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APPROXIMATION BY PRODUCTS OF POSITIVE OPERATORS

M. KHALKHALI, C. LAURIE, B. MATHES and H. RADJAVI

Many authors have considered the problem of which operators may be factored
into products of positive operators. A recent survey of some of the known results is
contained in a paper of Pei Yuan Wu [8]. In this paper we consider the problem of
which operators may be approximated in norm by products of k& positive operators.
We prove that quasinilpotent operators, compact and algebraic operators with non-
negative spectra, and normal operators whose spectra intersect the non-negative real
axis in every component may all be approximated by products of two positive opera-
tors. Finally, it is proved that any operator that may be approximated with products
of positive operators may be approximated by a product of five such operators.

1. PRELIMINARIES

Let H be a complex Hilbert space, for n > 1 let P, denote the set of operators on
H that admit a factorization into n positive invertible operators, and let Q,, denote
the set of operators on H that admit a factorization into n positive (possibly non-
invertible) operators. Let us agree that Py, (resp. Qo) is the union of all the Py,
(resp. Qn) over all finite n. We note that P, is norm dense in Qy; this follows from
the fact that every positive operator is the limit of positive invertible operators. It
follows that P, and Q, have the same closure, which we denote P,. By definition,
we have

Pn C '—ﬁn.u

for every n > 1. If an operator T is defined on another Hilbert space X, then we will
still write 7' € P,, meaning that T may be written as a product of n positive invertible
operators acting on K.
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If H is finite dimensional, then there are some observations that immediately
come to mind. Ballantine proved (see [1] and the survey [8]) that Py (resp. Q) is
all of Pee (resp. Qoo ), With the exception of the non-positive scalar operators in Pe.

Furthermore it was demonstrated that
Ps = Poo = {T : det(T) > 0}

(replace > with > to obtain the respective statement for the Q’s). We observe that

we have
Ps=Ps = Po;

this is because if z is a complex number such that z" > 0, then the n x n diagonal

matrix y
z2+ezx™™

P4

k-4

will have a positive determinant if ¢ > 0, and by choosing € small we have succeeded
in approximating zI, with an element of P4 (where I, denotes the n-dimensional
identity operator).

It has been known for a long time that P is equal to the set of operators similar
to positive invertible operators (see Theorem 2 in [1]). We assert that Py is the set
of all operators on H with non-negative spectrum. This is because, after bringing an
opetator T with non-negative spectrum to upper triangular form, we may construct
an operator S by perturbing the diagonal of T so that S is as close to T in norm as
we wish and such that S has distinct positive numbers on its diagonal. We will then
have approximated 7" with an element of P3 since S is similar to a positive operator.

When H is infinite dimensional, observations about P, come more slowly. We
proceed to catalogue those observations that we have made, beginning with small n.

2. APPROXIMATION BY PRODUCTS OF TWQ POSITIVE OPERATORS

By mimicking the argument used in finite dimensions, we are led to our first
infinite dimensional result, which follows.

PROPOSITION 1. Let A be an algebraic operator. We have A € Py if and only if
o(A) is contained in the non-negative real axis.

Proof. Since every element of ¢(A) is an isolated point, and since, for every
P € Py, o(P) is contained in the non-negative real axis, the necessity that o(A) is
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contained in the non-negative real axis is a consequence of what Herrero calls the
“l.s.c. of distinct parts of the spectrum” (see Corollary 1.6 of [6] and note that if
P; — A and G is a neighbourhood of any clopen subset of 6(A), then eventually
o(P;) must meet G).

To prove the converse, we may write

8111 A12 e Alk

0 I
A= ) 8212
. e .A.k_]_ k
0 .. O sp Iy
relative to a decomposition of H as
MiD...& M

(where I; denotes the identity map on M;). Given € > 0, choose distinct positive
numbers r; such that |r; — 5;[ <& (1 € j € k), and let

rnh A ... A
0 I :
B=| . ™7
: . Ap_1k
0 ... O relz

It follows that ||A — B]| < € and B € Pa, since B is similar (by Rosenblum’s theorem,
see [7], p.8) to the positive operator

1‘11-1@...631'1;1-15. u

PROPOSITION 2. If A is a quasinilpotent operator, then A € P5.

