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ON GENERATORS OF BIMODULES OF NEST ALGEBRAS

XINGDE DAI

0. INTRODUCTION

In this paper, a Hilbert space will be separable. We will use the same notation
for a (self-adjoint) projection and for its range space. For any vectors z,y in H, the
rank-1 operator {.,y)z will be denoted by z ® y. The ideal of compact operators of
B(H) will be denoted by K.

A nest A in a Hilbert space M is a chain of (self-adjoint) projections ordered
by inclusion of the corresponding range spaces. A nest is complete if it is closed in
the strong operator topology. In this paper all nests will be complete. A nest N
is of order type I if it is an infinite set, and exactly one of the following projections
Eyx=V{N € N :dimN < oo} and E, = V{N+ : N € A and dimN* < oo} is finite
dimensional, and both Ej and E; are limit points in A'. A nest N is of order type
I1 if it is not of order type I. In [1] we proved that a nest A is of order type Il is a
necessary and sufficient condition for B(H), the set of bounded operators acting on a
separable space 7, to be a norm-principal bimodule of alg N

In this paper we continue our work. A nest A is said to be of order type II; if
at least one of E) and E, are infinite dimensional. A nest N of order type II is said
to have order type II; if it is not of order type II;. Many nests including finite nests,
continuous nests and any nests order isomorphic to Z have order type II;. Assume
that a nest A has order type II;. In this paper we will characterize conditions for
an operator T in B(H) to be a generator for B(H) as a norm-principal bimodule of
algN.

This paper is organized as follows. In Section 1 we introduce a definition of an
index of an operator T related to a nest A”. Then we state our Main Theorem. In
Section 2 we prove some lemmas. In Section 3, we prove the Main Theorem and give
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some Corollaries. When a nest has order type Ilo, we characterize the generators of
the Calkin algebra B(H)/X as a norm-principal-bimodule of A(N), the image of alg N
under the Calkin homomorphism. We also characterize the generators of B(H) as a
norm-principal bimodule of the quasi-triangular algebra alg NV + K. We prove that
when N is of order type Ils, the set of generators is open and dense in B(H)/K. Also,
the set of generators for B(H) as a norm-principal bimodule of the quasitriangular
algebra is an open dense set in B(#).

1. PRELIMINARIES

Let N be a complete nest in a separable Hilbert space H. Let z be a separating
unit vector of Cy7, the von Neumann algebra generated by N'. For N € N, we use
w(N) = (Nz,z} = ||Nz||? to index N. The index set A = w(N) is a closed subset of
[0,1] containing {0,1}. In this paper we use a fixed separating unit vector. The letter
« will denote the smallest limit point of A and B will denote the largest limit point of
A. Assume that dimH = co. We have Ej = Na,, E, = Np, for some ao, fp € A. If
N is an infinite nest, we have 0 € ap < @ < 8 < By € 1. If A has no limit point, we
assume & = &g and B = fly. Let A be a nest of order type IIz. Let A< p, A, p € A.
Denote P = N[ u] = N, — Nx. The operator N[}, y] is called an NM-interval. If
ag < a, then there is a A in A such that N[ao, )] is an infinite dimensional minimal
N-interval (an atom). Similarly, if # < Gy then there is a p in A such that N[y, Bo]
is an infinite dimensional atom.

Let A be a nest in H and T € B(H). We define a seminorm @(T) in B(H) as
follows:

B (T) = inf {||(Np, — Ny)T(N3 — Nag)lle : 6, A € A and s < fo, A > o}

where [[4]|c = inf{||A - K|| : K € K} for 4 € B(H).
We define a mapping ja : B(H) — {0, 1} as follows:

in(T) = inf{sgn][N;"‘TN,\” p<l, A>0, p, A€ A}

We have ja(T)} = 0 if and only if there is an order pair (A, z) in 4 x 4, p <
< 1,2 >0, p,A € A such that NITN, = 0. In Lemma 4 ju(T) gives a crite-
rion for when the norm-bimodule generated by an operator T contains the compact
operators K.

