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ON THE SPECTRAL THEORY OF OPERATORS
ASSOCIATED WITH PERTURBED KLEIN-GORDON AND
WAVE TYPE EQUATIONS

PETER JONAS

INTRODUCTION
The equation
0 —=—=\{ .0 /.0 ——=\{ .0
{— (—1§ - V(a:)) (——15? - V(z)) +jz=; (—155; - uj(‘”)) (—1—6_23; —U; ("")) +
(0.1)
+Uo(z) + mz}u(z,t) =0,

where m > 0, V,U; € Loo(R™), j = 0,1,...,n, Uo = Up, u € C*(R" x R), which is
a perturbed Klein-Gordon (m > 0) or wave (m = 0) equation, can be written as the

following first order equation in ¢:

5 ()=

(0.2)
V(z) 1
_s (u(z, t)
- - . 0 T . 0 ) VRTINS v(z,t) '
JX:;( 1—ax—j - L{,(x)) (—1-%; —U; (:z:)) + Uo(x) +:m V(z)
Here the derivatives are understood in the distribution sense.
We define

u u
(0.3) [(;) ) (v:)] = (1, U) L (me) + (U1, V2)La(mn)s U1, %2, ¥1, V2 € L2(R™).
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For a 2-vector function (u) satisfying the Klein-Gordon equation (0.2) (m > 0)
v

the quadratic form (u) — [(u) , (u)] represents the charge of the particle
v v

described by (0.2). The space H 1:): Ly(R") & Ly(R") provided with the indefinite
scalar product [-,-] is a Krein space. It is easy to see that the operator in the Krein
space H corresponding to the matrix in (0.2) in the unperturbed case (ie. V =
=0,U=0,7=0,1,...,n),

0 1
n
62 H
—Za—-§+m2 0
i=1 zj

is selfadjoint and nonnegative.

For nonnegative selfadjoint operators A in a Krein space there was studied in [6]
a certain class of perturbations of A containing the relatively compact perturbations.

In the present note we apply the perturbation results of [6] to an abstract class of
operators which contains the operators in H corresponding to matrices as in (0.2} (un-
der appropriate assumptions on the potentials V, U, j = 0,1,...,n). Our objective
is to study the spectra and the spectral functions of these operators.

This approach to the Klein-Gordon equation employing the charge form [-, ] as
the basic inner product was used in a paper of K. Veseli¢ ([20]) and in the uapub-
lished paper {12] of H. Langer and B. Najman. The latter work was the stimulus for
the present note. In Section 1 we recall some definitions and results of the spectral
theory of selfadjoint operators in Krein spaces connected with the notion of definiti-
zability. Section 2 contains some preliminaiies on the unperturbed operator which,
essentially, are taken from [12]. In Sections 3 and 4 the perturbed operator is con-
sidered. Theorem 3.1 and Corollary 3.2, which give simple sufficient conditions for
the (local) definitizability of the perturbed operator, and Proposition 3.3, which is
devoted to the localization of the nonreal spectrum and the spectral singularities (in
the sense of [14]), are slightly strengthened versions of results from [12]. For the case
m = 0, definitizability properties and spectral singularities, apparently, have not been
studied before. For this case, in Theorem 3.4 and Corollary 3.5 we give conditions for
the perturbed operator to be definitizable over some neighbourhood of co. In Section
4 we consider the case m = ( under more restrictive assumptions, which imply defini-
tizability over R\ {0} (R: closure of R in the complex sphere) and, in particular, that
the only possible accumulation point of nonreal eigenvalues and spectral singularities
is the point 0. In Section 5 results of Section 3 are applied to a Cauchy problem.

In most of the papers dealing with the spectral theory of the Klein-Gordon equa-
tion (m > Q) instead of the charge from the energy form is used as the basic inner
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product (e.g. [13], [18), [8], [15], [16], [17], [4]). Since for compact perturbations
the energy form has no more than a finite number of negative squares, this leads to
problems of the spectral theory in Pontrjagin spaces. It was pointed out in [12] that
the charge form and the energy form approaches are closely connected.

I am indebted to Prof. H. Langer and Prof. B. Najman for providing me with a
copy of [12].