Proof. If A is nilpotent, then A € P» by Proposition 1. Since every quasinilpo-
tent is a limit of nilpotents (see Remark 5.2 of [6]), it follows that P contains all
quasinilpotents. 8

Recall that an operator T on H is called a Riesz operator if every non-zero
member of o(T) is an isolated point and the corresponding Riesz projection is of
finite rank. The only accumulation point of the spectrum of such an operator is 0.
Every compact operator is a Riesz operator. For any operator A, we will say that an
isolated pole of the resolvent of A is “a pole of finite rank” in case the corresponding
Riesz idempotent is finite rank.

PROPOSITION 3. If A is a Riesz operator, then A € P, if and only if o(A) is
contained in the non-negative real axis.
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Proof. The necessity that o(A) is contained in the non-negative real axis is a
consequence of Corollary 1.6 of [6], as in the proof of Proposition 1.

Assume that A is a Riesz operator and ¢(A) C [0,00). Given ¢ > 0, there are a
finite number of points in ¢(A) whose moduli exceed ¢. Using the Riesz decomposition
theorem ([7], p- 31) we can express A as

*= [ ]

0 R
where F is a finite rank operator with ¢(F') C (¢,00) and R is a Riesz operator with
o(R) C [0,¢]. The West decomposition ([2], p. 73) yields R = K + @, where K
is normal and compact and @ is quasinilpotent; furthermore ¢(K) = o(R). Thus
o(R) C [0,¢] implies ||K|| € ¢; i.e., R can be approximated with Q. Now using
Proposition 2 and the diagonal perturbation technique of Proposition 1. we may
approximate F' and @ with products of positive operators. [ |

ProposITION 4. If A € B(}H) and p(A) is a Riesz operator for some polynomial
p, then A € P, if and only if 0(A) is contained in the non-negative real axis. (In
particular the assertion is true if A is polynomially compact.)

Proof. The necessity of the condition is clear. For sufficiency, first note that A
has a finite number of distinct non-negative points ry, ..., r, in its essential spectrum
and the remaining points of the spectrum are all isolated poles of finite rank. Thus

using the Riesz decomposition theorem we can assume

rilis + Ry Ara . A1
0. rela+ R Azn
Ao : 242 2 ' 2 ,
0 0 ruln+ Rn
where Ry, ..., R, are Riesz operators and where

a(r,—I,- + R.) nd(rjfj + Rj) =0

for i # j. Now, by Proposition 3, each R; can be approximated with an element
of P. Since P, is invariant under addition of non-negative scalars (i.e., rI + P@Q =
= (rP + PQP)P-! for positive P,@ and r > 0), we can approximate each
ril; + R; with a product P;Q; in P, such that, for i # j,

o(PiQi) No(P;Q;) = D.

Replacing each r;I; + R; with P;@; in the matrix of A we obtain an operator B that
approximates A. But B is similar to the product

(Pi®..0P) Q1 ®..0Qn)
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(by Rosenblum’s theorem, see [7], p. 8) and is thus in Ps. So

A€ P u

THEOREM 1. Let A be a normal operator. We have A € P2 if and only if every
component of o(A) intersects the non-negative axis.

Proof. The necessity that every component of o(A) intersects the non-negative
axis is (as in Proposition 1) a consequence of Corollary 1.6 of [6], which may be seen
as follows. If some component of o(A4) did not intersect the non-negative axis, then it
must be true that a clopen subset ¢ of 6(A) does not intersect the non-negative axis,
since the components in a compact space are obtained as the intersection of all the
clopen sets containing a fixed point in the space (see [4] p. 246). It is then possible to
find a Cauchy domain 2 that is a neighbourhood of & that satisfies the hypothesis of
Corollary 1.6 of [6] and such that the closure of 2 does not intersect the non-negative
axis. Thus if A is a norm limit of operators B;, eventually one has o(B;) N 2 # @ by
Corollary 1.6 of [6], which implies that A is not in Ps.

To prove the converse, assume first that ¢(A) has only one component. Choose
a non-negative number r such that

0€o(A—rl).

It follows that A — rI is a limit of quasinilpotents (see Proposition 5.6 of [6]), and
hence
A-rIeP,.

Note that P2, and hence P4, is invariant under addition of non-negative scalars (see

the proof of Proposition 4). Thus we have
A= (A—?‘I)+1'IE1—)2.

