(G/H). We show
that any G-equivariant automorphism 8 of L= (G/H) is actually right translation by
some element in Ng(H).

LemMma 2. Every G-equivariant automorphism 8 of L*(G/H) has the form
8(f)(zH) = f(zrH), Vf € C(G/H), for some r € Ng(H). Furthermore, if K is the
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subgroup (r)H, then K C Ng(H) and 6(f) = f, ¥f € C(G/K). Notice that r is
uniquely determined up to its class in the Weyl group W = Ng(H)/H.

Proof. C(G/H) is thev C*-algebra generated by the spectral subspaces of
L*®(G/HY with left translation. Thus # € Aut(C(G/H)) and we have a homeo-
; morphism T"of G/H such that

6(f)(aH) = f(T~(=H)), Vf € C(G/H), z €G.

Since @ commutes with left translation, we have that 8(f)(zH) = f(zrH), for rH =
= T7Y(H), and T~'(2H) = zrH for all z € G. Notice that for b € H, rH =
=T Y (H)=T"*(hH)= hrH,so that + *Hr C H. Also " H = T(H) = T(hH) =
= hr~1H, so that rHr=! C H. Thus rH+r~! = H and so r € Ng(H). [ |

If we have two actions & : G — Aut(M) and as : G — Aut(N), then we shall
write (a1, G, M) ~ (a3, G,N) whenever M and N are equivariantly isomorphic.

THEOREM 1. (a) Every full multiplicity ergodic actior of SU(2)x B is induced
from a full multiplicity ergodic action of TxR. In particular, every full multiplicity
ergodic action of SU(2)x T® is induced from a full multiplicity ergodic action of a
maximal torus.

(b) SO(3)x B has no full multiplicity ergodic actions on 2 factor.

Proof. (a) Let o : SU(2)xB — Aut(M) be a full multiplicity ergodic action.
Thus £ : SU(2) — Aut(MP) is a full multiplicity ergodic action and so by [14,
Theorem 2],
- (€,5U(2), MP) (2, 8U(2), L2(SU(2)),

where ) is left translation. Let 45 be as in Lemma 1. From Lemma 1 we see that
Adus € Aut(MP) commutes with £, and also that Adus commutes with Adu,, 7 €
€ B. Set §; = WoAdugo ¥, Thus f; commutes with left translation on L*® (SU(2)),
so by Lemma 2, with H = {1}, we get that 85(f)(z) = f(zrs), Vf € C(SU(2)), for
some 75 € SU(2). Also rgr; = r,7; since 65 commutes with 8,. Let K be the abelian
subgroup generated by {rs : § € B}. Hence 6;(f) = f for f € L*(SU(2)/K). Thus
¥=1(L*(SU(2)/K)) commutes with u; and M? and so by Lemma 1

¥~HL®(SU(2)/K)) C Z(M).

Identifying L*°(SU(2)xB/K x B} with L*(SU(2)/XK) and using [10, Theorem 10.5]
and the properties of induced actions [12, Theorem 5], it follows that « is induced
from an ergodic action of K xB. However K x B is conjugate to a closed subgroup
of Tx B since K is abelian. Thus after inducing in stages {12, Theorem 5], & will be
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induced from an ergodic action of TxB. Using [12, Theorem 5(b) and Theorem 15],
it follows that « is induced from a full multiplicity ergodic action of Tx B.

(b) Let o : SO(3)x B — Aut(M) be a full multiplicity ergodic action. Let us be
as in Lemma 1. Then by Lemma 1, us and M? generate M. SO(3) acts ergodically
with full multiplicity on M” and so by [14, Theorem 6},

(E, SO(3),MB) ~ indH1so(3)End(V),
where H = {1} or D3. Therefore
(€,50(3), Z(MP)) X1, SO(3), L= (SO(3)/ H)).

Consider Adu; € Aut(Z(MP*)). Using 85 as in (a) above, it follows from Lemma 2
that
85(f)(=H) = f(ers H) Vf € C(SO(3)/H),
for some r5 € Nso(zy(H). We get rsr, H = rprs H because 6; commutes with 6. Let
K be the subgroup generated by H and {rs : § € B}. Then K C Nsogsy(H). K #
# S0(3), since otherwise H is normal in SO(3) and so H# = {1} which implies that X is
abelian, and this is a contradiction. As in (a) above, 85(f) = f for f € L*(SO(3)/K)
80
v~H(L*=(SO(3)/K)) C Z(M).

Thus Z(M) contains more than the scalars and so M cannot be a factor. [ ]

CoROLLARY 1. SU(2)x B has no full multiplicity ergodic actions on a factor.

Proof. Use Thereom 1(a) and [12, Thereom 5(¢}]. |

5. FULL MULTIPLICITY ERGODIC ACTIONS OF U(2)

In this section we show that every full multiplicity ergodic action of U(2) is
induced from a full multiplicity ergodic action of a maximal torus (Theorem 2). First
we will prove the following lemma which appears in the introduction of [12]. Recall
the definition of m;;(7) from section 2.

