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1. INTRODUCTION

For two bounded operators A and B on a Hilbert space H with the kernel condi-
tion ker A C ker B, we define the quotient [B/A] by Az — Bz, = € H {7]. A quotient
(of bounded operators) so defined is what was introduced by Dixmier [3] as a “single-
valued J-operator” and also by Kaufman [12] as a “semiclosed operator”, and several
characterizations of it were given. It was proved in [12] that the family of all quotients
contains all closed operators and is itself closed under addition and multiplication.
Employing techniques due to Douglas [4] and Fillmore-Williams [5], we showed [7]
explicit formulae for computing the quotients which correspond to the sum and the
product of two given quotients, and also those for constructing the quotients which
represent the adjoint and the closure of a given quotient if they exist.

In this paper we introduce the weak adjoint [B/A]* for every quotient [B/A],
which coincides with the usual adjoint [B/A]* if the domain AH := {Az : z € H}
of [BfA] is dense in H. We show some relations between quotients and their *-
-adjoints, which extends results known about densely defined closed operators and
their adjoints.

Unless specially stated otherwise, all operators are assumed to be bounded linear,
defined on a fixed Hilbert space H.

2. WEAK ADJOINTS OF QUOTIENTS

For a quotient [B/A] (with the condition kerA C kerB) we define a set G(4, B):=
:= {(Au, Bu); u € H } in the product Hilbert space Hx H. Then G(A, B) is a graph,
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which just corresponds to the quotient [B/A]. To introduce a (weak) adjoint of [B/A],
we put

G(A,BY* = {(z,y); Bz = A"y, y € (ker A*)* },

where (ker A*)- means the orthogonal complement, of ker A* in H. The set G(4, B)*
is then a graph again, so that we define [B/A]* as the corresponding mapping. When
AH is dense in H, we see that (z,y) € G(4, B)* if and only if (z, Bu) = {y, Au) for
all u € H ({:,-) is the inner product of H), so that [B/A]* coincides with the usual
adjoint [B/A]* of [B/A]. By definition the domain of the weak adjoint [B/A]* is
hence BX=1(A*H) := {z € H; B*z € A*H }. To see that this set is represented as
range of an operator, we employ techniques due to Douglas [4] and Fillmore-Williams
[5]. Let
R = (or Rav s =) (A*A + B*B)!/?,

and consider the equations
(2.1) XR=A and YR=B8.

Then since A*H C RH and B*H C RH [5, Theorem 2.2}, it follows from Douglas
majorizations theorem [4, Theorem] ([5, Theorem 2.1]) that those equations (or the
equivalent equations RX* = A* and RY* = B*) have solutions. With the assump-
tions ker X' D ker R and ker Y D ker R, the solutions are unique [5, p.259, Remark],
so that we then put X = A, and Y = B, respectively. On those operators we have
the following facts which were shown in {7).

LemMma 2.1 [7, pp. 430-431].
(1) AjA¢+ By By = Pg, the orthogonal projection onto the closure (RH)~ of RH.
(2) BXCD(A*H) = (1 - B,B})2H,

For convenience we write A, = (1 — B;B})"/2. Now consider the equation
(2.2) A*Z = B*A,.

Then since B*A,H = A*H N B*H C A*H, we obtain, again from Douglas ma-
jorization theorem, a solution of (2.2), which is uniquely determined under the con-
dition ker Z* O ker A*. Putting the unique operator Z = By, we have the corre-
spondence z = A,u — Byu =y, u € H for (z,y) € G(A, B)*. Hence we have
[B/A]* = [Bx /A]. 1t is clear that [B/A]* = [B/A]* if AH is dense in H. On the
X-adjoint of a quotient we have the following fact, which was shown in [7] with the
restriction that AH is dense in H.

LEMMA 2.2. (cf. [7, Theorem 4.1]). Let V; be the partial isometry obtained
from the polar decomposition Ay = Vy(A¥A,)'/? of Ay. Then
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(1) Bx = V; B}, so that
(2) [B/A)*(= [Bx/As]) = [VeBf /(1 — B.B})'/?].

