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INTERPOLATION IN NEST ALGEBRAS AND APPLICATIONS
TO OPERATOR CORONA THEOREMS

E. G. KATSOULIS, R. L. MOORE and T. T. TRENT

The equation Az = y in Hilbert space has been considered by a number of
authors, including the authors of this paper. The problem is this: Given Hilbert space
vectors z and y, when is there a bounded linear operator A (usually satisfying some
other conditions) that maps 2 to y? The “other conditions” that have been of interest
to us involve restricting A to lie in the algebra associated with a commutative subspace
lattice. Lance [11] initiated the discussion by considering a nest A/ and asking what
conditions on z and y will guarantee the existence of an operator A in AlgA such that
Az = y. This result was used to find a new proof of Ringrose’s characterization of the
Jacobson radical. Hopenwasser [9] extended Lance’s result to the case where the nest
N is replaced by an arbitrary commutative subspace lattice £; the conditions in both
cases read the same. Munch [12] considered the problem of finding a Hilbert-Schmidt
operator A in AlgN that maps z to y, whereupon Hopenwasser [10] again extended to
AlgL. In [1], we studied the problem of finding A so that Az = y and A is required to
lie in certain ideals contained in AlgL (for a nest £); in particular, we considered the
ideal of compact operators, the Jacobson radical, and Larson’s ideal £°. The same
paper also considers the problem of multi-vector Hilbert-Schmidt interpolation; that
is, given z1,..., 2, and y1,. .., yn, when is there a Hilbert-Schmidt operator A in Algl
such that Azx; = y; for each i? The multi-vector problem without the requirement that
A be Hilbert-Schmidt was left unanswered. In this article we consider that problem,
and indeed a multitude of others, by adopting a somewhat different point of view
concerning just what it is that we hope to interpolate. As a byproduct, we obtain a
“corona” type result, which represents a generalization of results of Arveson [3] and
Davidson [6, Theorem 15.19].

Roughly speaking, when an operator maps one thing to another, we think of the
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operator as the interpolating operator and the equation representing the mapping as
the interpolation equation. The equations Ax = y and AX =Y are indistinguishable
if spoken aloud, but we mean the change to capital letters to indicate that we intend
to look at fixed operators X and Y, and ask under what conditions there will exist
an operator A satisfying the equation AX = Y. With appropiate restrictions on the
algebra in which A and X lie, these conditions will obviously provide information
about the ideal generated by X; Theorems 3, 4, and 5 can, in fact, be interpreted as
illuminating the ideal structure of certain algebras.

Note that the “vector interpolation” problem is a special case of the “operator
interpolation” problem. Indeed, if we denote by z ® u* the rank-one operator defined
by the equation z ® u*(w) = (w, u)z, and if we set X = z@®@u*, and Y = y @ u*, then
the equations AX =Y and Az = y represent the same restriction on A.

The simplest case of the operator interpolation problem relaxes all restrictions
on A, requiring it simply to be a bounded operator. In this case, the existence of A
is nicely characterized by the well-known factorization theorem of Douglas [7):- '

THEOREM D. Let Y and X be bounded operators on the Hilbert space H. The
following statements are equivalent:

(1) range[Y]C range[X");

(2) Y'Y < XA2X*X for some A 2 0;

(3) there exists a bounded operator A on H so that AX =Y.
Moreover, if (1), (2), and (3) are valid, then there exists a unique operator A so that

(a) [[A}? = inf{p: Y'Y < pX*X};

(b) ker[Y*] = ker[A*]; and

(c) range[A*] C range[X]~.

(We have rewritten Douglas’s version, using adjoints, so that the equation AX =
=Y has the “unknown” 4 as the left-hand factor.) ‘

Another version of this theorem, due to Rosenblum and Rovnyak (see, e.g., p 12
of [14]), allows the operators to act on different spaces. We will need both versions.

THEOREM R. Let H; be a Hilbert space, for i = 1,2,3. Suppose that Y €
€ B(H,, H3), that X € B(H, H,), and that 3 > 0. The following are equivalent:

(1) There is an operator A € B(H,, H3) such that ||A|| < B and AX =Y.

@) Y'Y < B°X"X.

The first thing we need is an extension theorem, which might be considered as a
sort of “Hahn-Banach Theorem” for operators.