LEMMA 3. If 7 € G, then my;(r) € dimwmin(e;ife;, ¢ /e;) < dimm. In partic-
ular, if = is a one dimensional representation, then m;;(x) = 1 implies that ¢; = c;
and therefore mi(7) =0 = m,j(x) for all k # j, r # <.

Proof. By the Multiplicity Map Theorem [12, Theorem 17] we have that

(1) Z mix(7)er = dimwe;.
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Therefore m;;(7) € dim#(c;/¢;). Similarly
(2) 3" mjx(Fex = dime;,
k
so that my;(7) < dimx(c; /¢i). Hence my;(n) < dimn(c;/¢;), and we have that
3) m;;(7) € dim 7 min(c;/¢j, ¢5/ci) < dimm.

If 7 is a one dimensional representation, then by (3) above, my;(7) = 0 or 1. If
m;;(m) = 1, then by (3) above, ¢; = ¢;. Thus by (1) above, mix(7) = 0, for & # ;.
Also since mj;(7) = 1, we get by (2) above that m;(T) = 0, for r # i, and so
myi(n) =0, for r # 4.

TuEOREM 2. Every full multiplicity ergodic action of U(2) is induced from a full
multiplicity ergodic action of a maximal torus.

Proof. Let ¢ : U(2) — Aut(M) be a full multiplicity ergodic action. There is a
group homomorphism 4 : SG(2)x T — U(2) which takes (g, z) to zg. Define & = g0 4.
Then by [11, page 87] @ : SU(2)xT — Aut(M) is an ergodic action with spectral
decomposition @ (M + 1)Yme.

m4-k=even

We will show that the set of nodes I' of the multiplicity diagrams [12, Section 10]
consists of only two nodes of equal valency. The multiplicity diagrams for 71,0 and
Yo,1 will be as follows

¥1,0 diagram Yo, diagram

Recall the definition of o/ : SU(2)xT — Aut(M;) from section 2. From the
remark after the Multiplicity Map Theorem in section 2 we see that mji{y1,1) = 2
for some node ¢ € I' (since v;,1 appears with multiplicity 2 in a). For convenience of
notation we denote this node by 1 (i.e. we let ¢ = 1). Therefore by the Multiplicity
Map Theorem [12, Theorem 17], since ¥5,1®71,0 = 71,1, We get

> mu(r0,)me(v10) = 2.
kel

Using Lemma 3, let 2 be the unique node in I' such that mi2(ys,1) = 1,andsoca = &1,
Notice that nodes 1 and 2 are not the same node since my1(70,1) # 1, (since g 1 does
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not appear in ). We have ma1(71,0) = 2 = m12(71,0), and mie(7y1,0) = 0 = me1(71,0),
for k # 2, by the Multiplicity Map Theorem [12, Theorem 17]. We also have

Z mk(71,0)me1(v0,1) = 2,

ker
so that m2i(v0,1) = 1 and mz1(70,1) = 0 for k # 2. Consequently, if we let 7 =
= 71,0 ® 70,1, then My (7) = 0 = my(7), for k& # 2, and mor(7) = 0 = mya(7), for
k # 1. Hence by the r-connectedness of the multiplicity diagram for = [12, Section
10], we see that I" consists only of the nodes 1 and 2 as claimed.

Let p be the permutation (12) so that p(1) = 2 and p(2) = 1. We denote the

pairwise orthogonal minimal projections in M¢ " by e1, eg, s0 that M = Cey + Ces.
As in [14, Case VIII], we can find a 7; o unitary eigenmatrix [12, Section 6] A in

M3(M3) such that
a b
(5 1)

and ae; = ep;)a, be; = ey(i)b. Also we have 7p,1 eigenvectors u; € e;Miep;), such
that u;uf = ¢; = u;(,-)up(,-). Let 4 = u; + uz. Then u is a 7,3 unitary eigenvector in
M, such that ue; = ey(;yu. Notice that by using the stable duality of o’ [12, page
299] and [12, Theorem 14], the elements a, b, u and Mf’l generate M;. We have

(1) (u®1)A(v*®1) = LA,

and the commutator
(u®1)A(u*@1)A* = L,

()

Set k = kiey + kaea (where the k; are scalars) and similarly for 5, u,v. Using the

for some L € Ma(MZ'). Let

four equations in (1) above, we get uau* = ka — nb*, ubu* = kb + na*, and v; =
= kp(s)) —#i = Tp(7) (which we denote as v = p(k*), u = —p(n*)), since

{eia, eia*, e;b,ed*, i =1,2}
spans the eight dimensional subspace
My, o =My ea®eaMy, e,

and so is linearly independent. Thus

L= (—pfn‘) p(:*))’



78 FIACRE O'CAIRBRE

and L = L;(e;®1) + Ly(e2®1), where

[k om _ k1 n
Ll"(-ﬁs k—z)‘(—m m)

Similarly for L;. The commutation relations between a and M‘f' (and between b and

Mi") are captured in the following definition;
O(z) = A(z®1)A", =€ MZ.

Notice that & : M — Ma(M¢') and &(e;) = ep(i)®1.