Proof. It suffices to show (1). Since RA} = A*, RB; = B* and B} = By Pg, we
have

A*By = B*A, = B*(1 - BeBZ‘)l/z = RB}(Pr — BLB}',')”? -
= R(Pr — B{Be)"/*Bf = R(A5A1)"/*Bf = RAYV, B} = A*V,B;.

Hence A*(Bx — ViBy) = 0, that is, (Bx — V;B})H C ker A*. On the other hand,
by definition we have By H C (ker A*)*, and clearly Vi ByH C (ker A*)*, so that
(Bx — Vi B¥)H C (ker A*)L. Hence By — VeBf =0. [ |

Denoting by P4, the orthogonal projection onto (A, H )™, we proved the following
fact about the operator in {8].

LEMMA 2.3. [8, Lemma 2.2 (1)].
P4, = A2 4+ BBy =1 — BB} + B,V}V,B}.

Now concerning the successive ¥-adjoints of a quotient we have

THEOREM 2.4. Let [B/A] be a quotient. Then
(1) [B/A]** = [By/(1~ BxB})"/.
(2) [B/APO> = By /(1 - Bx B})'/?I* = [Bx /(1 By Bx)'/?].
(3) [B/AP > = [B/ AP

Proof. (1) Since [B/A]** = [By /A%, we have to show the identity (Ay)«
= (1 - BxB%)"? and (Bx)x = B%. From Lemma 2.3 Ra,.py = A2+ B} By
= Py,. Hence we can see that the unique solutions of the equations

XR4, By = A, and YRa,.By = Bx

with ker X D ker A, and ker Y D ker A, are X = A, and Y = By, respectively. Hence
we obtain the desired identites.
(2) Let = € ker (1 — By B%)'/2. Then by Lemma 2.3

AcBiz = (Pa, — BXBy)Y/?Btz = BX(1— BxBY)/?z = 0.

Hence B} z € ker A,. However, since ker A, C ker By, we also have Bk € (ker A, )*,
so that Biz = 0. Hence z = (1 — BxB%)z + BxBiz = 0. This implies that
(1 - BxB%)'/?H is dense in H. Hence we have [B/A]*** = ([B/A]**)*, which is
the first identity. The second identity can be obtained by a similar argument adopted
as in (1).
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(3) From (2) we have
[B/AP*** = [Bx /(1 Bk Bx)?].

By the definition of the *-adjoint of a quotient we can see that [By /(1—B% By )/%]* =
= [B% /(1 — Bx B%)'/?]. Hence by (1) we have the desired identity. [ ]

In [7] we introduced between two quotients [B/A] and [D/C] the relation [B/A] C
C [D/C] when G(A, B) C G(C, D), and then said that [D/C] is an extension of [B/A].
Note that a graph G(E, F) of a quotient [F/E] is the range of the operator (matrix)

E
(F 0) on H' := HxH. Hence by the Douglas majorization theorem we can see

the following
LemMMA 2.5. [B/A] C [D/C) if and only Iif there exists an operator X (on H)
such that A= CX and B = DX.

Applying the above lemma, we have
LemMa 2.6. [D/C] C [B/A]* if and only if B*C = A*D and DH C (AH)".

Proof. Let [D/C] C [Bx/A,]. Then we have C = A, X and D = B, X for some
operator X. Hence B*C = B*A, X = A*ByX = A*D, and DH C BxH C (AH)".
Conversely, if B*C = A*D and DH C (AH)™ then CH ¢ B*“(A*H) = A.H,
so that €' = A,Y for an operator Y. Hence A*D = B*{ = B*A,Y = A*B, Y, or

' A*(D — BxY) = 0. This shows that (D — ByxY)H C ker A*. By the assumption
DH C (AH)™, we can also have (D — BxY)H C (ker A*)1. Hence D — B, Y = 0,
which implies [D/C] C [By /AL). u

REMARKS
(1) Let us call [B/A] *-symmetric if [B/A] C [B/A]*. From the preceding lemma.

we see that [B/A] is *-symmetric if and only if B*A = A*B and BH C (AH)".
(2) The relation [B/A] C [D/C] does not imply [D/G]* C {B/A}*. We can deduce

the relation on the *-adjoint if we add the assumption CH C (AH)".