DEFINITION 1. Let A be a nest of order type II; and let 7' € B(H). Assume
that dimH = oo. The index of T related to the nest A, denoted by ix(T) is given
by ix(T) = ja(T) I (T).
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REMARK. The index iy is not norm-continuous in general. When N is of order
type IIy, the set {T € B(H) : ia(T) = 0} is a norm-closed alg N-bimodule in B(%),
and the set G = {T € B(H) : ix(T) > 0} is a norm-open set.

Now we state our main results.

MAaIN THEOREM. Let N be an order type II; nest in a separable Hilbert space
H and let T € B(H).

1. Assume that dimH = oo. The operator T Is a generator of B(H) as an
alg N'-norm-principal bimodule if and only if iy (T) # 0;

2. Assume that dimM < oo. The operator is a generator of B(H) as a norm-
principal bimodule of alg N if and only if jar(T) = 1.

NoTEs. The proof for finite dimensional case is not difficult. We leave it to the
reader.

2. LEMMAS

In this section we will prove some Lemmas and Propositions.

LEMMA 1. Let N be a nest in K such that « = 0 and 8 = 1 and let T be an
operator in B(H) such that inf{||[N;TNy|| : A,p € AN(0,1)} = 1. Let ¢ > 0 and
B,A € AN(0,1),A < . Then

1. There exist Ay, Az, 41 and pa in A such that 0 < Ay < Ap <A< p< 1 <
< p2 < 1 and a unit vector x € N[X;, A;] such that

1— & <||N[p1, p2] TN AL A2)l| < 1 + ¢,

and

1~ € < |[N[p1, 2] TN, Aol < 1 +e.

2. If there is a strictly increasing sequence {pn} in A such that limp, = 1 and
dimN{p,, pay1] = oo for each n, then the numbers uy, o in (1) can be chosen such
that dimN {1, ps] = co.

Proof. The conclusion follows from the following facts:
elfup and A2 N, pu,u', A, X € A, then ||Npl,TN,\a|[ S INFT NI
o If lim;T; = T € B(H) in sot, then ||T}| < sup,||Tz|| < +o0.

For an operator T € B(H), we write Zy(T') = [(alg N)T(alg N)], the norm-closed
linear span of (algN)T'(algN). This is an alg A-norm-closed bimodule generated by
T. Let N be a nest such that o = 0 and 8 = 1. This is a nest of order type II;. Then
one of the following four cases must occur:



128 XINGDE DAI

1. There exist a projection P in A, an o.n. basis {e_; : k£ € N} for PH and
a sequence of mutually orthogonal infinite dimensional projections {E; : k£ € N} in
PLH with V{E; : k € N} = Ipiy such that the interval nest PA is a subnest
of M = {N_n : n € N}U{0,Ipy} in PH where N_, = [e_x : k > n] and the
interval nest PLA has a subnest M; = {M, : n € N} U {0,Ipsy} in PLH where
M,=[Ex:1<kgn)

2. There exist a projection P in AN, a sequence of mutually orthogonal infinite
dimensional projections {F_j : & € N} in PH with V{E_; : £ € N} = Ipy and
an o.n. basis {e; : k € N} for PLH such that the interval nest PA” has a subnest
M = {N_n : n € NYU{0,Ipy} in PH where N_, = [E_; : k > n] and the
interval nest PLA is a subnest of M; = {M,, : n € N} U {0, Ip.y} in PLH where
M,=[er:1<k<gn]

3. There exist a projection P in N, an o.n. basis {e_; : £ € N} for PX and
an o.n. basis {e; : £ € N} for PLH such that the interval nest PA is a subnest
of Mi = {N_, : n € N}U{0,Ipx} in PH where N_,, = [e—x : & > n] and the
interval nest PLN is a subnest of M, = {My, : n € N} U {0, Zp.y} in PYH where
My =[er: 1<k <)

4. There exist a projection P in N, a sequence of mutually orthogonal infinite
dimensional projection {E_y : £ € N} in PN with V{E_; : k € N} = Ipy and
a sequence of mutually orthogonal infinite dimensional projections {Ey : k € N} in
PN with V{E; : k € N} = Ip.y such that the interval nest PA’ has a subnest
M = {N_, :n € NJU{0,Ipn} in PH where N_, = [E_y : k > n], and the
interval nest PN has a subnest M; = {M, : n € N} U {0, Ipiy} in PLYH where
M, =[Ex:1<k<n).