The strategy will be as follows: We have some freedom in the choice of A. We
want to transform A by multiplying A on the left by some unitary V € Ma(M¢') so
that the following three conditions are satisfied.

STEP (1): &' = &, where &'(z) = A'(2®1)A™, z € M, and A' =V A.

STEP (2): A’ is a 7, o unitary eigenmatrix of the same form as A, i.e.

, a V¥
'A = _blt alt "
STeP (3): L is diagonal, where L' = (u®1)A'(v*®1)A™ and L' = L{(e1®1) +
+L5(e2®1). We denote L’ by
kl ’7!
V= (u’ V’) ’

where k' = kie; + kheq, etc. as before.
We will then complete the proof of the Theorem by the following step:

STEP (4): We will show that Step (3) implies that a’a’™, b, a’b'* etc. are
non-scalar central elements in M;. We will use these central elements to exhibit
an equivariant copy of L*°(SU(2)xT/T?) inside Z(M,), and the statement of the
Theorem will then follow from [10, Theorem 10.5].

We now tackle Step (1).

STEP (1): &'(z) = VA(z ® 1)A*V* = V&(e)V* = VV*&(z) (since MY is
abelian and &(z) is diagonal)= &(z).

STEP (2): A’ is clearly a 71,0 unitary eigenmatrix. In order that A’ be of the
same form as A, one can check that we need V to be a unitary of the form

V—( v11 12 )
—p(viz) p(viy)/’
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where v1y = v11,1€1 + v11,2¢2 and p(v11) = v11,2e1 + v11,1€2 etc. Let V = Vi(e1®1) +
+V2(e2®1), so that

V111 V121 V11,1 V12,1
vi={ )= _
—v12,2 V11,2 “P(‘Ulz,1) P(’Un,l)

—_ 0 i
Notice that V| can be any 2x2 unitary matrix, and that Vo = JViJ for J = ( ; 0) ;

STEP (3):
L'=(u®)VA* @ 1)A*V* = p(V)(u® 1)A(u* @ 1)A*V* = p(V)LV*.
This gives the relation between L’ and L, and we get
Ly = VoL Vi = IVLJ L, V;.
Using the fact that J2 = 1, we get
JL = V(L)W'

0
Notice that L) is diagonal if and only if JL! is of the form ( g) Notice that
q

J,Vi, L} and L; are all unitary. Consequently we can make L} diagonal if we can

prove the following claim:

Cram: If R € U(2), then there is a Y € U(2) such that YRY* has zeros on the
diagonal.

Proof of Claim: We start by observing that the matrix Y RY"® will have a zero in
the first diagonal entry if and only if

r11yE + (Fi2 + r21)yiye + r22y3 =0,

where R = (ry;), and (y1,y2) is the first row of Y. This quadratic equation always
admits a solution with |y1|? + |y2|2 = 1. This determines the first row of Y and the
second row of Y is then uniquely specified up to a scalar multiple by the unitarity
condition on Y. We have thus found the required unitary ¥ and this completes the
proof of the claim.

This completes the proof of Step (3). We now move on to Step (4).

STEP (4): L} is diagonal and so 5’ = 0. Therefore ua’u* = ¥’a’ and ub'u* = k'¥’,
where k'k™ = 1. Consequently, a’a’* commutes with u. However a’,%,u and Mf‘l
generate Mj, and so d’a™ € Z(M,), since a’a’™ commutes with all these generators.
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For convenience of notation we will drop the ’ and from now on we will write a instead
of a', etc. Notice that aa* is not a scalar by {14, Theorem 3], since A’ is a 71,0 unitary
eigenmatrix. Indeed if we let X be the spectrum of the unital abelian C*-algebra
generated by a and b, so that we may regard a and b as functions on X, then the map

a(z)  b(z) )

x =500, == (50w

is a homeomorphism and the von Neumann algebra generated by a and b is equiv-
ariantly isomorphic to L®(SU(2)). Similarly bb*,ab* and a*b are non-scalar central
elements in M;. Define z = ab* + a*b, y = i(ab* — a*}), z = aa* — bb*. Let N
be the von Neumann algebra generated by the self-adjoint elements z,y,2. Notice
that N C Mfl’°1}, so that SO(3) acts on N. We see that (z,y,z) is a commuting
self-adjoint basis for 73 in N, with 22 + y® 4+ 2% = 1, and so by [14, Lemma 13]

(e!,80(3), N) £(3,50(3), L*(SO(3)/T)).

Therefore
(o/,SU(2), N) ~ (,8U(2), L=(SU(2)/T)),

and so we have an equivariant copy of L®(SU(2)xT/T?) inside Z(M;). Thus by
[10, Theorem 10.5] o’ 1s induced from an action of the maximal torus T2, and so is
a. Therefore ¢ is induced from an action of a maximal torus of U(2). Using [12,
Theorem 5(b) and Theorem 15], it follows that ¢ is induced from a full multiplicity
ergodic action of a maximal torus of U(2). n

CoROLLARY 2. U(2) has no full multiplicity ergodic actions on a factor.

Proof. Use Theorem 2 and [12, Theorem 5 (¢)]. [ ]
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