A quotient [B/A] is closed if its graph G(A4, B) is closed in Hx H. An (equivalent)
condition for closedness of [B/A] is that A*H + B*H (= Rav p«H [5, Theorem 2.2))
is closed in H [11, Theorem 1}].

Recall that A = AR and B = B;R for R = R4+ pg+. On a closed quotient we
have

THEOREM 2.7. Let [B/A] be a closed quotient. Then ker Ay C ker B, and
(1). [B/A) = [B:/Ad] = [B} /(Pa — Bx BE )]
Here P, is the orthogonal projection onto (AH)™.
2) [B/A]* = [Bx /(1 — B} Bx)!/?] = [B/AP**
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Proof. Since the operator R = R4« g+ has closed range, there exists an operator
R! called a generalized inverse of R [1, p. 321, Theorem 3] ({6, p. 48]) such that
Ay = AR' and B, = BR'. Hence from the kernel condition ker A C ker B of [B/A]
we obtain ker Ay C ker B;.

For (1), note that ker A, = (1 — V;*Vz)H. Hence we have By(1 — V}V;) = 0, that

18,
(23) BV}Ve = By.
Since A V;*V, = As, we then easily have
[B/A] = [Be/Ad] = [B. V] [ ALVE].
Further we can obtain the identities
AVE = (Pa — VeBf BeVi)? = (Pa — By BY)'/?

by a simple computation. Hence we have [B,V}*/A,V}*] = [B% /(P4 — Bx B%)Y/?.
For (2), from the definition of the X-adjoint we can see the identity [B% /(Ps—

—By B)M?]* = [Bx /(1- B% By )'/?), which is the first identity. The second identity

is clear by Theorem 2.4. ||

COROLLARY 2.8. A quotient [B/A] is densely defined and closed if and only if

(24) [B/A] = [B} /(1 Bx B%)'?] (= [B/A]*X).

REMARK. Put C = B} in the above identity (2.4). Then we have Kauf-
man’s representation of a densely defined closed quotient [B/A] (cf. [11; Theorem
2]): [B/A] = [C/(1 — C*C)'/?] with a pure contraction C, that is, a contraction C
satisfying ker (1 — C*C) = {0}. (see Proof of Theorem 2.4 (2).)

Following the definition of a closable operator [10, p. 165] we call a quotient
[B/A] closable if

Aup — 0, Bu,, — v for a sequence {u,} in H imply v = 0.

In [8] we showed several equivalent conditions for a quotient to be closable, one
of which was the condition [8, Lemma 2.3]

(2.5) ker Ay C ker By.



88 SAICHI IZUMINO

We also proved that then the closure {B/A]~ of [B/A] coincides with [B,/A,]. Recall
that A, = (1 — B5By)Y/?P4, and By = Bx P4, (e.g. Proof of Theorem 2.4 (1)).
Hence [Bx/A4] C [Bx /(1 — B Bx)/?], so that we have

[B/AY* C [Bx /(1 - B Bx)"/?] = [B/AP**.

Now we show equivalent conditions for closability of a quotient related to its
X_adjoints.

THEOREM 2.9 (cf. [8, Lemma 2.3]). Let [B/A] be a quotient. Then the following
conditions are equivalent.
(1) [B/A] is closable.
(2) [B/A] C [B/A]**.
(3) [B/A)* = [B/AP** (= [Bx/(1- B} Bx)"/%).

Proof. (1)¢»(2): Let [B/A] be closable. Then from {8, Lemma 2.3] we have
(2.5), that is, ker A; C ker By, as an equivalent condition. Hence we have the identity
BViVe = By (cf. (2.3), Proof of Theorem 2.7 (1)), so that we have [By/A;] =
= [BL/(Pa — By BL)?). Hence

[B/A] C [BJA]™ = [Bi/Ad C [B% /(1 — By B})"?] = [B/AP**.

Conversely, if (2) is assumed then there exists an operator X such that A = (1—
—By B%)'/?X and B = B4 X. Hence if Au, — 0, By, — v for a sequence {u,} in
H, then '
(1 - B:B, )2y = lim (1 - B Bx)"/*Bjun =
n—
= lim B} (1 — BxB})"/*Xu, = lim B Aup = 0.
Since By is a pure contraction (¢f. Proof of Theorem 2.4 (2)), we then have v = 0.