In the following Proposition we will discuss the above four cases.

PROPOSITION 1. Let N be a nest in M such that @« =0 and 8 =1 and let T be
an operator in B(H) such that ®5(T) > 0. Then

1. If the nest N is in case (1), then there exist a sequence of mutually orthogonal
N-intervals {F}, : k € N} in PLH with V{F; : k € N} = Ip.y, and an o.n. sequence
{fe}, fi € F, for each k, such that So = Y _ fr ® e—t € In(T);

2. If the nest N is in case (2), then there exist a sequence of mutually or.tbogona.l
N-intervals {F_; : k € N} in PH, V{F_; : k € N} = Ipy, and an o.n. sequence
{f-+}, f-x € F_; for each k € N, such that So = Eek R for €Tp(T);

3. If the nest N is in case (3), then the operator Sy = Eek Qe_x € In(T);

4. If the nest N is in case (4), then there exist a sequence of mutually orthogonal
N-intervals {F_; : k € N} in PH with V{F_; : k € N} = Ipy, an o.n. sequence
{f-x}, f-x € F_; for each k € N, a sequence of mutually orthogonal projections
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{Fy : k € N} in P*H with V{F; : k € N} = Ip.y, and an o.n. sequence {fi},
fr € Fy for each k € N, such that Sy = ka ® f-r € In(T).

REMARK. As discussed before Proposition 1, we have four cases. The operator
So we obtained in Proposition 1 in each case is a generator for B(H) as an alg AN-norm
-bimodule. (See the proof of Proposition 3 in [1] for details.)

CoRroOLLARY 1. Let A be a nest in a separable Hilbert space M with & = 0 and
B = 1. Assume that T € B(H) and that ix(T) > 0. Then Ty (T) = B(H).

In order to prove Proposition 1, we need the following Lemma 2.

LEMMA 2. Let N be a nest in the case (1) and T € B(M). Let €i5, i # 4, 4,j €

€ N, be given positive numbers such that ng;,- < Assume that & (T) = 1.

. 2

Then there exists a strictly increasing sequc::;e {Xs : n € Z} in A such that the set
No = {Ny, : n € ZYU {0, I} is a subset of N. There also exists an o.n. sequence
{e, : n € Z\ {0}} in B(H), €}, € N[As, Ant1] for n < 0, and €/, € N[A,-1,An] for
n > 0 such that

1. dimN[An, Apy1) = oco foreachn 2 0

2. [(Tel gy, eh)| < erj, k#34, k72 1; and

3.3 <UTeaep)< 3 k1.

Proof. Since Ox(T) = 1, Ex = E, = 0, we have inf{|[NJTN,|| : \,p € AN
N(0,1)} = 1. Let P be the projection in case (1), then there is a Ag € A such that
N,, = P. We will only construct A, for —4 £ n < 4, and €, for —4 < n £ 4. Using
induction we can complete the construction. Let {p, : » € Z} be a sequence in A
such that nEIPoo pn =0 and nli’ngo pn = 1.

1. By Lemma 1, we can find A_5,A_1,A;,A2 € A4, such that A_, < A_; < X <
< Al < Az, and A2 < pos, A < p-1, A1 > p1, A2 > po, and such that
dim N[A;, A2] = 00, and there exists a unit vector e’ , in N[A_3, A_1] such that

4 6
3‘ < ||N[/\2,/\1]TC’_2“ < —,

We write y; = N[A;, A2}T€e’, and define & = ” “
%
1

= < [{N[A1, A2]Tel,, €5)] < § Let ¢ be a unit vector in N[A_1, o] and ¢} be a
2 2 !

unit vector in N[Ag, A1].

We have e; € N[, ;] and

2. Since llm N, J'y =0and lim N,y =0 for any element y in H, there
. p—1,u€A p—0,u€A
exist 3,41 €A, 0< i1 < py <1, p_y < Aoz, g1 > Ag, such that

€1;2

N, * el .
” I‘—iT 62” < ézn and “ Te 2” < 2“:11”
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By Lemma 1 again, there exist A_4,A_3,A3, and Ag in 4, such that A_3 <
< min {P-—S, l‘—l”\—2}: A < min{p_4,)t_3}, Az > max{pS:)‘2>F1}a As > max{m,
Az}, and there exists an element ¢’ in N{A_4, A_3] such that dim[As, Ag] = co and
1 3
5 < MN[’\S: Aq]TG’_g;“ < 5.

