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FLAT CONVEX HULLS IN THE PREDUAL
OF AN OPERATOR ALGEBRA

GEORGE R. EXNER

In the past dozen years the study of dual algebras of operators, initiated in [5],
has made significant contributions to the structure theory of bounded linear operators
on Hilbert space. Central has been the class A of contractions and its subclasses
(definitions reviewed below), with [1], [9], [10], and [8] containing capstone results of
some portions of the theory. More recently effort is turning to applications (see, e.g,.
(6] and [13]) of these techniques to operators not in the class A.

We present in this paper a dual algebra approach for contractions not in A and
some applications to weighted shifts, yielding results weaker than but analoguous to
those for the class Ag,, the most restrictive of the subclasses of A. For example, we
obtain the following:

THEOREM. Suppose S is a contractive, injective unilateral shift of multiplicity
one whose spectral disk of radius r consists of eigenvalues for 8*. Suppose further that
S/r is in the class Cop. Then S dilates, up to a unitary equivalence, both a diagonal
normal opérator with eigenvalues dense in {|z| < r} and an infinite dimensional zero
operator.

There is a similar theorem for S a shift with rich left essential spectrum, without
the Cpo hypothesis but with certain technical assumptions. These results are sub-
stantively new if S is not polynomially (even power) bounded, and unify the theory
in treating the polynomially bounded and unbounded cases together in any event.

The organizations of the paper is as follows: after preliminaries in Section 1 on
dual algebras and weighted shifts, Section 2 presents an approach for solving a limited
class of equations in the predual of an absolutely continuous contraction. In Section 3
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are applications to unilateral weighted shifts whose adjoints have rich point spetrum,
and in Section 4 to shifts with rich left essential spectrum. In Section 5 we make some
remarks and raise some questions.

The author wishes to thank Carl M. Pearcy and the University of Michigan
for their kind hospitality during a leave and Leonardo Laroco, Gregory Adams, and
especially Wing Suet Li for valuable conversations.

1. PRELIMINARIES

Begin with some preliminaries on dual algebras (see [3] for more detail), star-
ting with function spaces. Denote by D the open unit disk in the complex plane
and by T the unit circle. Let I? = LP(T) (1< p< o) denote the usual {complex)
Lebesgue spaces. It is well known that L° is the Banach dual of L! under the

pairing (f,g) = —/f(e”)g(e”) dt for f € L and g € L'. Let H} denote the

subspace of L! consxstmg of functions whose non-positive Fourier coefficients vanish.
Let H® = H*(T) denote the subspace of L™ consisting of those functions whose

negative Fourier coefficients vanish. From general facts it follows that H is the dual

of L'/H}. The duality is given by (f,[g]z/m) /f(e”)g(e“) dt for f € H®

and [g] € L!/H} where the cosets in L!/H§ are denoted by [] = [Jzi/mz- It is easy
to check that a coset [g]ri/p; is uniquely determined by the sequence of negative
Fourier coefficients of any of its representatives. Denote by Ball (L1 /H ) the unit ball
in the quotient norm.

Let  denote a separable, infinite dimensional, complex Hilbert space with inner
product (-,-) = (-, )% and £(#) the Banach algebra of bounded linear operators on
‘H. An operator T in L(H) is a contraction if ||T|| < 1. A contraction T is absolutely
continuous if in the decomposition T' = U @ T", where U is unitary (or absent) and T”
is completely non-unitary, U is absent or has spectral measure absolutely Tontinuous
with respect to Lebesgue measure on T. Denote the spectrum, point spectrum, and
left essential spectrum of T in' L(H) by ¢(T), op(T), and a1¢(T) respectively.

It is well known that £(H) is the Banach dual of the ideal 7c of trace class
operators on H, with the action given by (T,C) = trace(TC) for T € L(H) and
C € re. For T in L(H) denote by Ar the weak* closed unital algebra generated by T'.
It follows from general facts that Ag is the dual of the space Qr = ¢/t Ar, where
1 Ay denotes the preannihilator of Az in 7¢. This duality is given by

(1) (S, [L]T) = trace(SL), S€.Ar,Le€ re.
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Denote by Ball(Qr) the unit ball in Q7.