(1)(3): If we assume (1), then from (2.3) (and (2.5)) we can see (as an equiv-
alent condition)

(2.6) BY Bx = BBj.

Hence by Theorem 2.4 (2) we obtain the identity (3). If we assume (3), then A, H =
= (1 - BBx)'2H, so that A, H is dense in H, or P4, = 1. Hence by Lemma 2.3
we have (2.6), which implies (1). |

Let us call a quotient [B/A] singular if P4, B =0 (or P{, B = B) [7, p. 434] ([8,
P- 202]). Every quotient [B/A] is then decomposed as the sum [8, p. 203]([9, p. 285])

[B/A] = [Pa,B/A] + [P, B/A],
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where [P4,B/A] is its closable part and [P;}*B/A] is its singular part. For the *-
-adjoints of those parts we have

ProrosiTION 2.10.
(1) [Pa,B/A* = [B/A]***. ,
(2) [P4,B/A]* = [0/P4,), i.e., the restriction of 0 to Pa H

Proof. (1) The closure [Py, B/A]™ of [P4 BfA] is [B;V;V;/A] [8, Proposition
2.7). Hence we have

[(Pa,B/A] = ([Pa,BJA]7)* = [BVi Ve /Ad™ = [BeVi AV =
= [Bx/(Pa — By BY)"?* = [Bx /(1 — BE Bx)"?] = [B/A]**.

(¢f. Proof of Theorem 2.7 (1).)

(2) The domain of [Py, B/A]* is (P1, B)*("1(A*H), and we can see that the
set is identical to (A, H)™ = P4, H. The unique solution of A*Z = (P4, B)*P,, with
ker Z* D ker A* is Z = 0. Hence we obtain the desired identity. [ ]

3. THE PRODUCTS OF QUOTIENTS AND THEIR *X-ADJCINTS

For two quotients [B/A} and [D/C] the product [B/A][D/C] is defined. by
Cz — Dz = Ay — By.

Here the element z runs through D~1(AH), and y is an element such that Dz = Ay.
Hence the domain of the product is CD~Y(AH). With a similar argument as in
constructing the operator A, in the preceding section we can obtain an operator M
such that MH = D'I(AH ). We then have DMH = DD"Y(AH) = DH N AH, so
that the equation A

AX =DM

has a solution X. With the restriction ker X* O ker A we write X = N the operator
which is the unique solution of the equation. We now have the composition

CMu— DMu=ANu— BNu, u € H.

Hence [B/A][D/C] = [BN/CM] [7, Theorem 3.2]. (We remark that the operators
M and N defined as above can be replaced by any operators M’ and N’ respectively
which satisfy M'H = D~!(AH) and AN’ = DM’ [7, p. 430, Remark].)
Let us call a quotient [B/A] X-positive if B*A = A*B > 0. (For an operator
C, C > 0 means {Cz,z} > 0 for z € H.) On the product of a quotient and its
X-adjoint we have
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THEOREM 3.1. The products [B/A]*[B/A)] and [B/A][B/A]* are *-positive.

Proof. Let [By [A,][B/A] = [Bx N/AM), where M and N are operators satisfying
MH = B~Y(A,H) and BM = A,N. Then

(Bx NY*(AM) = N*BL AM = N*A,BM = N*A2N > 0.

Hence [B/A]*[B/A] is X-positive. Similarly we can see that another product is *-
-positive. [ ]

On the X-adjoint of the product of two quotients we have

THEOREM 3.2. Let [B/A] and [D/C] be quotients, and let D~ (AH) be dense
in H. Then

((B/AI[D/CTy* > [D/CI*[B/A}*.

Proof. Let M and N be operators satisfying M H = D~!(AH) and DM = AN.
Then by the product formula we have [B/A}][D/C] = [BN/CM]. Similarly, let U and
V be operators such that UH = B 1(C.,‘H ) and By U = C V. Then

[D/CY*[B/A]* = [Dx/Cy][Bx/As] = [DxV/AU).

Now what we have to show is the relation [BN/CM|* D [Dx V/A,U]. From Lemma
2.6 it suffices to prove the following two facts.

