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AN INDEX THEOREM FOR TOEPLITZ OPERATORS

GERARD J. MURPHY

1. INTRODUCTION

The theory of Toeplitz operators on the unit circle T has been generalised in
a number of different directions in the past two decades. One direction involves
replacing the open unit disc and its boundary T by a suitable domain in C* with
a nice boundary, and considering Toeplitz operators with symbols defined on this
boundary [2], [20], [21]. In another direction, the theory of Wiener-Hopf operators
(these are unitarily equivalent to Toeplitz operators) has been generalised successfully
[14]. A third approach takes as its starting point the key role played in the classical
theory by the fact that the group T is connected and its dual Z is totally ordered.
This point of view was taken by the author in [16], [17], and [18], where a generalised
theory of Toeplitz operators is developed. For related material see [6], [7], [10], and
[23].

Let ¢ denote a continuous complex-valued function on T, and let 7}, denote the
corresponding Toeplitz operator on the Hardy space H2. The Gohberg-Krein index
theorem ([9], [15]) asserts that T, is a Fredholm operator if and only if ¢ does not
vanish, and that in this case the Fredholm index of 7}, is equal to minus the winding

number of ¢ about the origin, in symbols,
ind(7,) = —wn(p).

We prove an analogue of this result for our more general classes of Toeplitz operators.

A difficulty that arises in this context is that there may be no Toeplitz operators
of continuous symbol that have non-zero Fredholm index. This, however, is not a
defect of the Toeplitz theory but rather reflects the inability of ordinary Fredholm
theory to provide an index suitable for all contexts, as has been found in many other
situations. To surmount this difficulty we use a more powerful index theory due to
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M. Breuer [3], [4]. This is defined relative to von Neumann algebras, and requires
the construction of an appropriate representation for the Toeplitz operators. This
involves the introduction of a suitable topological space, and a certain measure on it,
to which we apply the Murray-von Neurnann group measure construction.

The paper is organised as follows: In Section 2 we recall the basic definitions
and results of Toeplitz operator theory over connected groups, and establish an index
theorem in a special simple case. In Section 3 we introduce the constructions needed
for our general index theorem. In Section 4 we demostrate it.

2. TOEPLITZ OPERATORS ON CONNECTED GROQUPS

We begin by recalling some definitions and results from [16] which we shall need
in the sequel. An ordered group is a pair (G, ), where G is a (discrete) abelian
group, and < is a linear (=total) order relation on G which is translation-invariant,
that is, if z < y, then ¢ + 2z < y + 2, for all z,y,2z € G. Obvious, and important,
examples of ordered groups are the additive subgroups of R, with the order induced
from R. If G1, G are ordered groups, so is the product G; x G, when endowed with
the lexicographic order: (z1,z2) < (y1,%2) if 21 < 31, or f ;3 = g and z5 < yo.
Ordered groups exist in great abundance, for if G is any abelian group, it admits an
order relation making it an ordered group if and only if it is torsion-free [13]. It is
well known that G is torsion-free if and only if its Pontryagin dual G is connected
[19, p. 47). The fact that an ordered group has a connected dual plays an important
role in the theory.

Let G be an ordered group, and denote by G7 its positive cone, that is, the set
of all z € G such that z > 0. Denote by m the normalised Haar measure of G. If
2 € G, the function

er:G—-T, 5 y(z),

is, of course, a homomorphism, and it is well known that the family of elements
(ez)zec forms an orthonormal basis for the Hilbert space Lz(é, m). The Hilbert
subspace of L?(G, m) having orthonormal basis (€;),eq+ is denoted by H%(G), and
called the Hardy space relative to G. It exhibits analytic-type behaviour in the sense
that if ¢ and % belong to H2(G), then ¢ is constant almost everywhere. Denote by P
the orthogonal projection of L%(G,m) onto H*(G). If p € L>(G, m), the (bounded
linear) operator T, on H2%(G) is defined by

T,(f) = P(¢pf) (f € H*G)).

We say that T, is a Toeplitz operator (relative to G), with symbol ¢.
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Many results of the classical theory, where G = Z, extend to this context, and
some even to the context of partially ordered groups [16]. For instance, it is easily
seen that ||T,|| = ||¢|lc, and that T,y = T,Ty if  or ¥ belongs to HX(G). It is
shown in [16] that

o() C o(T,) C Balp),
where o( ) denotes the spectrum, and €6( ) denotes the closed convex hull. These
results generalise well-known theorems of Hartman and Wintner [11], and of Brown
and Halmos [5].

As in [16], we shall derive our results using C*-algebraic techniques. For this
reason we need to introduce a number of C*-algebras related to the Toeplitz operators.
Specifically, let A(G) be the C*-subalgebra of the algebra B(H2(G)) of all operators
on H2(G) which is generated by Toeplitz operators with continuous symbols. This is
called the Toeplitz algebra of G. Its commutator ideal is denoted by K(G). In [16] it
is shown that the canomnical map

C(G) = A(G)/K(G), ¢+ Tp+K(G),

is a *-isomorphism. We shall use this on a number of occasions.