We write y» = N[Ag, \4]Te’,. Define e = “ “ We have
Y2

HTely, ex)l = Hely, T et)] = {Nu_yely, T ed)| =
= (el g, Nu_ T ed)| € IiN,,_ T*eh| < e24;

Te'.,, ¢, =<T'_,—”-3->‘ NiAs, M)Te’,, Te'.
ﬂ( €2 84” €2 “y2” ”y2“l< 3 4] €4, 1€ 2)!
1
< NiTel 4,Tel Te! 4, N Te.
Hy2”|( 4 2}[ ” ”K 4 2)|
€ TN N Tel <2|T = £1.2.
lel” ” N € 2“ ” "2“T“ 1;2

Let ¢’ be an arbitrary element in N[A_s, A-2] and let e} be an arbitrary element
in N[A2, Ag]. Lemma 2 is proven.

Proof of Proposition 1. We will prove case (1). For the proofs of other cases,
first we have to establish a lemma similar to Lemma 2 in each case. Then we can use
the following proof for case (1). We leave these to the reader.

Proof of case (1). Since @ar(T) > 0, we have

inf{||[N;TNa|| : pd € AN(0,1)} >

2 inf{{|NFTNalle : g, A € AN (0, 1)} = Sar(T) > 0.

Notice that for any given non-zero complex number o, we have Py(aT) =
= |a|Bn(T) and Iy (eT) = Zy(T). Without loss of generality, we can assume that
inf{]|N-TN,| : 5, € AN(0,1)} = 1. The nest A satisfies the conditions in Lemma
2. Let {e, :nel \ {0}} and {An:n € Z} be those as in Lemma 2.

Define S1 Z Cop— 1®82k and Sz = Ze—2k®e—2k+l Then we have .Sl € algN
E=1
and S; € algN. Hence 5 TS, € f(T)

Let Py = projfel, : k €N = Zezk ® ehy,. We have
k=1

oo o
5, TSy = (Z e’zk_l ® e'zk) T (Z Bl_igk @ C’..2k+1) =

k=1 k=1

x o0 (= =]
= (E k1 ® 3'2&) (Z € ® e;k) (Z TeLyu ® 6’-2&-@-1) =
k=1 k=1

k=1
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! / i !
(Telp,eon)enr_1 ® €_opqq + To,

I
gk

El
It

1

1
where T = ;(Te_zj,ez,c)ezk 1 ®¢elg; 41 Since §| (Telo;, €ax} <§EJ k<3 the
J
operator Tp is compact. We will show that Tj is in Zar(T"). This is immediate from the

fact that e3;,_,®eyy, and el ;®e’ 5, ; arein alg N and (€5, ®e5;)T(el ;@€ 5501) =
[=+]

_ ' \ ' ] _
= (Tel,;,eh)eh; 1 @ € g;4,- So, the operator Zakeu—l ® e gk = S1TS>—
k=1

1 3
—To € Zn(T) where o = (Te!_,,, €4,). Recall that we also have 3 < lox| < 7" Let

[++]
Br = o' and define Sz = Z,@kegkws ® epp_;3. Then S3 € alg N and 535,782 =

k=2
[=s] [o0] a0
= (Z Bredr_s ® 331;-1) (Z akeg_y @ e’—2k+1) =D eh_a® ey € In(T).
k=2 k=1 k=2

Let {e—+} be the o.n. basis in case (1). We will prove that there exists a strictly
o0

increasing sequence {n; : k& € N} such that the operator Ze'-?ﬂk"“l ® e_r 18 in
k=1
IN(T). Let ny be the smallest natural number n such that e/, ., ® e_; € algV

and n > 1. Assume that {n; : ¢ = 1, 2,..., k — 1} are chosen. We define n; be
the smallest natural number n such that » > max{n; : i =1, 2, ..., k— 1} and
—2n+1 Qe € a}gN

Let Ty = Z € on+19€ . Then T} € algV. Hence (Z:emc 3®e_2k+1) =

k=1 k=2

oo
= ehn,—3® e € Iur(T).
k=1
We denote fi = €5, s, F1 = N[Xo, Aan,—3) and Fy = N[Azn,_,-3, A2n,-3], for
o]

k > 1. The sequences {fr} and {Fi} and operator Sy = ka ® e_p are what we
k=1
needed. The proposition is proven.
LemMA 3. Let N be a nest of order type II; in a separable Hilbert space H.