(1) (BNY(AU) = (CM)<(Dy V).

(2) DyVH C(CMH)".

For (1), since B*A, = A*By and D*C, = C*D,, we have

(BNY*(AU) = N*B*A,U = N*A*B, U = (AN)*(BxU) =
= (DMY*(CyV) = M*D*C,,V = M*C*DyxV = (CM)*(Dx V).

For (2), note that MH = D~1(AH) is dense in H, and that Dx H C (CH)~. Hence
DxVH C DyH C (CH)™ = (CMH)". n

When does the equality sign hold in the above theorem? We shall answer this
question afterwards in Theorem 4.3.

The next theorem gives conditions for a quotient to be *-normal, that is, for the
X_-adjoint of a quotient to be normal.

THEOREM 3.3. Let [B/A] be closable. Then the following conditions are equiv-
alent.
(1) ([B/A]*)*[B/A] = [B/A]*([B/A]*)*.
(2) By Bx = BxB%, i.e., By is normal.
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(3) A[Af + BLBL* = Py.

Proof. Since A, H is dense in H, we see that (1) is equivalent to
(1) [B/A*[B/A]* = [B/A]*[B/A*".
By Theorems 2.4, 2.9 and the product formula we have
[B/A}**[B/A)* = [BY/(1~ B B})"/*1[Bx /(1 ~ B} Bx)'/?] = (B} Bx /(1 - B} Bx)].

Similarly we have [B/A]*[B/A}** = [Bx B% /(1 — Bx B%)!/?]. Hence we can easily
see that (1’) is equivalent to (2). For the equivalence between (2) and (3), we first
note that from Lemma 2.1 (1)

ALA + By By = ViASAVE + ViBiB(Vy = ViPRV;' = ViV = Pa.

Hence (3) is equivalent to the identity By BY = B;Bj. Next since [B/A] is closable,
we also have B} By = ByBj ((2.6)). Hence we obtain (2) as an equivalent condition.
|
We call [B/A] *-normal if it is closable and one of (1)-(3) in the above theorem
holds. If [B/A] is densely defined and closed, then since [B/A]** = [B/A] (by
Corollary 2.8) we see that [B/A] is normal whenever it is *-normal. Likewise we
want to call [B/A] *-self-adjoint if it is closable and satisfies [B/A]** = [B/A]*.
From Theorem 2.9 a closable quotient {B/A] is X-self-adjoint if By is self-adjoint.
To deal with a quotient defined by two commuting self-adjoint (or normal) oper-
ators, we prepare the following lemma.

LEMMA 3.4. Let S and T be commuting self-adjoint (resp. normal) operators
with SH C TH. Then the unique solution X of the equation

TX =8, ket X* D kerT (= ker T)

is a self-adjoint (resp. normal) operator commuting with S and T.

Proof. 1t suffices to show the case for normal operaté)rs, because we can show
the case for self-adjoint operators, the more restrictive case, by an almost similar
argument. Let S and T be commuting normal operators. Then since T(XT ~TX) =
= ST ~ TS = 0, we see that (XT ~ TX)H C kerT. By assumption we also have
XH C (ker X*)* C (ker T)*, so that (XT — TX)H C XH + TH C (ker T)*. Hence
XT = TX. We also have XS = SX from S = TX. To see that X is normal,
first note that X* is defined as the natural extension of T*u — S*u (u € H), so
that X*H C (S*H)~ = (SH)~ C (TH)™ = (kerT)t. Next T(X*X — XX*) =
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=X*TX -TXX* = X*§ ~5X* = 0 by the Fuglede-Putnam theorem applied to the
identity XS = SX. Hence (X*X — XX*)H C kexrT. Further, since both XH and
X*H are subspaces of (ker T)* we conclude that X*X — XX* = 0, which implies
normality of X. [ ]

THEOREM 3.5. Let [B/A] be a quotient, and suppose that A and B are commut-
ing self-adjoint (resp. normal) operators. Then [B/A] is closable and *-self-adjoint
(resp. *-normal).