In the case T € L({H) is an absolutely continuous contraction there is (from
[18]) the good Sz.-Nagy-Foiag functional calculus &7: H® — Ar. Further, there is
a bounded, linear, one-to-one map @r:Qr — I /H} such that ¢} = $p. Some
elements of L' inducing cosets important for our study are the Py (A € D), where Py
denotes the Poisson kernel defined by Py(ei*) = (1 — [A12)/]1 = Xeit|? for * € T. If
[PAlz/m is in the range of pr define [Chlr by [Calr = @7 ([Palgiym1), and write
[C\\] if no confusion will arise.

If z and y are vectors in H the operator z ® y in L(H) is the usual rank one
operator defined for u in H by z ® y(u) = (u,y)z. The cosets [z @ y]r are critical to
the study of dual algebras; it is easy to check that their action is as follows:

(2) {S:[1’®y]T) = (Sz;y)'fh SG.AT,Z',:UGH,
yielding negative Fourier coefficients (¢g,c-1,...) for [z @ ylr given by
(3) c-j=Tiz,y), 7=0,1,....

Much of the study of contractions via dual algebra trechniques has involved
finding a rank one representative for some [Ci]r, usually called “solving the equation”
[z ® ylr = [Calr. Note for future use in such solutions that [Py}, and hence [C)] if
defined, has the sequence of negative Fourier coefficients

@) [P~ 1,A,2%,....

The following class and properties are fundamental (see [3]).

DeFINITION 1.1. The class A(H) consists of all those absolutely continuous con-
tractions T" in L(H) for which the functional calculus &7: H* — Ar is an isometry.

DEFINITION 1.2. Let M C L(H) be a weak® closed subspace, and let n be any
cardinal number such that 1< n<Ry. Then M will be said to have property (Ap)
provided every n X n system of simultaneous equations of the form

[z: ® yj] = [Lij], 0<4é,5<n,

{(where the [L;;] are arbitrary but fixed elements from Qm) has a solution {zi}s < icn:
{yj}og j<n consisting of pairs of sequences from 7. Further, we denote by A, =
= An(H) the set of all T in A(H) such that the algebra Ap has property (A,).

Finally, recall, essentially from [4], that a subset A of a disk E contained in the
complex plane is said to be dominating for E if almost every point (Lebesgue measure
on the boudary of E) is a non-tangential limit of points in A.
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We next recall some basic facts about unilateral weighted shifts from [15] and
[17), and use the notation of the latter. We study only injective unilateral weighted
shifts with all weights positive (but see [17]). A unilateral shift S with spectral radius
r = r(S) > 0 has as its spectrum the disk ¢(S) = rD. There is a pair of other radii
ry = r1(S) and ry = ry(S) satisfying 0 < r1(S) € r2(S) £ r(S), and also (from [17] and
[15] respectively):

(5) {0} U {IAl < r2(8)} € 05(S") € {IAI<r2(S)}, and
(6) 71e(8) = {n(S) < PAILr()}-
2. AN EQUATION SOLVING PROCEDURE

The procedure is founded upon some subsets of L!/H} associated with subsets
(specifically subdisks) of B. Consider the following properties, one for each r satisfying
0<r<l:

PROPERTY C(r): If [f] is any coset of L'/H} whose representatives have the
sequence of negative Fourier coefficients fo, f_1, f_2,... then we say [f] has Property

C(r) if the sequence fq, f—fi, f;.f

of some g in L(T).

,... 1s the sequence of negative Fourier coefficients

The collection of those [f] with Property C(r) is denoted by K, (0 < r < 1), and
denote by Dy, [f] the coset [g] above. An example useful later is, with Py the Poisson
kernel at A and using (4), that ’

(M Dy [PA] = [Poyel, (Al <.

ind

(=]
For g in L'(T) consider the harmonic extension g of g to B, §(z) = Zgnpl"l‘e

—=0o
for z = pel’. Define using § the function §,.(z) = §(rz); then g, € LY(T). Indeed,
a computation using the expression of §. as a convolution with the Poisson kernel
shows that ||g.{|z: < ||g|izs. It is equally clear that Dyy.[gr] = [g]. Now for [f] € K,
D = inf >  inf =
I D1se [ FllLaymn geD,,,[f]”g””/ geDl/.-[f]“gr”Ll

= inf > inf ||h = |l f} .

st llollzs > g [l = NAllce

(8)

Note in passing that (7) shows that strict inequality need not hold in (8).