In the classical case, K(Z) is the ideal of compact operators on H?, but in the
general case K(G) is neither simple nor Type I (it is however primitive, as is A(G)
[16]). It turns out that another ideal, which we shall consider presently, plays the role
that the ideal of compact operators plays in the classical case.

If z € G, we define |z| € Gt in the obvious way. We say z is infinite if there
exists a positive element y of G such that ny < |z, for all positive integers n. The set
F of finite elements of G is a subgroup (it will play a critical role in the index theory).
Recall that a subgroup J of G is said to be an ideal if the conditions z € G*, y € J,
and z < y imply that z € J. It is shown in [16] that F is an ideal of G that is
contained in every non-zero ideal of G. Moreover, if G is finitely-generated and non-
zero, then F also is non-zero (it is not true that F' is necessarily non-zero if G is).
Clearly, if G is a subgroup of R, then F = G.

If 2 € G, set V; = T,_. An important result in the theory of Toeplitz algebras is
the fact that the closed ideal F(G) of A(G) generated by the projections 1-V, V* (z €
€ F*) is simple [16]. Since A(G) is primitive, it follows that F(G) is contained in
every non-zero closed ideal of A(G). Note that F(G) is non-zero if and only if F is
NON-Zero.

We shall use the following result of van Kampen [22], which extends a result of

Bohr [1], to get an analogue of the winding number.

2.1. THEOREM. Let G be a connected compact group, and suppose that ¢ is
a continuous complex-valued function on G which does not vanish anywhere. Then
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there exists a continuous homomorphism x from G to T, and a continuous complex-

-valued function v on G, such that ¢ = ye¥.

Note that G is not required to be abelian. As observed in [17], x is unique.

Now let G be any ordered group. Since its dual G is connected and compact,
we may apply Theorem 2.1. Thus, if ¢ is a continuous complex-valued function on
G which does not vanish, there exists a unique element & € G, and a continuous
complex-valued function ¥ on G, such that @ = e£,e¥ (of course, this uses the fact
that G is the dual of G, so that every continuous homomorphism of & is of the form
€z). As in [17], we denote z by w(yp), and call it the index of . It is easily verified
that w(py') = w(p) + w(y’), and w(F) = —w(yp). Obviously, w(e;) = z. Note that in
the classical case the index is just the winding number about the origin.

The following result from [17] will be needed.

2.2. THEOREM. Let G be an ordered group. If p € C(G), then T, is invertible if
and only if ¢ does not vanish anywhere and w(y) = 0. Equivalently, T,, is invertible
if and only if ¢ has a continuous logarithm.

The following lemma gives an indication under what conditions it is possible to
get a non-trivial index theorem involving classical Fredholm theory.

2.2. LEMMA. Let G be an ordered group whose subgroup F of finite elements is
non-zero. The following are equivalent conditions:

(1) A(G) contains Fredholm operators of non-zero index.

(2) F(G) is the ideal of compact operators on H%(G).

(3) F is a cyclic group.

(4) G admits a least positive element.

Froof. Let K denote the ideal of compact operators on H2(G). If A(G) contains
Fredholm operators of non-zero index, then the *-homomorphism

T A(G) — B(Hz(G))/K, a—a+4 K,

has non-zero kernel. This follows the well-known Atkinson characterisation of the
Fredholm operators as the operators which are invertible modulo the ideal of compact
operators. The kernel of 7 is equal to K N A(G), so A(G) contains K, because A(G)
acts irreducibly on H?(G). Hence, F(G) = K. Thus, Condition (1) implies Condition
(2).

Now suppose that Condition (2) holds, and let z be a positive element of F such
that the projection @, = 1 — V,V;* has minimum positive rank. Then z is necessarily
the least positive element of F, because Q, < Qy if and only if 2 € y (z,y € GT).
Hence, F' = Zz. Thus, Condition (2) implies Condition (3).
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That Condition (3) implies Condition (4) follows from the observation that if z
is a positive element of F such that F' = Zz, then z is the least positive element of
F, and therefore of G.

Finally, let us suppose that G admits a least positive element z. Then the
projection @, = 1 — V.,V has range Cg, and therefore V, is a Fredholm operator
with index given by ind(V,) = dim(ker(V;)) — dim(ker(V)) = 0 — dim(ker(V. V}})) =
= —dim(Q.(H*(G))) = ~1. Thus, Condition (4) implies Condition (1), and the

lemma is proved. ]

2.4. REMARK. Suppose that the ordered group G has a least positive element
z. If ¢ is a continuous complex-valued function on & which does not vanish and has
finite index w(y), then w(p) = nz, for a unique integer n. We shall denote this integer
by wn(y) (this is consistent with the notation used in the classical case).

2.5. THEOREM. Let G be an ordered group admitting a least positive element.
If p € C(G), then T, is Fredholm if and only if ¢ does not vanish anywhere and has
finite index. In this case,

ind(T,) = —wn(p).

Proof. Denote by z the least positive element of G, and recall from the proof of
Lemma 2.3 that V, is Fredholm of index minus one.