Proof. We prove the case for normal operators A and B only. Since 4, B and
R+, p+(= (A*A + B*B)Y/?) commute with each other, we see from the above lemma
that both A, and B, are normal operators commuting with A, B and Ra», p+. Using
those facts and the condition ker A C ker B, we can see that ker A4; C ker B,. Hence
[B/A] is closable. For the X-normality of [B/A] it suffices to observe that A* and
B* A, are commuting normal operators and that By is normal as the unique solution
Z of A*Z = B*A, with ker Z* O ker A. [ ]

4. SOME APPLICATIONS

In this section we show some extensions of known results, using *-adjoints of
quotients. The first application concerns the self-adjoint extension of a *-positive
quotient, which gives a quotient version of a theorem due to Ando-Nishio [1].

THEOREM 4.1 (cf. [1, Theorem 1]). Let [B/A] be a X-positive quotient. Suppose
that ker B*A C ker B and the quotient [B/(B*A)'/?) is closable. Then there exists a
densely defined * -positive self-adjoint extension of [B/A).

Proof. Let R = (B*A+ B*B)'/?, and let X, Y be the unique solutions of the

equations

XR=(B*A)Y?, ker X DkerR,

and

YR=2B, kerY DkerR,

respectively. Then (by [8, Lemma 2.3])

[B/(B*A)! %) C [B/(B*A)'/*]) = [Y/X].
Letting E = X*(B*A)Y/2 — Y*A, we have RE = (B*A)Y/2(B*A)Y/? — B*A = 0,
so that EH C ker R. Also, since both X*H and Y*H are contained in (ker R)*,
we have EH C (ker R)1. Hence E = 0, that is, X*(B*A)!/2 = Y*A. Further sin-
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ce (B*A)Y/2H C (XH)~, we have, from Lemma 2.6, {(B*A)!/2/A] C [Y/X]*. Hence

(B/A] = [B/(B*AY/"){(B*A)/?/A] € [Y/X)lY/X]* =
=[Y/X]Y*/(1 - YY)V = [YY*/(1 - YT¥)].

We can see that [YY*/(1 — YY*)] is densely defined and *-positive, and that it is
self-adjoint (e.g., by Theorem 3.5). [ |

Ota [18) proved that if a densely defined closable operator is nilpotent (resp.
idempotent) then its adjoint is again nilpotent (resp. idempotent). We show a similar
fact on quotients. We say that a quotient [B/A] is nilpotent (resp. idempotent) if

(4.1) BH C AH and [B/A]? C [0/1] (resp. [B/A]® C [B/A]).
It is easy to see that (4.1) is equivalent to

AX = B and X? =0 (resp. X2 = X)) for some operator X.

THEOREM 4.2 (cf. [13, Proposition 3.4]). Let [B/A] be nilpotent (resp. idempo-
tent). Then [B/A}* is again nilpotent (resp. idempotent).

Proof. Let [B/A] be nilpotent, and let AX = B, X? = 0 for an operator X.
Then
B*Bx =(AX)*Byx = X*A*Bx = X*B*A, = (X?)*A*A, = 0.

Hence by Lemma 2.6, [0/Bx] C [B/A]* = [Bx/A.]. Hence there exists an operator
Y such that By = A,Y and 0 = ByxY (Lemma 2.5). We can assume that Y is the
(unique) solution of By = A,Y with ker Y* O ker A,.

Then we can see Y2 = 0, so that [By /A,] is nilpotent.

Next, let [B/A] be idempotent, and let AZ = B, Z? = Z for an operator Z.
Then by a similar argument as taken in the nilpotent case we have B* By = A*By.
Hence with the fact Bx H C (AH)~ we have [Byx/Byx] C [B/A]* = [Bx/A,]. Hence
there exists an operator W such that By = A, W and By = B, W. We can assume
that ker W* D ker Ay. Then we get W? =W, which implies that [By /A,] is idempotent.
|

Schechter [14] proved that if S and T are densely defined closed operators on a
Hilbert space then
(8T = T*5*,

whenever the range ranT of T is closed and its codimension dim(ranT')* is finite. Our
last application is to show an extension of this result.
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TuEOREM 4.3 (cf. [14, Corollary 1]). Let [B/A] and [D/C) be quotients and let
D~'(AH) be dense in H. If DH is closed and dim(DH)1 < oo, then

([B/AI[D/C])* = [D/CT*[B/A]*.