1. NOTATION AND PRELIMINARIES

Let (H,[-,-]) be a Krein space and let A be a selfadjoint operator in H. The
operator A is called nonnegative if the resolvent set p(A) is non-empty and [Az, z) 20
for every # € D(A). The operator A is called definitizable if p(A) # @ and there exists
a polynomial p such that [p(A)z, z] 2 0 for every z € D(p(A))-

Let o(A) denote the nonreal spectrum a(A4) \ R of the selfadjoint operator A in
#. Assume that no more than a finite number of accumulation points of go(A) are
nonreal. An open subset A of R is said to be of positive type (negative type) with
respect to A if the following conditions (i), (ii), (iii) are fulfilled:

(i) No point of A is an accumulation point of ao(A).
(ii) For every closed subset § of A there exist m > 1 and M >0 such that

IR (2; A)l| € M(1+[a])*™~2[Im 2~

for all z in a neighbourhood of § (in C) with z # o and Imz # C.

(iii) For every nonnegative (resp. nonpositive) f € C>°(R) with suppf C 4
the operator f(A) (defined, in view of (ii), by extension of the Riesz-Dunford-Taylor
functional calculus, see (5, Proposition 1.3]) is nonnegative.

In this definition (iii) can be replaced by a condition on the resolvent of A. We
give this condition under the additional assumption that co & A: If (i) and (ii) holds
and A C R, then (iii) is equivalent to the following ([5, Remark 2.5]"):

(iii)’ For every z € H we have

—ilim{{R(t + ig; A) — R(t —ie; A)}z, 2z} > 0 (resp. <0)
el0

for almost every ¢ € A, and for every z € H, every compact subinterval § C 4, and
sufficiently small £g < 0 there exists an M > 0 such that

—i[{R(t +ie; A) — R(t —ie; A)}z, 2] 2 —M  (resp. £ M)

*) In the two inequalities of [5, Remark 2.5] the factors —i are missing.
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for every t € 6 and £ € (0, £q).

We say that an open set A C R is of definite type if it is of positive or of negative
type.

The operator A is called definitizable over the open set 4 C R if the above-
-mentioned conditions (i) and (ii) are fulfilled and for every t € A all sufficiently small
one-sided open neighbourhoods of ¢ are of definite type. A definitizable operator is
definitizable over R ([5, Section 2.1)).

By A(A) we denote the union of all open subsets A of R such that A is definitiz-
able over A. Let 4; be an open subset of A(A4). We denote by 0,.(4; 4;) (¢-(4; 41))
the set of all points ¢ € o(A) N A; such that there is no open subset 4 3 ¢ of A(A)
of negative (resp. positive) type. We remark that, for a definitizable operator A,
o4 (A;R) and o_(4;R) do not coincide with the sets of spectral points of positive and
negative type, respectively, introduced in [12]. The elements of the set

o(4) = 0.4.(A; A(4)) No_(4; A(4))

are called critical points. A point t € o(A4) N A(A) belongs to ¢(A) if and only if there
is no open neighbourhood of t of definite type.

If A(A) # @, the operator A possesses a spectral function E(-; A). For the defi-
nition of the spectral function and a construction of it by extension of the functional
caleulus of A (cf. the above-mentioned condition (iii)) we refer to [5; Section 2.2].
Here we mention only some properties of the spectral function and give some defi-
nitions connected with it which will be used in the following. For every connected
subset 6 of A(A4) whose endpoints belong to A(A4) \ c(A), E(6; A) is defined and is
a selfadjoint projection in . An open subset A C A(A) is of positive type (nega-
tive type) with respect to A if and only if for every closed connected subset & of Ag,
E(6; A) is defined and nonnegative (resp. nonpositive).

A critical point £ is called regular if there exists a neighbourhood %, (in R) of ¢

_such that sup [|E(§; A)|| < co, where the supremum is taken over all intervals § C 9,
such that E(§; A) is defined. A non-regular critical point of A is called singular.
¢s(A) denotes the set of singular critical points of A. As a consequence of these
definitions the set of spectral singularities of A (in the sense of [14]) is contained in
es(A)U (g(A)\ A(A).

An open set Ag C A(A) is said to be of type 7, (type 7.) with respect to A if for
every compact connected subset é of Ag such that E(8; A) is defined, (E(8; A)H, [, ])
is a Pontrjagin space with a finite rank of negativity (resp. (E(8;A)H,[,]) is a
Pontrjagin space with finite rank of positivity).