Suppose that T, is Fredholm. By Lemma 2.3, F(G) is the ideal of compact oper-
ators on H%(G), so T, is invertible modulo F(G), by the Atkinson characterization.
However, F(G) C K(G), so T, is also invertible modulo K(G). Using the canonical
*-isomorphism of A(G)/K(G) with C(G), we deduce that ¢ is invertible in C(G).
Hence, ¢ = ¢,¢e¥, for 2 = w(yp), and for some 3 € C(G). We shall now show that z is
finite, and to do this we may suppose that > 0 (otherwise, replace ¢ with 7). Hence,
T, = Tew T, = TowVz. By Theorem 2.2, T,y is invertible. Hence, V; is Fredholm.
If  is not finite, then for all positive integers n, the elements z, = £ — nz of G are
positive. Hence, V; = V,,,V,_, and since V, and V,, = V* are Fredholm, therefore
V:. 1s Fredholm for all n. Now, ind(V;) = ind(V;;;) + ind(V;_), and ind(V;,) < 0
because V;, is an isometry, so ind(V;) < ind(V,;) = ind(V*) = ~n, for all positive
integers n. This is impossible, so z cannot be infinite. Thus, we have shown that if
a Toeplitz operator is Fredholm, its symbol does not vanish anywhere and has finite
index.

Conversely, suppose now that ¢ is invertible with finite index. Then w(y) = nz,
where n = wn(p). We shall show that T}, is Fredholm, and that ind(T,) = —wn(yp),
and to do this we may suppose that wn(y) > 0 (replacing ¢ by %, if necessary). We
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may write ¢ = £,,e¥, where 9 is some element of C(G) Since T,v is invertible, since
V; is Fredholm, and since T, = T,+V?, therefore T, is Fredholm. Also, ind(7T,,) =
= ind(T,y) +ind(V*) = 0 + n(—1) = —n = —wn(p). |

It is clear from Lemma 2.3 that any extension of Theorem 2.5 will have to involve
an index more general that the Fredholm index. As we mentioned earlier, we shall
use Breuer’s index, for which we shall have to set up some facilitating constructions.
We do this in the following section.

3. THE INVARIANT MEASURE

We are going to associate with each ordered group admitting non-zero finite
elements a certain topological space which reflects both the group and the order
structure. The role that this space plays vis-a-vis the group bears some resemblance
to the role that the real line R plays vis-a-vis a dense subgroup in the theory developed
in [6], but the analogy is not close, and the justification for introducing this space
rests on its succes in the index theory. There is reason to believe that this space may
play a role in the difficult problem of analysing the structure of the Toeplitz algebra
of the group, but this subject will not be pursued here.

We begin by recalling a well-known technique for constructing a factor. The
details will be pertinent for our considerations in the sequel, so we set them out here,
not however in greatest generality, but in a form sufficient for our purpose. (For these
results, see [12, Section 8.6].)

Suppose given a measure space (2, z), where p is non-zero, and a countable
group G consisting of bijections of 2 onto itself. The group operation is function
composition, and the unit of G is denoted by e. We assume that the following four
conditions are satisfied: ,

(1) There exists a sequence of non-empty measurable sets E, of 2, of finite measure,
which separate £2 in the sense that whenever we are given distinct points w,w’
of {2, there exists an integer n such that w € E,, and w’ € 2\ Ey;

(2) For each element z of G, and each subset £ of 2, the image z(E) is measurable
if and only if E is measurable, and in this case, p(z(E)) = u(E);

(3) G acts freely on £2; that is, if 2w = w, for some point w, then z = ¢;

(4) For each measurable set E of 2 such that u(z(E)\ E) = 0 for all z in G, either
w(E)=0o0r u(2\ E)=0.

Set H = L*(£2, 1), and let A be the maximal abelian von Neumann algebra on
H consisting of the multiplication operators M, where ¢ € L®(£2, ¢). For each z in
G, let U, be the unitary on H defined by (U, f}(w) = f(z~'(w)) (for almost all w).
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The map U : G — B(H), z — U, which we shall refer to as canonical, is a unitary
representation of G.

Denote by K the Hilbert space £2(G,H), and if z € G, and a € A, define
operators W, and n(a) on K by

(W f)y) = Uz f{z"1y)

and

(r(a)f)(y) = af(y),

where f € K and y € G. The map W : G — B(K), z — W,, is a unitary
representation of G, and the map = : A — B(K), a — w(a), is an injective *-
homomorphism. The von Neumann algebra R on K generated by all the elements
W, and 7(a) is a factor. We shall call it the factor associated to (2, 4) and G, and
we shall call W and 7 the canonical maps.

The factor R is Type I if and only if p(w) > 0 for some w € 2. I u(w) = 0 for
all w, then R is Type II; R is Type II; if £2 is of finite measure, and R is Type Il if
12 is of infinite measure.

We now begin our construction and analysis of the topological space associated
with an ordered group.