It is convenient to introduce a norm [| - || on K by [|[f]llr = || Drsr[f]llLs/mz for
[f] € K,. From (8) we have that || - || >[| - llz,/z2 on K. Denote by Ball"(X,) the
|| - ll-unit ball of K,; then Ball"(K,) C Ball(L!/H}).
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. This notation in hand, we consider some further subsets of the unit ball of L' /H}
related to those above. Denote by a¢o(G) the closure of the absolutely convex hull
of a set G. It is well known ([4]) that if A C D is a set dominating for D then
aco{[P)\]: X € A} = Ball(L!/H}), and as well that if A C D is not dominating then
ao{[P,\): X € A} contains no (quotient norm) ball of positive radius. The next lemma,
whose proof is a computation from the definitions and therefore omitted, identifies
some other absolutely convex hulls which, although they contain no quotient norm
open ball (hence “flat”), are nevertheless large enough to be useful.

LemmMa 2.1. Let 0 < r < 1 and suppose A C rD is dominating for rD. Then
3o {[Pa]: A € A} = Ball'(X,.).

The preliminaries so far have concerned L'/H} but the goal is in fact to “solve
equations” in the predual Qs of the ultraweakly closed algebra As generated by an
absolutely continuous contraction S. Since in general S ¢ A, neither &5 nor g5 is
surjective and Qs is not well related to L1/H} (see [3]). We turn next to a technical
device for avoiding this difﬁcult;y.

It is well known that if T € A(K) and S is an absolutely continuous contraction
then S® 7 € A(H & K). Choose (for definiteness) the unweighted bilateral shift B
in A(X') and set some notation fixed for the rest of the paper (the results are easily
seen to be independent of the choice of B as representative for the class A).

NoraTION. Denote by S in £(H) an absolutely continuous contraction, and by
S the operator S @ B in L(H & K). Write vectors in H{ as z,y,... and denote by
Z2,4,...thevectors z @0, y®0,...in HP K.

The technique to “solve equations” is as follows: given an element [f] from
L'/H} (or perhaps from a smaller set such as some K, ) we seek vectors z and y in
satisfying [z @ y]o. = ¢35 ([f]) (hoping, of course, that [f] is in the range ¢s). One
may compute that it is enough to fiid instead 2 =z @0 and § =y 0in HEO K
satisfying [ @ flo, = ¢ ([f]) and use z and y.

- Since L'/H} is isometrically isomorphic with @4 we may import to Qs the
special subsets of L!/H} defined previously. With a slight abuse of notation we may
define K, C Qg, and for [L] in Qg, D1y-[L] and ||[L]||, in the obvious way.

The next definition is fundamental to our technique for “solving equations” using
the set K. Let N denote the set of positive integers.

DEFINITION 2.2. Let S denote a fixed absolutely continuous contraction and
S =S ® B as usual. Let r > 0 be given. We say As has property X7 ; if there exist

a collection {[Lg]}pen C K, of elements of Qz, and, for each f in B, sequences of
vectors {#2}2%, and {92}, satisfying the following:
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aco’ {[Lp)] : B € B} 2 Ball'(K,),
N8l I8l <1, BEB,neN,

.[#8e#] ek, BeB,neN,

N2 @ 4] - Lel|, — 0, B€B,

. For any @ and 8 in B and m in N we have [2£ ® %] € K, and (23, ® §£] € K,
for all but finitely many n in N, and

o

6. For any o and fin B and m in N
e o2, + a5 0], 0. (2 cc)

With {[Ls]}sen C Kr, {£8}>,, and {g5} . fixed as above, denote by F

(resp. F,) the algebraic span of |J |J {z8} (resp. U U {#£}); then 5 and 6 of
PEB nEN fEB necN
the definition imply

The property X7 ; is a modification of the property Xg,; of [3]. The upcoming

il + el -0 BeBzeFyer, (1-o).

result about equation solving in our situation are the direct analogues of Lemmas
2.9, 3.3, and Theorem 3.6 of that work, and so the proofs are merely indicated here.
(In fact, minor modifications of these results hold as well in the case analogous to
property X7 (0€6L1) of [3]).