Let 4q be a connected open subset of R of type 7y (type 7_). Then, making
use of the spectral function, we easily see that o_(A; 4Aq) (resp. o4(4; Ag)) has no



ON THE SPECTRAL THEORY OF OPERATORS 211

accumulation points in Ag. From the well-known Pontrjagin invariant subspace the-
orem it follows that every point ¢ € o_(4; Ag) (resp. t € 04.(A; Ao)) is an eigenvalue
of A and there exists an eigenvector z of 4 corresponding to t with [z, z} < 0 (resp.
{z,z] 2 0).

2. THE OPERATORS Am AND A4,

Let (Gq, (,-)o) be a Hilbert space and let Hg be a nonnegative selfadjont operator
in Go such that 0 € 6(H). We set Hy, := Ho+ m?I, m > 0. Define a scalar product
(,)o on D(HS), @ € R, by (z,3)o 1= (Hfz, H{y)o, ¢,y € D(HY). By Go, o €R,
we denote the completion of D(H{) with respect to the norm || - ||, ||z|le = (%, %)a,
z € D(HY). The form (-,)o can be extended by continuity to Go x G-, for every
o € R. Extensions of forms by continuity will be denoted, in the following, in the
same way as the forms theirselves.

We provide the linear space H = Gy @Gy with the Krein space inner product [-, -]
defined by

[(m) ’ (01)] = (Uzg‘vl)o + (u1,v2)o U1, ug, v, 2 € Go.

Uz Va
0 I
/= (I 0)

with respect to the decomposition X = Go @ Gp. J is a fundamental symmetry of
(H,[-,]) and we have

(GG =) (] =ewmmt oo smsmmin e

Set ||z]| := (2, z)%, z € H.
In what follows the operator Ay, m > 0, in H defined by D(A4m) := G1 @ Gp and

() = (o) () () 2t

will play the role of the unperturbed operator in our abstract setting.

If Go = Lo(R™) and Hy is the Laplace operator with its natural domain, then Ay,
is the operator corresponding to the matrix in (0.2) in the unperturbed case.

Since J Ay, is selfadjoint in the Hilbert space (M, (-, ")), Am is selfadjoint in the
Krein space (H,[-,-]). We have [Amz,z] 2 0 for every ¢ € D(Am). Evidently,
0 € p(Am) if m > 0. Thus for m > 0, A, is a non-negative operator in the Krein

Set
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space (H,[-,-]). It is easy to see that for any m > 0 and any z € C\ R the operator
Am — zI maps Gy © Gy one-to-one onto Gy @ Gy and we have

2R (2%) Ro(2%) )
I+ 22Rm(2?) zRm(2?)

where Rin(z) = (Hp — 2I)71, 2z € p(Hp). Hence Ay is a nonnegative operator in
the Krein space H.

Let m 2 0 be arbitrary and assume that the real numbers e and ,0 < a < b < o0,
are no eigenvalues of H:,%, From (2.1), applying [11; proof of Theorem 3.1}, we obtain:

B((a, b); HA) H;,%E((a,b);gré))
HAE((a,b); HE)  E((a,b); HE)

(2.1) (Am —zD)"1 = ( 2 € C\R,

E((a,b); An) = & (

and
1( E((ab)HA)  —Ha'E((a,b);HE)
1 W P N K

(see [12]). Hence

e (2] -

43 BBty + B0y by

It follows that for a fixed a we have

%“E((a,b);Hm)m+HM’E((“b Hm)U2" +

sup{||E((e, b); Am)|| : b € (2,00)} = 0

if and only if Hy is unbounded. The same is true for {a,b) replaced by (-b, —a).
Therefore, if Hy is unbounded, oo is a singular critical point of Ay, 0o € ¢,(Am)-

Let m = 0. If 0 is an isolated point of o(Ho), then, evidently, 0 & ¢,(Ag). If 0 is
an accumulation point of o(Hj), then for any fixed b, 0 < b < o0,

sup{||E{(a, b); Ao}l : a € (0, )} = oo,

ie. 0 e Cs(Ao).
Set

(2:2) H) =G, 86, Hoy =660

The form [, ] restricted to ‘Hs:i xH (M % ’HE:;) can be extended by continuity to
2
'Hf:)% X H_y (resp. H_y x ’Hf:l) Every continuous linear functional on ’Hﬂfl has the

form [-, y} for some y € H_ . The spaces 7'(5:_)1_ and H_, coincide (up to equivalence

z
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of norms) for every m > 0 with the spaces 'HE:?% (Am) and H_1(Am), respectively,
introduced in [7; Section 1.1, Section 1.4] (see also [6; Section 2.1]).
If H,, is the extension by continuity of Hp, to an operator of G 3 inG_ ' then