Then there exists an operator Sy in B(H) such that ix(S) = 1.

Proof. If ap = o and By = B, we can find a strictly increasing sequence {}, : n €
€ 7} in A such that hm N[0,A;] = Ng and hm N0, ;] = N,. For each n € N,

let e, and f, be umt vectors such that e_,, € N[/\_n_l, -n), and fn € N[An, Ant1].
Let Si=) fa®e_n.

If @g < a, we can choose e_, to be an o.n. sequence in the smallest A-interval
Nleo, A] which is infinite dimensional; in case 8 < Sy we can choose f, to be an o.n.
sequence in the smallest A -interval N[u, fo] which is infinite dimensional. For such
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an operator S;, we have S/(5)) = 1.

Let e be a separating vector of Cyr, the abelian von Neumann generated by A,
Then we have Ppr(5) +e®e) = Sn(S1) = 1 and jn(S: + e ®e) = 1. The operator
So = 51 + ¢ ® e satisfies the condition. Lemma 3 has proven.

LEMMA 4. Let N be an order type Il nest in a separable Hilbert space M.
Assume that T' is an operator in B(H) such that jn(T) > 0. Then K C In(T).

REMARK. The lemma is true for nests of any type. For proof, we need discuss
in cases.

Proof. 1t suffices to prove that any rank-1 operator in B(H) is in Zx(T). Let
z,y € B(H). Since the nest A is of order type II,, the projections Ej and E, are
finite dimensional. We denote P = 04 and @ = I_. Since ju(T) # 0, there is a unit

L
vector u € P such that Q+TPu # 0. Define v = H—g—_]_—%. We have u® 2 € alg A

and y ® v € alg V. Therefore we have y ® z = ||Q1 T Pu|l(y ® v)T(u ® z) € Zn(T).

3. PROOF OF MAIN THEOREM AND COROLLARIES

In this section we will complete the proof of the Main Theorem. Some properties
of the generating set are stated and proven. Also, we will characterize the generators
of B(H)/K as an A(N)-norm-closed bimodule and characterize the generators of B(¥)
as a norm-bimodules of algh + K. We start with some special cases.

THEOREM 1. Let N be a nest of order type I, in a separable Hilbert space H
and let T € B(H). Assume that the nest and the operator T satisfying the following
conditions

1. The interval nest N [0, ﬂo]N Is In one of the four cases in Proposition 1.
2. op(T) #£0.
Then we have Zx/(T) + K = B(H).

Proof. Denote M = N{ao, Bo]N. The nest M in N[ay, By] satisfies the condition
in Proposition 1. It is easy to verify that DN [wo, g0V (N [0, Bo]) = Sa(T) # 0. By
Proposition 1 we have

In(T) = [algNTalgN] 2
2 [(N{ao, Bo]alg N'N (e, Bo])T (N [evo, Bolalg N Navo, Bo])] 2
2 Nlao, Bo] B(H)N e, Bo).

The conclusions follows from the following fact:

{T € B(H) : N{ay, Bo]T N[, f0) = 0} C K,
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since N[0, ag) and N{By, 1] are compact.

THEOREM 2. Let A be an arbitrary nest of order Il; in H and let T € B(H)
such that ®x(T) = a > 0. Then there exists a refinement nest M of N satisfying
the following conditions:

1. The nest M satisfies the condition in Theorem 1.

2. dpm(T) = DN (T).

Proof. Since the nest has order type II2, there are only 3 possible cases:

1. g = o and B < fo.

2. ap < @ and 8 = fp.

3. ap < ¢ and B < fo.