THEOREM 1. (Extension Theorem) Let H, K, and L be Hilbert spaces and let N
be asubspace of H. Let A and D be operators in B(N, K) and in B(H, L) respectively,
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and suppose that, for every vector z € N, we have ||Az|| < k|| Dz||, for some fixed
positive constant k. (Note that the norm on the left-hand side is computed in the
space K, and the right-hand norm is computed in L.} Then there exists an operator
A € B(H,K) such that

a) Az = Az for every z € N;

b) ||Az|| < k||Dz|| for every z € H.

Roughly, what the theorem says is that, if one operator A is defined on a subspace
and is dominated there by another operator D (defined everywhere), then there is an
extension of the smaller operator to the whole-space which is still dominated by
D. An “honest” version of the Hahn-Banach theorem for operators would replace
the dominating operator D by a seminorm p. In this generality, the result is false;
counterexamples exist in Hilbert spaces of dimension 3.

Proof. By the hypothesis, A*A £ k2 D}, Dn, where DN represents the restriction
of D to N. By part (1) of Theorem R, there is an operator B : (DN)~ — K such
that ||B|| € k and A = BDy. Now define

. {B‘:: if £ € (DN)~
Bg = . 1
0 if zL(DN)

and extend by linearity so that B is defined on all of L. Clearly, ||B|| < k. Now, let
A = BD. Then A € B(H,K), and, if z € N, we have BDz = BDz = Az, and it
follows that A is the restriction of A to N. Also, ||Az|| = ||BDz|| < k|{Dz|l, and we
have established the desired result. m

We want to look at interpolation by operators in nest algebras. First, we quickly
establish terminology and notation. For simplicity, we take H to be an infinite-
dimensional separable Hilbert space. A nest is a strongly closed, linearly ordered
collection of projections (or subspaces) on H, containing 0 and the identity. If Nis
a nest, the associated nest algebra AlgA\ consists of all bounded operators on H that
leave invariant each projection in A". Our main theorem is a direct generalization of
Douglas’s result.

THEOREM 2. Let X and Y be operators on H, and let N be a nest. The following
are equivalent:

(i) There exists an operator A in AlgN such that AX =Y

(i) sup{‘]—l‘g;—};%:feﬂandEEN}:k{oo.

(We use the convention — = 0, when necessary.)

Moreover, if condition (ii) holds, we may choose the operator A so that [[Af| = k.
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A brief remark: Condition (ii) says that, for each E € A, and for every f € H,
one has |ELY f||? < k2||EL X f||?, from which it is apparent that (E+Y)*(E+Y) <
< (E1X)*(E+X). By Theorem D, this means that range[Y* E1] C range[X* E4] for
each E € N. We will use this fact below without further comment.

Proof. The implication (i)=>(ii) is not hard. Indeed, suppose that the indicated
operator A exists. For any projection E € N and for f € H, we have

|B4Y £l = |IE*AX f|| = | B AB* X fI| < [IB*ANNEX Al < HATIES XA,

and we see that [|A|| may play the role of the desired constant k.

The implication (ii)=>(i) is more difficult. For the remainder of the proof, X
and Y will be fixed bounded operators. We first show how the proof proceeds when
the nest A is finite, that is, N = {0, By, Es, ..., En, I}, where we assume that the
projections are ordered so that E; < Ej;4:. Not surprisingly, the proof in this case
relies on an induction argument.

If there are no projections in the nest other than 0 and I (that is, if n = 0), then
AlgN = B(H) and (via the remark) condition (ii) reduces to the single statement
that range[Y*] C range[X*]; Douglas’s theorem then guarantees the existence of an
operator A such that AX = Y. The fact that ||A]| can be taken equal to k is a
consequence of condition {(a) of Theorem D.

Now suppose that the theorem is true for any nest with no more than n —
—1 nontrivial projections; for these purposes we think of the identity as a “trivial”
projection (since it lies in every nest). Let {0, By, E>..., Ey, I} be a finite nest with
n nontrivial projections. Set X; = EfX and Y; = EfY. We have, for each j =
=2,...,n, B X, = E}E{ X = E}+X; and, likewise, E;-Y, = E;'Y; consequently,
foreach j=2,...,n

WE; Yifil = B BLY £l| = [|EFY fIl < kIIE; X £l = kI|E X1 f]].