An:Gi®God (ul) — ( 12 ) €EGe®G_1
2 Uo Hpywg a

is the extension by continuity of A, to an operator belonging to E(H,(:i,?i_%) =:
=: [(A)

In [6; Section 2.4] (cf. also [2]) with every nonnegative operator C in H there
was associated a certain Krein space He. In our case we find by an easy computation
that H4, = g% fes) G_J; for every m > 0. We denote this space simply by H4. The
Krein space inner product on M 4 is defined by

[(ul) ) (vl>] = (UZJUI)O + (ulavZ)Oa U1, 01 eg}: U, Uz € G—i.

Ua V2

The operator A4, in H4 introduced in [6; Section 2.4] which is defined by

D(4p) = {z € H)

is a nonnegative operator in 4 and oo & ¢,(A!,) (see [6; Lemma 2.1]). The operators

tAme € Ha), ALz = Anz, € D(AL),

Apm and A, coincide on every spectral subspace of Ap, (Aj,) corresponding to the
complement of a neighbourhood of co. By definition D(A7,) = G5 © Gy. We have

Hf:;(A:n) = HS;(Am) = g% @ Go, 'H_%(A:,") = H_%‘(Am) =G ® g__}

for every m > 0 ([6; Lemma 2.1]). For further properties of A}, see [6; Lemma 2.1].

3. A CLASS OF PERTURBATIONS OF Am

3.1. In what follows let Z be an operator belonging to £{4) of the form

(3.1) Z= (Z ‘2*)

(with respect to the decompositions (2.2)) such that

and

(3.3) U=U"*
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Here * denotes the adjoint with respect to (-,-)o. We have [Zz,y] = [z,2Y], 2,y €
We regard Z as a perturbation of A,,, and the perturbed operator Am & Z is
defined by

D(Am w 2) = {z € HS) : (Am + Z)z € H}, (Am & Z)z = (Am + D)z
if z € D(Am & Z),

see [6; Definition 2.2]. Similarly we define the operator A}, & Z in H 4. The operators
Am w Z and A, & Z are closely connected (see [6; Lemma 2.8]). For example, we
have o(Ap, & Z) = o(AL, & Z). Am & Z and A, & Z can also be defined by form
sums. The operators in H (M) which were associated with a perturbed equation
of Klein-Gordon type in [12] are contained in the set of the operators of the form
Am & Z (resp. A, w Z), m>0.

The following theorem and corollary, which are sharpened versions of some results
of [12], follow from Lemma 2.3, Proposition 3.1 and Theorem 3.6 in [6].

THEOREM 3.1. For every m 2 0, A, & Z is a selfadjoint operator in H with
p(Am & Z) # @ and

(Am & Z =AD" —(Am = AI) "' €6, A€ p(Am) N p(Am ® Z).
Assume, in addition, that p(Hp,) N (0,00) # @ and let t; € (—o0,0) and t5 € (0, c0)
such that t3,t3 € p(H,,). Then Ap w Z is definitizable over (15, 00)U {00} U(—00,1;)
and (t2,00) {(—o0,t1)) is of type my (resp. m_) with respect to Am & Z. If Hy is
unbounded, then
(3.4) 00 € ¢y(Am & 2).

If, in particular, m > 0, then Ap, w Z is definitizable.

COROLLARY 3.2. The assertions of Theorem 3.1 with the exception of (3.4)
remain true if A,, and H are replaced by A/, and H 4, respectively. If p(Hm )N(0, 00) #
# O, then oo & ¢,(Al, w Z) and, hence, i(A}, & Z) is the infinitesimal generator of
a strongly continuous group of unitary operators in H 4.

If m > 0, then by Theorem 3.1, 04(Am & Z;R) N (—o00,m) (6-(Am w Z;R)N
N{—m, o0)) is a bounded set which has no accumulation points in (—o0,m) (resp.
(—m, 00)). The same is true for A, w Z replaced by A}, w Z.

3.2. The Propositions 2.2 and 2.3 in [12] (see also [16]) dealing with the location
of eigenvalues of a special type can be carried over to our situation. We shall formulate
the corresponding assertions in the following proposition. First we remark that

¥y = sup{((V*V - U — Ho)u,u)o(u,u){{1 u€EG} < oo
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Indeed, by V*V — U € G (g%,g_%) there exists a 4 < oo such that
(V*V — Du, u)o < [((V*V = U)u, u)o] € (Hou, u)o + v(u,u)e, u€ Gy
Let us put
Ym) = max{yy — m?,0}.