1. Assume ap = o and B < B and Sx(T) = a > 0. Then N[B, Bo] is an infinite
dimensional subspace. Let {f, : n € N} be an orthonormal basis for N8, fo]. Define
a sequence of projections {Qn : n € N} such that @, = Np +[fr : 0 < k < n}. Then
nlingo Qn = Npg,. So M = N U{Qn : n € N} is a refinement of A. The new nest
satisfies the condition in Theorem 1 since Fo is a new limit point. We must prove
that P (T) = Sar(T).

It is obvious that ®pm(T) € Sa(T) = a since M D N. We must show that
pm(T) > a. Recall that for a compact operator K we have ||K||. = 0 and that || - ||
is a seminorm. Notice that Q, — Ns = [fi : 1 < k < n] is compact. Let Ny be any
projection in M such that N, > N,, and n > 0. Then

[l(Ngo — @n)T(Nx — Neg)lle 2
2 l(Ng, — Ng)T(Nx — Nao)lle = 1(@n — Np)T(Nx = Noo)le =
= ||(Ngo — Np)T(Nx = Nay)lle 2 a,
for any n and for any Ny € M.

Therefore $aq(T) > a. Proofs of case 2 and case 3 are similar to this. Theorem
2 is proven.

COROLLARY 1. Let N be an order type 1z nest in a separable Hilbert space H
and let T' € B(H). Assume that $x(T) # 0. Then Iy (T)+ K = B(H).

Proof. Let M be a refinement of A’ as in Theorem 2. Then we have &p(T") # 0.
By Theorem 1 we have
[alg MTalg M] + K = B(H).

The conclusion of Corollary 1 follows the fact that alg A Dalg M.

COROLLARY 2. Let N be an order type Iz nest in a separable Hilbert space H
and let T € B(H). Assume that $x(T) # 0. Then In(T) C Nao, fo]B(H)N [axo, Bo]-
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Now the following Theorem 3 is in hand.

THEOREM 3. Let N be an order type II; nest in a separable Hilbert space H
and let T € B(H). Assume that ix(T) # 0. Then Iy (T) = B(H).

Proof. This is from Lemma 4 and Corollary 2 of Theorem 2.

Proof of Main Theorem.

Theorem 3 shows that the condition is sufficient.

Let A be a nest of order type II,. If T is an operator such that iy(7) = 0, then
In(T) =0 or &x(T) = 0. We have the following two cases.

1) ja(T) = 0. There are A, p € A4\ {0,1} such that N} TN, = 0. So for any
A and B in alg N, we have N‘fATBNA £ N;AN;}TN)‘BN;\ = 0. This implies that
Jn(S) =0 for any S € Iy (T).

2) SPN(T) = 0. We will show that for any S in Za(T), we have ix(8) = 0. It
sufficies to prove that for any operators A and B in algA we have Sy (ATB) = 0.
Since A has order type II;. Both of N[0, o] and N[Bg, 1] are finite dimensional. So
we have T = (Ng, + N[Bo, 1))T(NZ, + N[0, o)) = Np, TNy, + K for some compact
operator K. Recall that for any operator K in B(H), we have Op(K) = 0. Let A
and B be any operators in alg V. We have

On(ATB) < Pw(Np,TNg,) + Our(K) = Eu(NgoTNy,) =

= inf{||(Ng, — Nu)ANp, TNL B(Nx — No)le : #8,A € A and g < o, A > oo} =
= inf{||(Ngo — Nu)}A(Np, — Nu)T(Nx = New) B(Nx — Nag )|l :
s, A€ Aand p < Bo, A > ap}l £
< [|4]1 1| Bllinf {||(Ngo — Nu)T(Nx = NoMle : ;A € A and 4 < fo, A > a0} =

= || Al l|Bl|@x(T) = 0.

Since any S in Zy(T) is a norm-limit of finite combinations of operators in form
A;TB; for i € N and A;, B; €algN, and the seminorm || - ||. is norm continuous,
we proved that @x(S) = 0. By Lemma 3 there exists an operator Sp in B(H) with
ix(So) = 1. Hence Sy & I (T). So any operator T with ix(T) = 0 can not be a
generator.

The proof is complete.