LEMMA 2.3. Suppose S is an absolutely continuous contraction such that Ag
has property Xg , for some r > 0. Suppose [L] € K., € > 0 and vectors 29,21, ..., &
from F, and yo, 41, ..., y: from F, are given. Then there exist vectors £ and § in F
and F, respectively satisfying the following:

L -Zedll, <.,

2. 12— &oll®, g — doll” < L] - (&0 ® Golll, +e,

1817 < Heoll” + IELY - (20 ® ol +e¢,

4 |18l* < Nlgoll® + IILZ] ~ (2o ® do]ll, +e, and

Nl — 20) ® Bl » 25 ® (3 — )l <& 1Lt

Proof (sketch). If [L] = [2¢ ® §io} we are done with & = %9 and § = §. So
suppose ||[L] — [2o ® fo]ll, = 7 > 0. Since 3" {{Lg]: # € B} contains Ball"(X,)
there are elements [L1],{La], ..., [Lm] in {[Lp] : 8 € B} and scalars {o;} ]2, satisfying

[~ ] pact

T ot

[Z] - [80 ® §o] = Y e[ Li]]

i=1

(10)

L m

[
L— 5=

r

and

n
(11) >l
i=1
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Further, one may choose an integer no so large that

(12) Iz - (& ‘n|,<§,;, n3>no, 1<ig<m,

where the {#},}°.  and {4}

_, are the vectors associated with [L;] by Definition

2.2. Then for any m-tuple v = (ny,...,ny) with each n; > ny we have
=, L 2

(13) [Ll-[Bo®dol - Y ai [ @dh]| <3
i=1 ’

Choose §; so that 87 = a; (1<i< m). For any v as above, set

tH»
]
Ma

Bi#h. and

i

(14)
Bidin,-

@
i
Ms

it
(A

It is by now a standard argument (see, e.g., [3, proof of Lemma 2.9]) that an m-
-tuple vo = (nd,nf,...,n%) may be chosen (by choosing the n{ succesively and
making repeated use of (6) of Definition 2.2) so as to ensure that the conditions 1-5
of the Lemma hold with & = #,, and § = §,,- a

The next lemma extends the approximation process to systems of simultaneous
equation of finite size.

LEMMA 2.4. Suppose S is an absolutely continuous contraction such that As has
property X , for some v > 0 Suppose also that N in N, {e,,,} j=1 a set of positive
numbers, {[L ,,]}.J —; C K., and sequences {:c,},,_.1 and {yJ} =, contained in F are
given such that ||[L; ;] — [a:, ® #]||r < €47, for 14,5 < N. Suppose finally that ¢ > 0
and i zg and jo with 1<, jo <N are given. Then there exist sequences {#! } -, and
{y‘ } from F satisfying

1. 2 =12, 1<i<N andi# i,

2.9 =%, 1<j<N andj# j,

3. " [Liojn] - [‘i';o ® :‘};o] "r <&

4. |iZy] - [# @ #], <e,,, 1<4,5 <N and (io, jo) # (3, 4),
5. ” Zi, — Eig nz s "?f,o o ” Lioso] — [Zio ® gj(l}“r +é,

6. ||2, u < osll + i) = [t ® el +¢, and

7.

”y.‘,lo” < ”yjn“ + “[ ioJo] [zio ] 29_7'0]”,. + €.

Proof (sketch). Let § > 0 be chosen so small that § < ¢ and § < (min< (gi;—
1€6,i <N
~I[Zs;] = [ ® %;1ll,)- Apply Lemma 2.3 to the coset [Ls,j,], with o = £i,, 0 = $o,
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the ¢ of that lemma set to 6, and with {#;};-; U{g; }?ﬂ forming the collection {2; };=1
of that lemma. The resulting # and § form a satisfactory pair £ and §; , and one
sets &, = £, (i # do) and g = g; (j # Jo)- n

The following may be obtained by an iterative use of Lemma 2.4 as applied to
larger and larger sub-blocks of an Rp x Ro system of simultaneous equations. For the

details in the proof of a similar result, see [3, Theorem 3.6]. The subsequent theorem
follows via a scaling argument as in [16].