Further, we set
o= inf{Re(Vu., u)o(u, u.)o'l U € GI} 2 —00,

vr 1= sup{Re (Vu, u)o(t, u)g ' : 4 € G1} € 0.

Then
L .
s1,m = max{—y3y,71} and sz = rmn{'r(%m),‘rr}
are finite real numbers.

ProPosITION 3.3. For any m > ( we have

(35) o0 & 2)| < 7y
and
(3.6) 71 € Reoo(Am ¢ Z) < 7¥r.

If, in addition, the interval (—oo,1;) is of type m_ with respect to Am & Z for some
t1 £ 0, then (—o0,t1) N (—00,81,m) Is of negative type with respect to Am & Z.
Similarly, if (t5,00) is of type w4 for some t2 > 0, then (t3,00) N {(s2,m,00) is of
positive type.

Proof. Let z := (u,v)” € H, ||z|| # 0, be an eigenvector of Ap & Z correspond-
ing to an eigenvalue A. Then v = Au — Vu and (I?m + U)u = dv — V*v. It follows
that

(3.7 —;—[:z, z] = Re A(u, u)o — Re (Vu, u)o
and
(3.8) A (u,u)o — 2ARe (Vu,u)o + (V*'V = U — Hp)u,u)o = 0.

Taking the real part of (3.8) and making use of (3.7) we obtain

(3.9) [A(u,u)g = ((V*V = U — Hp)u,u)o + Re A [z, z].
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If Im X # 0 we have [z,z] = 0 and, in view of (3.9) and (3.7),
IAP(u, u)o < (15 — m*)(u,u)o and 1 S ReA <.

This implies the relations (3.5) and (3.6).

Suppose that under the assumptions of the second part of the proposition
(=00,t1)N(~00, 51.m) =: A is not of negative type. Then there exists a A € 04(4m w
Z; A) and an eigenvector £ € H, z # 0, of Am & Z corresponding to A such that
[z,2] > 0 (see the remark at the end of Section 1). This contradicts either (3.9) or
(3.7). For A replaced by (¢2,00) N (82,m,0) a similar reasoning applies. This proves
Proposition 3.3.

Proposition 3.3 shows that if the intervals (~o0, ;) and (2, o) are of type 7_ and
74, respectively, with respect to Am w Z, then in ((—o0,3)U(t2, 00))N({—00, 51,m)U
U(s2,m,00)) there are no spectral singularities of An & Z. The assumption of this
result is fulfilled in the situation of the second part of Theorem 3.1.

3.3. Let ¢(Hp) = [0,00). Then we cannot conclude from Theorem 3.1 that
Ag w Z is definitizable over some open interval. But if, in addition, the following
condition 2 is fulfilled, then it follows by Proposition 3.3 and [6, Theorem 3.10] that
Ag w Z is definitizable over a neighbourhood of oo.
2: There exists a p € [1,00) such that V € &,(G;,G0) and U =U* € 6,(G3,6_4).

THEOREM 3.4. Let U be fulfilled. Then Ay & Z is definitizable over 44 U
U{oo} U A, where Ay = (0,00) N (min{yy, 7}, 00) and A_ := (-o0,0) N
ﬂ(-oo,max{-'y(%),'n}). Ay (A.) Is of positive (resp. negative) type with respect to
Ap w Z. If Hy Is unbounded, then

(3.10) oo € ¢s(Ao w Z).

The following corollary is a consequence of [6; Theorem 3.10].

COROLLARY 3.5. The assertions of Theorem 3.4 with the exception of (3.10)
remain true if Aq Is replaced by Aj. In this case we have oo ¢ ¢,(Aj w Z). Hence
i(Ay & Z) is the infinitesimal generator of a strongly continuous group of unitary
operators in H 4.

3.4. Now we apply the abstract results to the perturbed Klein-Gordon and wave
n
. . . & .
equations. Let Gy = Lp(R") and let Hy be the Laplace operator — E 322 with
i=1 J
1 coincide with the Sobolev spaces

its natural domain in Ly(R™). Then Gy and G_
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H'(R™) and H~!(R"), respectively. Making use of a well-known theorem of F. Rellich
and of [19; Theorem 4.1] we obtain the following.