Suppose G is an ordered group admitting non-zero finite elements. Denote by
2 = £2(G) the set of decreasing functions w : G — R having range {0, 1}, and which
are such that w(z) # w(y) for some elements z, ¥ € G whose difference z — y is finite.
The set £2 is non-empty, for if  is an element of G, we can define an element 7 of 2

by setting

- L fyga

o) = {o, ity > .
In general, £2 admits many more elements. (We shall return to this question below.)
A linear order relation is defined on 2 by setting w € w’ when w(z) < w'(x) for all
z € G. The map G — R, z — %, is strictly increasing. Observe that if z € G and
w € 12, then L w if and only if w(#) = 1, and hence, w < 7 if and only if w(z) = 0.

If z,y € G, put
[z, y)={weRzSw<T}

A set of this form will be called an interval of 2. We define the length of [z,y) as
follows: If z < y, we set length([z,y)) = y—=, and if z > y (equivalently, [z, y) = @),
we set length([z,y)) = 0.

The intervals, and their lengths, have properties analogous to the similarly named
objects of elementary analysis. For example, the intersection of finitely many intervals
is an interval. The length function is monotone increasing, and if E is an interval
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which is the union of the intervals Ei, ..., By, then length(E) < length(E;) + ---+
+ength(Ey,), with equality if E1, ..., Ey are pairwise disjoint. Another useful result:
The set difference of two intervals is the disjoint union of two intervals. The proofs
of these observations are elementary.

The set £ has not only an order structure, but more importantly, a natural
topology which is intimately related to the order. The topology is defined to be the
weakest one making continuous the functions

N—-R, wow(z), (z€G).

3.1. ProrosiTioN. Let G be an ordered group admitting non-zero finite ele-
ments. Then 2(G) is a locally compact Hausdorff space. A base for its topology is
given by the intervals of finite length. Every interval is a clopen set, and is compact
if and only if it is of finite length.

Proof. The product space {2 of all functions from G to {0, 1} is compact and
Hausdorff, and clearly 2 is a subspace. Hence, £ is Hausdorff. Also, since [z,y) =
= {w € Rw(z) = 1 and w(y) = 0}, and since {0}, {1} are clopen sets in {0,1},
therefore [z, y) is a clopen subset of £2. Moreover, if y— 2 is finite, then [z, y) is closed
as a subset of ', and therefore compact.

To see that £ is locally compact, let w be an arbitrary point, and note that by
the definition of £2, there exists #,y € G such that z — y is finite and w(z) # w(y).
By symmetry, we may suppose that z < y. Then w(z) > w(y), so w(z) = 1, and
w(y) = 0. Hence w belongs to the compact open set [z,y).

Suppose now that w is a point of an open set U of 2. By definition of the
topology of 2, there exist elements ¢1,...,&, of {0,1}, and elements zy,...,z, of G,
such that the intersection of the sets

E; = {u' € 2|’ (z:) = &}

contains w, and is contained in /. Choose an interval Ey of finite length containing
w. Then the intersection EqN-.-N Ey, is an interval of finite length containing w and
contained in U. Thus the finite-length intervals (which are clearly closed under the
operation of taking finite intersections) form a base for the topology of £2.

To complete the proof, we show that if z,y € G, = < y, and [z, y) is compact,
then y — z is finite. Since [z,y) is open, we may write it as the union of intervals
of finite length, and since it is compact, finitely many such intervals, E,, ..., E, say,
suffice. Hence, y — z = length([z, y)) < length(E;) + - - - + length(E,), and this sum
is a finite element of G, so y — z is finite. a
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3.2. REMARK. Since the intervals of finite length form a base for the topology
of 2(G), the set of all elements T (z € G) is dense in 2(G). Let us explicitly note
also that f2(G) is totally disconnected, because it has a base of clopen sets.

Of course, the space 2(G) might be discrete. This turns out to be the case
precisely when G has a least positive element.

3.3. PROPOSITION. If G is an ordered group having non-zero finite elements,
then the following conditions are equivalent:

(1) $2(G) is discrete.

(2) 2(G) = {Zlz € G}.

(3) G has a least positive element.

Proof. Suppose that §2 is discrete, and choose a finite positive element z of G.
The interval [0, ) is compact and discrete, and is, therefore, a finite set. Hence its
intersection with G = {7 |y € G} is finite, so we may write [0,z) NG = {Z1...,Z,},
where 0 = 1 < -+ < z,. An easy argument shows that zs is the least positive
element of G. Thus, Condition (1) implies Condition (3).

Now assume Condition (3) holds, that is, G has a least positive element, z say.
Then Zz is the subgroup of finite elements of G. If w is an element of 2, some
finite interval [z, y) contains it, and y — z = nz, for some positive integer n. Thus,
w(z + nz) = w(y) = 0. Let k be the least positive integer such that w(z + kz) = 0,
and set t = & 4 (k — 1)z. Then the interval [t,t + 2} contains w, and from the fact
that z is the least positive element of G, it follows easily that this interval contains
nothing else. Thus, w = . This shows that Condition (3) implies Conditions (1) and
(2).