Thus, it follows that condition (ii) holds for the operators Xy and Y3, with respect
to the nest L' = {0, By, E3,...,E,,I}. So, by the inductive hypothesis, we know
that there is an operator A’ € AlgL’ such that ||A/]| € k and A'X; = Y;. We have
ElY = A'E{X = EfA'ELX. Set B = E}FA'EL. Since range[B] € Ef, and
since the projections all commute, it is clear that B € Algl, and that BX = E{Y.
Moreover, ||Bj} € ||A'|| €

Next, the condition range{Y*E;] Crange[V*] C tange{X "’] follows from choosing
E = 0 in part (ii) of the hypothesis. Theorem D then asserts the existence of an
operator A; for which A; X = F1Y. For any vector f, we have

N4 X FIP + IBX AP = | BEY AP + ELY AIP = Y AP < B2 XA,
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The last inequality can be written in the form ||4.g]|*> < || Dgl|?, where g € range[X]~
and where we have abbreviated by D the operator (k?I — B*B)%.

Applying theorem 1 with N = range[X]~, K = range{F1], and L = H, we see
that there is an operator A in B(H range[E;]) such that ||Az|| < ||Dz|| for all z € H,
and such that AXf = A; X f for each f € H. Finally, set A = A + B. This is the A
that we are searching for. First, AX = AX+BX = A X+BX=EY+ E'iLY =Y.
Second, the fact that range[A] C F, and range[B] C Ei- means that, for any vector 2,

|Az|]® =.[| Az + Bz||* = || Az|/* + ||Bz|l* < || Dz|* + || Be||* = &*||=||*.

This completes the proof for nests with n nontrivial projections, and, by induction,
for all finite nests.

We now turn our attention to an arbitrary nest A/, and recall that we have

labeled by k the quantity sup{% :f€Hand E€ Ny, If F is any finite
subnest, there is a corresponding quantity ks, defined by replacing &' by F in the
bracket above. However, kx < k, since kx represents a supremum taken over a smaller
set. Therefore, the argument for finite nests ensures that there will exists an operator
Ar in AlgF such that AxX =Y and ||A#|| € k7 < k. Consider a maximal chain C
of finite subnests, ordered by incluson. The resulting net {Ar : F € €} is bounded
and will therefore have a weak limit point, say A. Clearly, AX =Y. Furthermore,
since, for any projection E in £, E will eventually lie in some finite subnest in the
chain C, we have A € AlgN. This completes the proof that (ii) implies (i). In the
course of this argument, we have shown that the norm of A can always be chosen to
be no larger than k. From the definition of k, however, it is obvious that ||A|| > k.
Consequently, ||4|| = k and everything has been verified. -

We now show how this theorem can be used to solve the problem of interpolation

for n vectors simultaneously.

THEOREM 3. Let N be a nest. Suppose that {#1,Z2,...,Zn} and {y1,¥2,.--,¥Yn}
are two sequences of vectors. The following are equivalent:
(i) There is an operator A in AlgN such that Az; = y; foreachi=1,...,n.
(ii) There is a number k < oo such that, for any collection of complex numbers
1,Qs,...,0an, and for any E € N,

| eiwi)|
B )] <&

Proof. First note that, with £ = 0, condition (ii) says that if a linear combi-
nation of the z’s is zero, then the same combination of the ¥’s must also be zero.
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Consequently, by removing redundant vectors if necessary, we can assume that the
set {z1,T2,...,Zn} is linearly independent. Let {ey,es,...,€en} be any orthonormal
set of vectors, and set X =) z;®¢} and Y = }_ y; ® e]. The operator interpolation
equation AX =Y is equivalent to the multi-vector interpolation equations Az; = ¥;.
With this change of viewpoint, we can apply Theorem 2, and the remainder of the
proof is straightforward. |

There is a connection between the classical corona theorem and operator in-
terpolation problems. Indeed, suppose that {fi,f2,...,fa} is a collection of H®
functions. The corona problem asks under what conditions there will exist H* func-
tions {g1,92...,9n} such that 3 fi(2)gi(2) = 1, for all |2] < 1. If we denote by T} the
Toeplitz operator associated with the function f, the last equation can be written in
operator language as 3_ Ty, T,, = I. Using matrices, we can even write the left-hand
side using a single product:

Tf 1 sz < Ty, 00 : Tg1 0 I
6o o .. 0o J]l0O O - T B 0 0|
U 0 0 0 Ty 0 --- 0

Our results will not directly reproduce the function-theoretic corona theorem,
since H® is not a nest algebra. However, we can formulate a “corona-type” version
of the operator interpolation problem for nest algebras. To be precise, given a nest N,
and given operators {X;, Xs,..., X5}, one might ask what conditions will guarantee
the existence of operators A; € AlgN such that 3 4;X; = I. For X; € Alg\,
this question was answered by Arveson [3] and Davidson [6, Theorem 15.19]. The
following theorem embraces their results by relaxing the condition that the given
operators {X;} lie in the algebra; and it also allows any operator whatever on the
right-hand side of the interpolation equation. We need to establish some notation. If
H is the underlying Hilbert space, H(®) represents the direct sum HOH & --- @ H
of n copies of H. If E € B(H), we represent the sum EQE®---@ E by E®. For a
sequence of operators {X;, X5,...,X,,} on H, let

0 0 0 X3
16 0 -+ 0 Xo
X=1 . . . .