PRoOPOSITION 3.6. Assume that the following holds:
(1) V is the operator of multiplication by a bounded measurable function V such
that lim V(z) = 0. V is regarded as an operator from H1(R™) in L,(R").

jz[~+00

(ii) Let U;, j=0,1,...,n, be bounded measurable functions such thatl llim Ui(z)=
= 0 and Up is a real function. U is the bounded operator from H(R™) in H=1(R")
defined by the differential expression

n

Z (i—a—i—jl(,-(x) + illj(m)'(:;% +U;(z)U; ("’)) + Up ().

j=1

Then the conditions (3.2} and (3.3) are fulfilled. K, in addition, there exists a constant
c such that

V()| < e(1+ )78, Ui(z)| < e(l+2))~%, 2zeR", j=0,1,...,n

for some § > 0, then the condition 2 is fulfilled.

Under the assumptions of Proposition 3.6 we have
= = .0 = , 8
(i + U)A)() = 3 (~in ~U5(@) ) ( =iz ~Us(0) ) ple)+
i=1 Zj Zj

+Hdo(z)p(z) + mPp(x), ¢ € H(R),
in the distribution sense.

PrOPOSITION 3.7. Let m > 0 and let V and U be given as in Proposition 3.6.
Assume, further, that there exists a constant ¢ such that

(3.11) () < e(U+|2)17 (@) el + 2717, z€R™, j=0,1,...,m,

and

(3.12) 2 6”’ € Loa(R"), (1 +]a)71F, zeRT,

Z oU; (2)] <

for some ¢ > 0. Then the interval (m, o0) ((—oo, —m)) is of positive (resp. negative)
type with respect to Am & Z and to AL, & Z. We have

e(Al, & Z) = c(Am & Z) C [-m, m] U {oo}



218 PETER JONAS

and
C,(Am L7 Z) C {m, -m, 00}1 CJ(A;n @ Z) C {ml —m}‘

Proof. 1t is sufficient to prove that A,, w Z has no eigenvalues in (—oo, —m) U
u
U(m, o). Suppose that A € op(Am w Z) N {(—o0, —m) U (m, c0)) and let (v) £0
be an eigenvector of A, w 2 corresponding to A. Then 0 # u € H}(R") and

Hou+ (U—=V*V AV + AV u = (32 —m?)u

(cf. the proof of Proposition 3.3). In view of (3.12) we have Au € Lo(R"). Then
according to [3; Corollary 14.5.6] we have
2
dz < o

Ja+ip (|u|2 £y
f=1

for all positive integers N. Then by [3; Theorem 17.2.8] we get = 0, a contradiction.

Bu
Oz;

4. A MORE SPECIAL CLASS OF PERTURBATIONS OF A4g

4.1. In this section we consider the case m = 0. First we introduce two conditions
B and € which together with 2 imply the assumptions of [6; Theorem 3.10]. These
conditions are suitable, in particular, for applications to differential operators in the
case when the unperturbed operator has constant coefficients (see [10; IT] and Section
4.2).

B: There exists a Hilbert space K and operators V; € G (G b K), Va2 € L(K,Go),
Ui € £(Gy,K) and U € L(K) with *V; € Boo(K,G_y) and Uit € 6o (Gh, K) such
that V = 14V} and U = U} UU,. Here ¢ and ¢/ denote the natural embeddings of § 3
inGyand of Gy in G 1y respectively.

&: For a sufficiently small ¢ > 0 there exist a Hilbert space C, a unitary operator F
from E((0, €); Ho)Go onto La((0,¢); C) and locally Hélder continuous functions T'(+; Y),
Y = V7, «*Va, U7, on (0,¢) with values in £(K,C) such that the following holds:

(i) For every Borel set b C (0,¢) the operator FE(b; Ho)F~! is the operator of
multiplication by the characteristic function of b.

(i1} There exist dense subsets Dy, ¥ = Vi*, +*V2, U}, of K such that for any

u € Dy one has

T(XY)u = (FE((0,€); H)Yu)()) a.e. in (0,¢).
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Here £((0,¢); Ho) denotes the extension by continuity of E((0,¢); Ho) to a bounded
operator of g__;_ into g%.

LEMMA 4.1. If the conditions %8 and € are fulfilled, then every open one-sided
neighbourhood of 0 contains points which are no accumulation points of ¢o(4A, v Z).