Finally, let us suppose that G contains no least positive element. Define the

()__{1, if 2 <0;
Y=o, ifz>o.

function w : G — R by

Then w is an element of 2, and we claim that w ¢ G. Suppose otherwise, so that
w = T, say. Then, for any element y € G, y < « if and only if w(y) = 1 if and only
if y < 0. In particular, z < 0. Since G has no least positive element, there exists a
positive element y such that y < —z. Hence, —y < 0, so w(—y) = 1, and therefore
—y € £ < —y, which is impossible. Thus, we have shown that Condition (2) implies
Condition (3). n

If G is an orderd group admitting non-zero finite elements, then we can define
an action of G on 2 = 2(G) by setting (zw)(y) = w(y — z), for all z,y € G, and all
w € 2. For each , the map w — zw is a homeomorphism of £2. Hence, if £ is a
subset of £2, it is a Borel set if and only if its image £ F = {zw|w € E} is a Borel set.
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A Borel measure g on £ is invariant if p(zE) = u(E), for all Borel sets E of £,
and for all z € G.

In order to consider the question of existence and “uniquenes” of such a measure,
we need to consider the existence and “uniqueness” of a related homomorphism on the
group of finite elements of G. First, recall that a homomorphism of ordered groups
is positive if it is increasing. In this case its kernel is an ideal of the domain. It is
elementary that if 7 is a non-zero real-valued positive homomorphism on a subgroup
of R, then there exists a positive number ¢ such that 7(z) = ez for all elements z in the
subgroup. Moreover, it is well known that if an ordered group is archimedean, that
is, all its elements are finite, then it is isomorphic as an ordered group to a subgroup
of R {19, p. 194]. Putting these two facts together, we get the following result: If G
is any ordered group whose subgroup F' of finite elements is non-zero, then there is a
non-zero positive homomorphism 7 : F — R which is unique up to multiplication by
a positive constant. We shall call any such homomorphism 7 a trace of G.

The following is the principal result of this section.

3.4. THEOREM. Let G be a countable ordered group having non-zero finite
elements. If 7 is a trace of G, then there is a unique Borel measure u on 2(G) such
that

#(E) = (length(E))

for each finite-length interval E of 2(G). Moreover,  is non-zero and invariant. Each
non-zero invariant measure of G Is associated with a unique trace of G in this fashion.
Any two non-zero invariant measures of {(G) are proportional.

Proof. Let 7 be a trace of G. If Ey, Ey, .. . are intervals of £2 of finite length, and
oo
Ey C U E,, then
n=1

o0

r(length(Ep)) < Z r(length(E,.)).

n=1

For, by compactness, Ey C E; U---U Ey for some N, from which length(E}) <
N

N
< Zlength(En), and hence, r(length(&p)) < Zr(length(En)), because 7 is a
n=1 n=1

positive homomorphism.

If E is a subset of £2, define u*(E) to be the infimum of all sumsz 7(length(E,)),
n=1
where (E,) is a sequence of finite-length intervals whose union contains E. Using the

sub-additivity condition proved above, it is routine to show that u* : £ — p*(E) is
an outer measure on 2. Likewise, using arguments similar to those employed in the
elementary theory of the Lebesgue measure on the real line, each finite-length interval
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E is easily seen to be measurable with respect to p*, and p*(E) = r(length(E)). Since
G is countable, and the finite-length intervals form a base for the topology of §2, each
open set is a countable union of such intervals, and therefore measurable with respect
to p*. Consequently, each Borel set is u*-measurable, and the restriction g of p* to
the o-algebra of Borel sets is a measure. Since 7 is non-zero, p is non-zero.

Let E be a finite-length interval, say £ = [2,y). Then, for any 2 € G, we have
zE = [z + 2,y + 2), so length(zE) = length(E), and therefore u(zE) = u(E). It
follows easily from this and the definition of u* that x(zE) = u(E) for any Borel set
E of £2, that is, p is invariant.

Suppose that y is another Borel measure of £2 such that p'(F) = r(length(E)) for
each finite-length interval £ of 2. We shall show that ¢/ = p. Since G is countable, 2
is second countable. Therefore, all Borel measures on {2 are regular. Hence, to show
equality of 4’ and p we need only show that if U/ is an open set of £2, then u/(U) =
= u(U). We may write U = 6 E,,, where the E, are finite-length intervals. Set
E{ =B, andforn > 1, set B, = Ey\(E3U- - -UEn_1) = (En\B1)N---N(En\ Ea-1).
Since each difference E, \ E; is a disjoint union of two finite-length intervals, each E,
is a union of finitely many pairwise-disjoint finite-length intervals. Using this, and the
fact that the sets Ef, Ej,... are pairwise disjoint and have union U, it follows that
U is the union of count%l)ly many paigzvise-disjoint finite-length intervals, EY, EY, ...
say. Hence, p/(U) = Zp'(Eﬁ,’) = Zp(Eﬁ,’) = p(U). This proves the claim that
K= p. " "