00 --- 0 X,
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Finally, for a single operator Y, on H, let

The notation for the last two matrices is consistent, as long as we identify the single
operator Y; with the sequence {¥1,0,...,0}.

THEOREM 4. Let N be a nest and let X1, X, ..., X, andY; be operators on H.
The following statements are equivalent:
n
(i) There exist operators Aj, As,..., Ay in Alg\ such that ZA,-X} =Y;.
i=1
iy anod HERY ]| (n)
1) sups s———-——-:E€ L, fEH =k < 00,
@ = [z
Moreover, if the last condition holds, we can choose the operators A; so that ||A|| = k,
where A* is formed from the sequence {A}} in the same way that X is formed from

the sequence {X;}.

Proof. (ii)=»(i): Consider the nest A(*) consisting of all EM™, for E € N.
Condition (ii) of this theorem is precisely what we need to apply Theorem 2 to the
operators X and Y, with respect to the nest A(®). Thus, there is an operator A in
AlgN®™) such that AX =Y. Writing the equation in matrix form, we have

Ay A - A 00 --- 0 X3 00 --- 0 1y
Agy Ay -+ Aoy, 00 --- 0 Xy ¢ o0 --- 0 O
Ami Am2 - Amn 06 --- 0 Xa 00 ---0 0

where each entry A;; lies in the algebra Algh(®). It is obvious that we don’t really
need any of the entries of the matrix A below the first row; if we are looking for the
minimal norm for A, we can set all those entries equal to 0. This means that 4 can
be assumed to have the form predicted in the last sentence of the statement of the
theorem. The remainder of the proof is nothing more than a mere translation to H(*)
of the results in Theorem 2. u

Carleson’s corona theorem [5] gives necessary and sufficient conditions under
which a certain equation can be satisfied; both the conditions and the equation are
completely function-theoretic. In our version, the conditions (ii) and the equation (i)
are operator-theoretic. As a further application, we present a hybrid version.

THEOREM 5. Let {f;}?, and f be H*® functions. The following are equivalent:
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N

™

(i) There exist functions {g;} in H*® such that E figi=7
i=1
(ii) There exists a positive real number § such that

n
S IT;ull? > 8| T ulf? for every u € H2.

i=1

Some remarks are in order. First, the proof of the theorem will be omitted. In
addition to an argument as in Theorem 3, it is convenient to make use of Arveson’s
trick of establishing an expectation function from B(H) onto the Toeplitz operators
(e.g., see [6, Theorem 8.9]). Second, the shape of the theorem (an operator-theoretic
condition (ii) and a function-theoretic equation (i)) suggests that the connection be-
tween the classical corona theorem and Theorem 3 may be more than a mere analogy;
in fact, one might dream of a completely operator-theoretic proof of Carleson’s theo-
rem. Third, if we think of the functions {f;} as being fixed, ther different choices of
f produce different equations; some of these may have solutions, and some may not.
If there are functions {g;} such that ¥ figi = 1 then the equation in (i) can obviously
be solved for any choice of f; however, the existence of a solution for a particular f
does not necessarily guarantee that there is a solution with f replaced by 1. As far as
we know, Theorem 5 provides the first example of conditions necessary and sufficient
for the existence of solutions to corona-type equations in this generality.

Finally, we remark that, by using more entries in the matrix X of Theorem 4,
and by using more entries in the right-hand column of ¥, one can obtain solutions of
systems of operator equations, with solutions in AlgA”. The exact formulation of the
conditions necessary for existence of solutions to such systems will be omitted.

There are a number of previous articles that either modify the statement of the
corona theorem to an operator-theoretic setting, or use operator methods to prove
corona-type results for functions. Nagy and Foiag [13], for instance, and later C. F.
Schubert [16], have proved a theorem very much like the result of Arveson that has
been mentioned here. Rosenblum has a version of the corona theorem for countably
many functions [15], and Sun Shunhua [17] proved a corona theorem valid for functions
in the polydisk. Other approaches to similar problems are contained in Helton [8]
and in Ball-Gohberg [4]. Finally, we would like to mention that M. Anoussis [2] has
obtained some of the results contained in this paper.
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