Proof., We write Z in the form Z = WoW W, where

i 0
Wi=| 0 V' |:G,0G KKK,
Uy 0
I« 0 0
Wwe=|0 Ix 0|:keKkeKk—-KoKkoKk,
0 0 U

Va 0 0
Wy = : Kek— 1.
2 (0 Ve Uf) KeKeo Go®G_3

For every z € p(Ao) the operator (Ao — zIJ+ Z is matricially coupled with
G(2) = I+ WWi(Ao — 2I) "W,

(see e.g. [1]). Hence for every such z we have z € p(Ao w Z) if and only if G(z) has
a bounded inverse.

Fix some zg € p(Ao) N p(Ao, & Z) and let z € p(Ao). Then

G(2) = G(z0)(I + (z — 20)G(20) " * W Wi (4o — zI) ™ (Ao — zIJ "' W2).
First we show that
(4.1) (z — 20)G(20) " *WW1 (Ao — 20I) ™ (Ao — 2IT 7' Ws € Goo

for every 2 € p(Ag). By (2.1)

z S 2
(Ao — 200)™ (Ao — 2I] 7! = (204 2) (zoz zlo) (RO( 0)ORO(Z ) Ro(zg)ORO(zz)) ¥

+ ( Ro(zg ) 0 )
zRo(2?) + 20Ro(23) Ro(2?) /)’
where Ry(¢) denotes the extension by continuity of Rg(¢) to a bounded operator of
Gy inGy. The elements of the 3 x 3 operator matrix

% (e o) (0 i)™
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have the form
(4.2) XRo(z3)Ro(22)Y

up to scalar factors ' where X is equal to Vi, Ve or Uy and Y is equal to V¥, +* V5 or
U{. It follows from Condition B that the operators (4.2) are compact.
In the same way one verifies that the elements of the matrix

| Ro(23) 0 _
e (ZRO(Z2)+ZOR0(Z§) }”30(22)) W=

ViRo(23)V2 0 0
= | Vil(zRo(2?) + 20Ro(23))* Vo Vi'eRo(22)V) V3 eRo(2?)UT
U1 Ro(23)c* Vs 0 0

are compact. Therefore, (4.1) holds for every z € p(Ao).

Let now € > 0 be as in Condition €. Then one proves as in [10; proofs of
Proposition 4.1 and Theorem 3.9] that G(z)|C* and G(2)|C~, where C*:={z:Imz 2
Z 0}, can be extended to locally Hélder continuous functions on CtU(—¢%, 0)U(0,¢5),
and C~ U (—€%,0) U (0,¢¥), respectively. From this fact and the relation (4.1) the
assertion of Lemma. 4.1 follows as in the proof of Lemma 4.20 in [9].

Assuming now that, in addition to the assumption of Theorem 3.4, the conditions
B and € are fulfilled we obtain, as a consequence of Lemma 4.1 and [6; Theorem 3.10
and Lemma 2.8], the following theorem.

THEOREM 4.2. Let the perturbation Z (see (3.1)-(3.3)) satisfy the conditions 2,
B and €. Then the operator Ay w Z is definitizable over R\ {0}. In particular, the
only possible accumulation point of oo(Ag w Z) in C is the point 0. (0,00) ((—0,0))
is of type w4 (resp. of type w_ ) with respect to Aq w Z. The same is true for Ao & Z
replaced by Ay w Z.

Under the assumptions of this theorem, ¢4+(4ow Z;R\ {0})N(~00,0)
((e-(Ao & Z;R\ {0}) N (0,00)) is a bounded set which has no accumulation points
in (—o0,0) (resp. (0, 00)). The same is true for Ag & Z replaced by Af w Z.

4.2. Now we consider the perturbed wave equation.

PROPOSITION 4.3. Let, in addition to the assumptions of Proposition 3.6, the
relations (3.11) hold for some constant ¢ and some € > 0. Then the Conditions %, B,
€ are fulfilled and, therefore, the assertions of Theorem 4.2 are true,

If, additionally, (3.12) holds for some € > 0, then the interval (0, 00) ((—00,0))
is of positive (resp. negative) type with respect to Ag w Z and to Ay w Z.
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Proof. As to Condition 2 see Proposition 3.6. To show that B and € hold set
n
K =Ko® Z ®Ka,p, where all the spaces Ko,Ka,5, @,8 = 0,1,...,n, coincide

a,fs0
with Lo(R™). K is equipped with the scalar product (-, -)x defined by

((for {Fa8}): (90, {90pD)kc = (fo, 90002 + I (fa,698,0)Ls-

a,f=0

Set v(z) := (1 + |z|?)?, = €R", 6 := 1 + ¢ and define the linear mappings V1, V2, U1
and U (see Condition B) by