CoRrROLLARY 1. Let N be a continuous nest in H. Then the property that
&x(T) # 0 is a necessary and sufficient condition for T' € B(H) to be a generator of
B(H) as a norm-closed-principal bimodule of alg N.

Proof. In this case we have iy (T) = @n(T).
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THEOREM 4. Let N be a nest of order type Il, in a separable Hilbert space
H and let G be the set of all single generators of B(H) as an alg N -norm-principal-
-bimodule, then G possesses the following properties:

1. The set G is open dense in B(H) and its complement B(H) \ G is a closed
subset in B(H).

2. Both of G and B(H) \ G are star shaped set in B(H). In other words, for any
non-zero complex number a we have aG = G and a(B(H) \ G) = B(H)\§.

3. If Ex = E, = 0 and let K be any compact operator in B(M), then we have
G + K = G. That is any compact perturbation of a generator is a generator.

Proof. Under the condition of theorem, by the Main Theorem, it clear that G is
an open set. Let T be an arbitrary operator in B(H) and ¢ > 0. We will show that
there exists an operator T” in the ¢-neighborhood of 7" such that T” is in G. Assume
that T' € G. Then ja(T) = 0 or Sp(T) = 0. Let S; and Sz be the operators in the
proof of Lemma 3. We define S, = %(51 +53), let T/ = T + S,. The operator T' is
in G and ||T7 - T} = ||S:]} <e.

The proofs of other two properties are left to the reader.

CoROLLARY 1. Let A be a continuous nest in M and let G be a generator for
B(H) as a norm-closed singly generated bimodule of alg N and let K be an arbitrary
compact operator in B(H). Then G + K is also a generator.

In the following Theorem we characterize generators of the Calkin algebra
B(#)/K as a norm-bimodule of A(N), the image of algN under the Calkin ho-
momorphism and we will characterize the generators of B(H) as a norm-bimodule of
alg N + K, the quasi-triangular algebra.

THEOREM 5. Let N be a type Il, nest in an infinite dimensional separable
Hilbert space H and T an operator in B(H). Then

1. T+K is a generator of B(H)/K as a norm-principal bimodule of A(N) if and
only if &x(T") > 0. Furthermore, the set of generators for B(H)/K is an open dense
subset in B(H)/K.

2. The operator T is a generator of B(H) as a norm-principal bimodule of
alg N + K if and only if ®5(T) > 0. The set of generators for B(H) is an open
dense subset in B{H).

Proof. 1) If T € B(M) with &x(T) > 0. Then Iy(T) = [(algN)T(algN)]
contains N[y, Bo]B(H)N[co, A]. Since the nest A" has order type II, the projections
N0, ag} and N[By, 1] are finite dimensional hence compact. So we have [(alg N){T +
+K : K € K}(algN)] = B(H). This implies that the element 7' + K generates
B(H)/K as an A(N) norm-principal-bimodule.
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Let 7 be the Calkin homomorphism from B(H) onto B(H)/K. Let S € B(H)
and 7(S) € m(A)x(T)m(B), then S = ATB + K for some K € K. If &4(T) = 0,
then &p(S) = S (ATB + K) = 0. If S is the norm limit of cosets S, = S, + K =

= Zfr(A,-;,,)rr(T)r(B;m), where A;.. and B;,, are in alg A and m, is some natural

nuniber. Then S, is in form of finite linear combination of A;TB; for some A;, B; €
€ algN. So there exist K, € K such that lim||$ = (S, 4 K,)|| = 0. Since &, is con-
tinuous, this implies that #x(S) = 0 for any S for which 7(5) € [ANNT+K)A(N)].
Since there exists an element 7" in B(H) such that @x/(T) = 1. So [A(N)(S+K)A(N)]
is a proper subset of B(H)/K and the set {T" € B(H) : $»(T) > 0} is an open subset
in B(H) (in the norm topology). Therefore the set {T + K € B(H)/K : &x(T) > 0}
is an open subset in the Calkin algebra B(#)/K. The generator set is dense in B(%).
This follows from Theorem 3 and the continuity of =.

2) For this part we just point out that if 7 # 0 then K is a subset of [algN +
+K)T(alg N + K)]. The rest part of proof is essentialy the same as 1).

The author thanks Professor David R. Larson for his comments.
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