If o(A) has finitely many components, then A € P; since it is a direct sum of normal
operators whose spectra have one component intersecting the non-negative axis (and
a direct sum of elements in P, is again in P3).

Finally, assume that o(A) has infinitely many components, each intersecting the
non-negative real axis. By the previous paragraph, we will be done if we can prove
that, given € > 0, we can find a normal operator A, such that

|4 - Al <€

and o(A,) has finitely many components, each meeting the non-negative axis. The
remainder of the proof is devoted to constructing this operator A..
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Suppose € > 0 is given and let
{Rij|i,i=1,...,k}

be a grid of squares that covers ¢(A) such that the diameter of each square R;; is
smaller than ¢/2. Technically speaking, choose

6 < V2¢e/4,
choose an even integer k such that
2(114]| + 1) < bk,
andfori,j=1,...,k let
koo koo,
——2~+]-1 § < Re(z) € —5+i 1)
RBi=3%| 7 & k
(——2~+i— 1)5<Im(z) < (—5-&-3‘)6

Thus any two squares of the grid are disjoint and

E
oAy c |J R
$,5=1
Let
K;; = o(A) N Ryj,

suppose that E is the spectral measure for A, and let Z be the set of pairs (Z, j) such
that E(Kfj) -‘,é 0.

We assert that we may assume, with no loss of generality, that the range of
E(K;;) is infinite dimensional for every (i, j) € Z. The reason for this is that we may

decompose A into a direct sum !

A:A1®A2)

where A, is the restriction of A to the range of the sum of those E(Kj;) that are finite
dimensional. It follows that A; is a normal operator on a finite dimensional space
with 0(A;) contained in the non-negative real axis, and thus A; € P,. We are then
left with the task of showing that A; € P2, and A; is an operator that satisfies the
hypothesis of this theorem (since ¢(A) \ o(Az) is finite) with the additional property
that, if 7 is the spectral measure of A,, then F(Kj;) is either 0 or infinite rank.
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For each (i,j) € Z, let J;; be a normal operator defined on the range of E(Kj;)
with o(Ji;) = Ry;. If
A = @ NITR

(4,5)€Z
then
l4e — All < ¢
and
o(4)= |J B
(4,4)eT

It is obvious that o(A,) has finitely many components. If C is one such component,

then there exists
z € CNeo(A).

Since C' must contain the component of #(A4) containing 2z, which intersects the non-
negative axis by hypothesis, we have that C intersects the non-negative axis, which
completes the proof of the theorem. - B

CoroLLARY 1. IfU is a unitary operator, then U € P, if only if o(U) is a
connected set containing 1. In particular, the bilateral shift is in Ps.

3. APPROXIMATION BY PRODUCTS OF FOUR POSITIVE OPERATORS

The following result will be proved later in this section once we have shown that
biquasitriangular operators are in P4, but we cannot resist the temptation of pluking

it as a corollary of Proposition 2 and a nice result of Fong and Surour [3].
COROLLARY 2. If A is a compact operator, then A € P,.

Proof. By Theorem 6 of [3], every compact operator is a product of two quasinil-
potent operators. It follows from Proposition 2 that A € Py. [ |

THEOREM 2. If A is algebraic, then A € Py.
Proof. We may write
S1 I]_ .A12 e A]k
0 sl :
: . Ap_1k
0 .. 0 sp 1y
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relative to some decomposition M; @ ... & My of H. We may approximate A as

closely as we wish with an operator

rily A ... An
0 I :
B = ) 1"2 2
: A1k
0 ... 0 rily

such that the r; are distinct non-zero complex numbers. Thus, we are done if we
prove that B € P4. Since P is similarity invariant (recall that P, is equal to the set
of operators similar to positive invertible operators [1], [8]), it follows that P4, and
hence Py is similarity invariant. Thus we have that B € P, if and only if

rli®... . ®rgl; Gi_74.

To prove the relation above, assume that £ > 0 has been given. We will repeatedly
use the fact that direct sum of operators in P4 are in P,. Notice first that if M;
is infinite dimensional, then r;j]; is in P4. This is becanse it is posible to choose a
complex number z in the £ disk around r;j and an integer » such that ;2" > 0. Thus,
r;1; is € close to an infinite direct sum of (n + 1) x (n + 1) matrices identical to

vy 0 0

0 =

. 0 b
0 0 =z

which is in P, since each summand is a non-scalar matrix with positive determinant
(see Theorem 4 of {1]). Thus r;J; is in Py in case M; is infinite dimensional.