V1:fr—>u’%f:g%—>KioCIC,

s .
Vo: fro vzVf if f ek K — Go
0 iffekaeky

voif aiu"ga—z;f —iu—%ai’—‘—f
Ui:if—| o : Gy —=KekoCk
vt —iu—%ailf —iv““g‘ainf
UKo =0
goo goi1 --- 9on
(7|K361CO : 10 9?1 Jin o
gno gn1 --- gnn
n — — —
vl (E U;lU; +UQ) goo —V6u1go1 . —Vsllngon
i=1
— —v®U1g10 0 0 K6 Ky— Ko K.
—v* U gno 0 0

It is easy to see that these operators satisfy Condition 9. One verifies as in [10; II,
Section 2.3] that Condition ¢ is fulfilled.

The last assertion can be proved by the same reasoning as in the proof of Propo-
sition 3.7.
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5. ON THE CAUCHY PROBLEM FOR PERTURBED KLEIN-GORDON
AND WAVE TYPE EQUATIONS

Throughout this section we assume, in addition to (3.2) and (3.3), that
(5.1) sup{|[Vz|_; : 2 € Gy, llzllo <1} <oco.

Under the assumptions of Proposition 3.6 this condition is fulfilled. Then one verifies
without difficulty that for every function R 3 ¢~ u(t) € G belonging to C(R;G1) N
CY(R; G,) the following statements are equivalent: ‘

(i) There exists a v € C(R;Go) N C*(R;G_1) such that & := (u, v)" satisfies the

relation %x(t) = i(Am + Z)z(t).
(i) v € C4(R; g_%) and

(5.2) [& (—iadt- - V*) (-i% - V) + i+ U] u(t) = 0.

A function u € C(R;G) N C*(R;Go) N CHR;G_ ) satisfying (5.2) will be called a
solution of (5.2). As a consequence of the Corollaries 3.2 and 3.5 we obtain the
following proposition.

PROPOSITION 5.1. Let the assumptions of Theorem 3.1 with p(Hp,)N(0,00) # @
or of Theorem 3.5 be fulfilled and assume that (5.1) holds. Then for every t; € R,

uo € Gy, up € Go there exists a uniquely determined solution t ~ u(t;to; uo, up) of
{(5.2) such that

(5.3) u(to; to; uo, up) = uo,  u(to;to; Uo, Up) = Ug,

where u(t; to; uo, ug) = (%u(t;to; ug, ug). The mappings

(5.4) R x R x (G ® Go) 3 (¢, t0; uo, up) + u(?, to; o, ug) € Gy
and
(5.5) R xR x (G ®Go) 3 (t,20; uo, ug) = i(t, to; o, up) € Go

are continuous.

Proof. By the Corollaries 3.2 and 3.5 the operator i(A}, & Z) in H4 gener-
ates a strongly continuous group of bounded operators T(1), t € R, in Hy. It is
easy to see that the restriction S(¢) of T'(t) to ’HS_‘;)_ is a strongly continuous group

2
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of bounded operators in ’H( ) For every t € R and every z € ’HE:; the limit
}Ex_r.r(l)h L(S(t + k) — S(¢))=z ex1sts in H_; and is equal to (Am + 2)8(t)z. Ifto €R,
w €0y, uly € Go, then on account of the equivalence of the above conditions (i) and
(i) the first component of S(t — #)(uo, —Vun — iup)” is a solution of (5.2) with the
properties (5.3).

Suppose that there exist two different solutions of (5.2) satisfying the conditions
(5.3). Then there exists a function zo € C(R; G ®Go)NCH{(R; Go®G_ 1) not identically

d o .
equal to 0 such that a‘;mo(t) = (A + Z)zo(t) and 2o(to) = 0. Let yo be an arbitrary
element of D(A!, & Z). Then by the selfadjointness of A}, & Z in H4 we have

c(lit [zo(t), T(t — to)yo] = O for all ¢ € R and, hence, [zo(2),T(t — to)yo] = 0 for all
t € R. Since yo € D(A}, & Z) was arbitrary, we have zo(f) = 0, a contradiction. This

proves the uniqueness statement. The rest of Proposition 5.1 follows from well-known

properties of strongly continuous groups of bounded operators.
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