Now let us suppose that g’ is an arbitrary non-zero invariant measure on {2, and
we shall show that it is associated with a trace. For each positive finite element = of
G, set 7'(z) = p'([0,2)). Since [0, z) is compact, () is finite, that is, 7/(z) € Rt.
If z, y are positive finite elements of G, then 7/(z + y) = r'(z) + 7'(y), because

(@) +'(y) = #'([0,2)) + ([0, ¥) =
= p4'([0,2)) + p'([z,z + y)) = (by invariance of u')
=#(0.z+y)=7(z+y)

It follows that we can uniquely extend 7/ to a positive homomorphism from the
group of finite elements of G to R. Moreover, by invariance of p', it is clear that
#'(E) = 7'(length(E)) for each finite-length interval E of 2. Since p’ is non-zero,
#'(E) is non-zero for some finite-length interval E, from which it is clear that 7/ is
non-zero. Thus, 7/ is a trace of G.

Because the trace of G is esentially unique, there is a positive constant ¢ such
that 7" = er. Hence, p/(E) = cu(E) for each finite-length interval £ of 2. Each
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open set U of 2 is a countable union of pairwise-disjoint finite-length intervals, so
#'(U) = cp(U). Hence, by regularity, 4’ = cp. This proves the theorem. |

3.5. COROLLARY. Let G be a countable ordered group with non-zero finite
elements, and let i be a non-zero invariant measure on §2{G). If E is a Borel set of
2(G) such that u(zE\ E) = 0 for all z € G, then pu(E) = 0 or p(2(G)\ E) = 0.

Proof. This is immediate from Theorem 3.4 and the observation that the Borel
measure defined by E’ + u(E N E'} is invariant. |

3.6. REMARK. A non-zero invariant measure of £2(G) is infinite, since its range
contains the positive part of the range of the associated trace.

The following result is relevant in determining the type of the factor we shall
construct from £2(G) and u.

3.7. PROPOSITION. Let G be a countable ordered group with non-zero finite .
elements, and let p be a non-zero invariant measure on 2(G). The following are
equivalent conditions:

(1) u({w}) = 0 for all points w of 2(G).

(2) G has no least positive element.

Proof. If G has a least positive element, then 2 = {Z|z € G}, by Proposition
3.3, from which it is immediate that p({Z}) > 0, for some  in G. Thus, Condition
(1) implies Condition (2).

Now suppose that G has no least positive element, and let w be an arbitrary
point of 2. Choose a positive finite element z of G. There exists a finite-length
interval [z, ¥) containing w, and by finiteness of y — 2, there exists a positive integer
n such that y — z < nz. Hence, w < T+ nZ. We may suppose that n is the least
positive integer for which this inequality holds. Therefore, T+ (n — 1)Z £ w, so
w € [z+ (n = 1)z, z + nz). Consequently, p({w}) € u(lz + (n — 1)z, z + nz)) = 7(z),
where 7 is the trace associated to g. Thus, p({w}) € 7(2) for all positive finite
elements z of G. Since F has no least positive element, r(#) has none either, which
implies the density of 7(F) in R. It follows that u({w}) = 0. We have shown that
Condition (2) implies condition (1). ]

We have now assembled the material required to construct a suitable represen-
tation of the Toeplitz algebra with which to derive an index theorem. We do this in
the following section.

4. THE INDEX THEOREM
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Throughout this section G is a countable ordered group admitting non-zero finite
elements, 7 is a trace of G, and p is the associated invariant measure on 2 = 2(G).

If ¢ € G, we may identify it with the corresponding map w +— zw on £, and
therefore we may regard G as a group of homeomorphisms of 2. We claim that (£2, u)
and G satisfy Conditions (1)—(4) of Section 3. Condition (4) is given by Corollary
3.5, Condition (2) is clear, and Condition (1) is easily checked. To show Condition
(3) holds, that is, that G acts freely, observe that the stabiliser group of any point w
of §2 is an ordered subgroup of G. If it is non-zero, it contains all the finite elements.
Hence, for any two elements z,y of G whose difference is finite, we have zw = yw,
which implies that w(#) = w(y). This is impossible, so the stabiliser group of w is
trivial.

Let A be the von Neumann algebra on H = L?(2, ) consisting of all multipli-
cation operators M, (¢ € L®(£2, u)), and denote by R the factor on K = £2(G, H) -
associated to (£2, ) and G. Observe that R is of Type I if and only if u({w}) > 0 for
some w in 2, so by Proposition 3.7, R is Type I if and only if G has a least positive
element. If R is Type I, it is easily seen to be Type I,. When G admits no least
positive element, R is of Type Il..

Let U :G — B(H), W : G — R, and 7 : A — R be the canonical maps.

We shall need a formula for the trace on R, and for this and other reasons, we
shall introduce a certain positive linear map from R to A. First, define an isometry

v : H — K by setting
Ff, fx=0;

' (”f)(m)z{o ifz#0

where f € H and z € G. Clearly, the map
e:B(K)— B(H), aw— v av,

is linear, norm-decreasing, positive, and strongly continuous. It is easy to show that
ifa € A and z € G, then

a, fe=0

) @)= {g 020

and therefore e(R) = A. Note also that the function
t: At = 0,00, M, H](pdu,

is a faithful, normal, semifinite trace on A. Since t(U,alU}) = t(a) for all a € AT and
all z € G (because p is invariant), the function

tr: Rt — L0,00], a +— t(e(a)),
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is a faithful, normal, semifinite trace on R [8, Proposition 9.2.1].