This reduces the problem to the case where M, is infinite dimensional and M;
18 finite dimensional for j = 2,3,..., k. Let

d=rorz...7%,

and choose a complex number z in the ¢ disk around r; and an integer n such that
dz™ > 0 and z # r5. Then, borrowing n dimensions from M, we have that

L @&...&rcl;

1s € close to
r @2l ®r2la@rals® ... O rply,
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where I3 is the identity on an n dimensional subspace of M, and
L =116 1.

By our comments above, we know that r{I1; € P4, and by the choice of 2z and n we
have that
2l @rola®rala® ... el

is a non-scalar operator with
det(zl12 @ ro b ®ralz ... & rel) > 0.
It follows that
2lio@rolo ®rsls® ... &Iy € Py

by Theorem 4 of [1]. Thus
mhL&...&mnI P,

and the proof is complete. u

Recall that an operator T is a quasitriangular operator if there exists an in-
creasing sequence of finite rank projections {F,} such that P, — I strongly and
(I = P,)TP,|| — 0. We say that T is biquasitriangular if both T and T* are qua-
sitriangular. The class of all biquasitriangular operators on a Hilbert space coincides
with the uniform closure of the set of algebraic operators on the Hilbert space. In
particular, every normal operator is biquasitriangular. (See [6] for a complete discus-

sion.)

CoROLLARY 3. If A is a biquasitriangular operator, then

AEPy.

Thus, every normal operator is in Py.

Proof. If A is a biquasitriangular operator, then A is a limit of algebraic
operators (see Theorem 6.15 of [6]), and thus in Pj. ]

4. APPROXIMATION BY PRODUCTS OF FIVE POSITIVE OPERATORS

We are now in a position to see why membership in P,, implies membership in
Ps. Given an operator A, let »(A4) denote the nullity of A.

THEOREM 3. The closures of each of the following sets are equal to Ps;
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1) the set of Fredholm operators with index 0, denoted Fy;
2) the set of operators A such that v(A) = v(A*), denoted V.
3) the set of invertible operators, denoted B(H)~!;

4) P, forn 2 5;

5) Q, forn 2 5;

6) Poo-

Proof. If n 22 5, then the following inclusions are transparent;
Ps CPn CPoo CBH)™LCFoC V.

Thus, if we prove that V C P, we will have established the equality of the closures of
the above sets (and the fact that the closures coincide with @, for n 2 5 follows from
the fact that P, is dense in Q,, as mentioned in the preliminaries). If A € V, and if
A = UP is the polar decomposition of A, then it is possible to extend U to a unitary
operator V' such that A = VP (mimic the proof of Problem 135 in [5]). Since V is
biquasitriangular, we have by Corollary 3 that V is an element of P; = Q4. Since
P € @y, it follows that A= VP € Qs = Ps. ]

5. QUESTIONS

There are a number of avenues left for investigation in the area of approximating
operators with products of positive operators. Even the sleepiest reader may have
noticed no mention of P3. We have not made any progress in deciding which oper-
ators are approximable by a product of three positive operators, but we feel there
are tractable theorems that will be found (e.g. using Ballantine’s characterization
[1, Theorem 6] for products of three positive operators on finite dimensional spaces).

Our results clearly show an abundance of new operators when passing from P, to
Ps; is it possible that Py is everything obtainable, that is does P4 equal P5? Another
possibility is that Py is precisely the set of biquasitriangular operators, in which case
we would know that Py is properly included in Ps. This follows from the observation
that if S is the unilateral shift of multiplicity one, then S+ 2 is in Ps, but S+ 2 is
not biquasitriangular (see [6, Theorem 6.15]).
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Added in proof. As Pei Yuan Wa pointed out, it follows from results of Apostol and
Morrel (Indiana Univ. Math. J., 26(1977), 424-442) that A belongs to the closure of Poif
and only if every component of 6(A) and ¢¢{A) intersects the non-negative real axis and the
semi-Fredholm index of A — X is zero whenever defined.