Proof. From Theorem 3.2 we have only to show the relation ([B/A)[D/C])}* C
C [D/C)*[B/A)*. With the same notations as used in the proof of Theorem 3.2 the
relation is equivalent to

(4.2) (BNYCOY(CMY*H) C ALUH (= A B3 (CLH)).
Before we show (4.2) we want to prove the weaker relation
(4.3) (BNYCD((CMYH) C AH.

Let w € (BNY*-D)((CM)*H) or (BN)*w € (CM)*H. Then for (4.3) we have to
show B*w € A*H, or equivalently (e.g. [5, p. 259, Corollary 2)),

Bz, w)]
4.4 su M——’-—-— < 00
. (4.4) xGH,fg:#O ||Az]|

Now to make the above inequality more tractable, we put K = A~'(DH). Then
since DH is closed, we see that K is a closed subspace of H and H = K + K*+. From
the assumption dim(DH)* < oo, we see that dimK+ < oo; if we denote by Pp the
orthogonal projection onto DH and define an operator L from K+ into (DH)* by
Lv = (1—-Pp)Av, v € K*, then L is one to one, so that dimK+ < dim(DH)*. Note
that AK = AHNDH = ANH. Hence

AH = AK + AK* = ANH + AK* = {A(Nu+v);uc Hive K1}
From the condition ker A C ker B, we can also see that
BH = {B(Nu+v);u€ Hyve K*}.

Hence the ineqality (4.4) turns into the following

(4.5) sup  [((BNu+ Bv) u)|

<co(ue HveK%).
A(Nutv)zo  [[ANu+ Av|| ( )

Since AK* is finite-dimensional, we shall obtain (4.5) if we prove the following two
inequalities.

(4.6) [ {BNu,w) |< M[|ANu|| for u € H.
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4.7) | (Bu,w) |< Aol}Av|| for v € K+

Here A; and A, are positive constants independent of « and v, respectively.
For (4.6), we first prove the relation

(4.6") (BNY*=D((CM)*H) c (BNYD(CD'DMY* H).

Here D' is the generalized inverse of D such that DDt D = D and D! D is the orthog-
onal projection onto (ker D)1 (e.g. [6, p. 47-p. 48]). Since D'DMH C MH, we see
that CD'DMH C CMH. Hence there exists an operator X such that CDIDM =
= CMX. From the condition ker C C ker D and the fact C(D!DM — MX) = 0,
we then have D(DIDM — M X) = 0, that is, DM = DMX. Hence we also have
AN = AN X. From the condition ker 4 C ker B we further have BN = BNX. Hence
(since [BN/CM]* = [(BN)x /(CM),]), we have

(BN)*(CM), = (BNXY*(CM), = X*(BN*(CM), =
= X*(CM)*(BN)x = (CMXY(BN)x = (CD'DM)*(BN)x.

Hence (CM)H C (BNY<-1U((CDtDM)*H), which implies (4.6’). Now from (4.6°)
we can find a vector z € H such that (BN y*w = (CD'DM)*z, and we have

| (BNu,w) |=| (u,(BN)*w) |=| (s, (CD'DM)*z) |=
=| (CD'DM})u,z) [<[| €D || - | DMu || - | 2] .

Putting Ay =[| CD! || - || z ||, we have (4.6).
For (4.7), since K is finite-dimensional we can see that the mapping Av —
— By, v € K* is bounded. Hence there exists a positive constant A, satisfying (4.7).
Finally we deduce (4.2) from (4.3). Let w € (BN)*(~D{((CM)*H), so that, let
w = A,h for some h € H. Then

(BN)*w = (BN)*Ah = N*B*Ah = (ANY* By h =
= (DM)*Byxh = M*D*Byh.

By assumption we have (BN)*w € (CM)*H, so that there exists an element k € H
satisfying (BN)*w = (CM)*k. Hence we have M*D*Byh = M*C*k. Since we can
assume M* = M, and since M H is dense in H, we then have D* B, h = C*k. Hence
Byxh € D*-1)(C*H) = C,H, so that h € B;!(CiH). Hence we have w = Ah €
€ A B (C.H), which implies (4.2). ]
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