If E is a Borel subset of £, we shall denote by xg the multiplier operator on H
corresponding to the characteristic function of E. If z € G, let [z, 00) be the set of
all w € 2 such that w > F. This set is closed in 2. Denote by P, the projection
T(X(z,00)) in R. Note that P; = 7(UsX[0,00)U2) = We(X0,00))Wa = W, P W, If
z Sy, then Pr — Py = 7(X(z y)), 80 Py < Pr. Also tr(Pr — Py) = t(X[z)) = p{[z, ),
so P — P, is a finite projection if and only if p([z,y)) < oo if and only if y — z is
finite.

Set R, = PoRF,, and regard this as a von Neumann algebra on Py(K) in the
usual manner. SInce R is a factor, so is R,, and it is clear that tr, when restricted to
R, is again a faithful, normal, semifinite trace, which we shall also denote by tr.

If z € G*, then P; € R,. Also, since Py P, = P,, that is PoWo oW, = W P Wy,
therefore PoW, Py = W, Py. Hence, in the terminology of [16], the map

G* - R,, zvw PBW,P,,
is a semigroup of isometries. Moreover, if PyW. Py is a unitary of R,, then P, =
= (WePo)(WoPo)* = Py, so z = 0. It follows from [16] that there is a unique
+-homomorphism # from A(G) to R, such that 8(V;) = PoW, P, for all z € G*, and
that & is injective. We shall identify each element @ in A(G) with its image 8(a) in
R, and thereby identify A(G) with the C*-subalgebra 6(A(G)) of R;.

Observe that me(R;) C R,. We denote by & the restriction of e to R s0éisa
faithful, positive, norm-decreasing operator on R,.

4.1 LEMMA. If a is a positive element of A(G), then a € F(G) if and only if
é(a) € F(G).

Proof. We shall need an alternative description of the restriction of & to A(G).
If ¥ € G, then the map

Gt — A(G), == y(2)Vg,

1s a non-unitary semigroup of isometries. Hence, it induces a +-isomorphism §, of
A(G) onto itself [16]. It is easy to verify that 6y, = 6,6,:, and that for each a €
€ A(G) the map ¥ + 6,(a) is continuous. Set ¢'(a) = / 8, (a)dmy, where m denotes
normalised Haar measure on (. This defines a faithful, positive, norm-decreasing,
idempotent linear map e’ from A(G) to itself. Moreover, it is straightforward to show
that A(G) is the closed linear span of the elements of the form V, V'V, (z € G*, y €
€ G), so to show that & is equal to ¢’ on A(G), it suffices to show & is equal to ¢’ on
such elements. However, ¢/(V,V'V,) = / 8y (Ve Vo Vy)dmy = / Y(y)dmyV: V'V, so
VoV7, ify=0;

Vo V*V,) =
(VW) {0, ify#0.
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Comparing this with Equation (), and noting that Vz V'V, = P,W, Py = P,W, P, -
WgWy = PoPyWy = 7(X[z,00)X[y,00)} Wy, it is clear that & is equal to ¢’ on the
elements V; V'V, as required.

Since F(G) is invariant under the automorphism 6, we get an induced automor-
phism A, on the quotient algebra A(G)/F(G), and hence we get a faithful, positive,
norm-decreasing, linear operator ¢ on A(G)/F(G) by setting

e'(ea + F(G)) = /A,y(a + F(G))dmy.

Clearly, ¢(a + F(GQ)) = (/ by (a)dm"y) + F(G) = €'(a) + F(G), so if a is a positive
element of A(G) such that e’(a) € F(G), then e”(a + F(G)) = 0, and therefore
a+ F(G) =0, that is, a € F(G). The lemma is proved. |

We need to make few remarks now on Breuer’s theory. The null projection of an
element a of R, is the greatest projection p of R, such that ap = 0, and is denoted
by nul(a). Let M be the closed ideal of R, generated by the finite projections. An
element a of R, is Fredholm relative to R; if it is invertible modulo M. In this case
the null projections of @ and a* are finite, and the Breuer index of a is defined by

indg, (a) = tr(nul(a)) ~ tr(nul(a*)).

The theory developed by Breuer has many of the features of the classical Fredholm
theory, see [3], [4] for details.

Let N be the ideal of R, whose positive part is Nt = {a € R}|tr(¢) < oo}.
Clearly, N* contains all finite projections, so N contains M. If a is a norm-one
positive element of Ry, then a = Z 121;1 for a sequence of projections (p,) of R, [15,

n=l

Theorem 4.1.13], so if @ € N, all the projections p, belong to WV, by the hereditary
property of closed ideals. Consequently, p, € N, and therefore p,, is finite, so p, € M.
Thus, N* € M, and since N* linearly spans N, we have N C M. Hence, N = M.
Clearly, N* is invariant for &, and therefore so is M, a result we shall use in the
following theorem.

4.2. THEOREM. Let G be a countable ordered group admitting non-zero finite
elements, and T a trace of G. Let ¢ € C(G). The following conditions are equivalent:
(1) T, is Fredholm relative to R,. .
(2) T,, is invertible modulo the ideal F(G).
(3) ¥ does not vanish anywhere and its index w(y) is finite.
If T, is Fredholm relative to R,, then its Breuer index is given by

indg, (Tp) = —7(w(p))-
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Proof. We retain the notation introduced above, and denote the unit of R, by 1.
If z is a finite positive element of G, then the projection 1 -V, V¥ = Py — P; is finite
in R,, and is therefore an element of M. Hence, F(G) C M N A(G). To show that
Condition (1) implies Condition (2), we need only show the reverse inclusion holds,
that is, MNA(G) € F(G). Thus, it suffices to show injectivity of the +-homomorphism

p: A(G)/F(G) = R,/M, a+F(G)—a+M.

Let Zp be the linear span of the projections V,V* (z € G*). Then its closure
Z is a C*-subalgebra of A(G), and it follows easily from the proof of the preceding
lemma that &(A(G)) = Z. Let ¢; be the obvious linear map from A(G)/F(G) to
(Z + F(G))/ F(G) induced by &, and likewise, let e, be the obvious linear map from
R./M to itself induced by €. Denote by p' the restriction of p to (Z + F(G))/F(G).
The diagram ' »

A(G)/F(G) R./M

g 8
(Z+F(G)/F(G) —— R M

commutes, and all the maps involved are positive, so to show p is injective, that is,
faithful, it suffices to show that ¢; and p’ are faithful. It is immediate from Lemma 4.1
that e; is faithful. To show p’ is faithful, it suffices to show that ZNM C F(G) (this is
clear from the canonical isomorphism of (Z + F(G))/F(G) with Z/(ZN F(G))). Now
Zy is the union of an increasing sequence of finite-dimensional C*-subalgebras, so Z
is an AF-algebra. By a well-known result, if I is a closed ideal of Z, it is the closure of
ZoNI. In particular, ZN M is the closure of Zgﬂﬁ{ , 50 we are reduced to showing that
ZoNM C F(G). We do this by showing that if a is a positive element of ZyN M, then a

belongs to F/(G). We may write a as a linear combination of projections, Q1,. .., @n,
where @; = Ve, V.- Since G is totally ordered, we may suppose that z; < - -+ < 2y,
n-—1

and therefore @; > -+ > Q,. Hence, we may write a = Z Ai(Qi — Qit1) + AnQn,
i=1
where X; € RY. If A\, # 0, then Q,, < —)-:E—, so V,, € M, and therefore 1 € M,
T

which is impossible. Hence, A, = 0. If i < n, and X; # 0, then @Q; — Qi41 < ;—, so0
Qi —Qit1 € M, and therefore tr(Q; — Qi41) = tr(Pr; — Pryy,) = p([2i, Tig1)) Is ﬁ’nite,
SO y = Zi41 — Z; Is finite, and hence Q; — Qi1 = Vo, (1 — V, V1)V, belongs to F(G).
Thus, a € F(G). We have therefore shown that Condition (1) implies Condition (2).

Suppose now that T, is invertible modulo the ideal F(G). Since F(G) C K(G),
therefore T, is invertible modulo K(G). Using the canonical isomorphism of
A(G)/K(G) with C(G), we deduce that the symbol g is invertible. We may write
¢ = €z¢¥, where z = w(p), and ¢ is some element of C(G). To show that z is finite,
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we may suppose z > 0 (replacing ¢ by P if necessary). Then T, = T,vV;, and since
T,y is invertible, V is invertible modulo F(G). Hence, the projection 1 — V; V! be-
longs to F(G), and therefore to M. Consequently, tr(1 — Vz V) = p([0, z)) is finite,
so x is finite. Thus, Condition (2) implies Condition (3).

Finally, suppose that ¢ does not vanish anywhere, and that 2 = w(yp) is finite.
Write ¢ = e,e¥ for some ¥ € C(G). To show T, is Fredholm relative to R, and
that indg, (Tp) = —7(w(y)), we may suppose & > 0 (as usual, replace ¢ by P if
necessary). Clearly, V; is invertible modulo F(G), and therefore modulo M, so V; is
Fredholm relative to R,. Moreover, nul(V;) = 0, and nul(V;*) = 1 — V;V;’. Hence,
indg, (V) = —tr(1 — V; V1) = —p{[0, 2)) = =7(z). Thus, T, = T,V is the product
of an invertible operator and an operator which is Fredholm relative to R, so it
also is Fredholm relative to R, and its index is given by indg,(Z,) = indg, (T,v) +
+indg, (Vz) = 0—7(2) = —7(w(¢)). This shows that Condition (3) implies Condition
(1), and proves the theorem. [ ]

The special case of the preceding theorem, where G is an ordered subgroup of R,
was obtained in [6].
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