THEOREM 2.5. Suppose S is an absolutely continuous contraction such that As
has property X§ , for some r > (0. Suppose {e:}:2, is a sequence of positive numbers

o0
and {[L;j]}f'?i:l is an array in K, C Qg satisfying 3 ||[La]|l, < oo for i € N, and
! k=1

Z (Lx;j]ll, < oo for 5 € N. Then there exist sequences {#:}2, and {§; };?‘;1 such
=1
that o .
[Lij]=@®%], 4j€EN,
o0
217 < SNl + i §€N, and

j=1

[+ =]
[FAIRS Z” illl- +€5, JEN.
j=1

THEOREM 2.6. Let S be as above and {[L.-‘,-]}:.”oj:1 be an array in K, C Q. Then
there exist sequences {&;};2, and {§j;};2, satisfying

[Lil=[8:®9], i,7€N.

The following theorem gives a sample of the dilation results obtainable by modifi-
cation of the arguments in (2, Theorem 4.1 and Proposition 4.2] and 3, Corollary 5.5].
Recall that T is a dilation of T” if T" is the compression of T to some semi-invariant
subspace (see, for example, [3] for full definitions).

THEOREM 2.7. Suppose S is an absolutely continuous contraction such that As
has property Xg , for some r > 0. Then

1. if {A:}§%, is a sequence of (not necessarily distinct) points of rD then S
dilates, up to unitary equivalence, a normal operator A whose matrix is Diag(A:),
and

2. S dilates, up to unitary equivalence, Ox where K has dimension Ro.

For consequences of these dilation theorems (mutatis mutandis) involving Lat(T)
see [3, Proposition 4.17] and for some involving the solution of equations “in LTy
see [12, Theorem 1]. '
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In the applications to follow we employ an auxiliary norm to overestimate ||[L]||.
Denote by £ the subset of L!/H{ consisting of those [f] whose associated sequence
of negative Fourier coefficients is absolutely summable. Define a norm by ||(f]|}: =
= ||(fo, f-1,- . )|ler for [f]in L. A computation using the duality of L'/Hj and H*®
shows ||[fllle 2 [|(flllz2/a; for [f] in L.

Denote by K, ¢ the set of those [f] in L!/H§ for which Dy;,.[f] € £. One may
define a norm on K, 4 by ||[flilr.e = [|D1+[f]lle. It is easy to show that

(15) WAl e 2 LA 2 ML mss (] € Kre-

Finally, import these definitions as before to the predual @z of some T in A, producing
a norm ||[L]|}r,e on Q7 and a subset K, of Q7 in the obvious way.

3. SHIFTS WHOSE ADJOINTS HAVE RICH POINT SPECTRUM

Before applying the technique of Section 2 weighted shifts let us recall some
relevant results and definitions from [3]. Recall that an operator T is power bounded if
{17135, is a bounded sequence. The following is straightforward from (3, Theorem
10.5] and the fact that a power bounded unilateral weighted shift is similar to a
contraction (see, e.g., [17]). Denote by U the unweighted unilateral shift.

THEOREM 3.1. Let S be a power bounded injective unilateral weighted shift of
multiplicity one with »(S) = 1. Then either

S similar to U, Ag has property (A;) but not property (Rz) or (Rx,),

or
S € Coo and Ag has property (Ay,).

If in addition ||S|| = 1 then S € A and the properties (R,) may be replaced by
" the classes A, throughout.

With this background, turn to the case that § € L(H) is a contractive, injec-
tive unilateral shift of multiplicity one with positive weights, and continue to follow
the notational convention of Section 2. Regard S as shifting the orthonormal basis
eo, €1, ... of H. We suppose further in this section that ro > 0 so 7,D C 0p(5*), and
consider almost exclusively the case ro = r.

The cosets needed for Definition 2.2 and the technique of Section 2 will be the
[C)] with X in roD. For such a A consider the sequence of vectors {f?}o., C H,

n=1
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where f} is indicated below:

(16) f;::(o, 0 X )

'wn wﬂ. 'wn+1

Set
i
17 ey =
(n S
It is easy to check via (2) that
(18) [€X ® &3] = [Cals-

The following lemma summarizes some “vanishing conditions” satisfied by the
vectors &} if S/r is in the class Cog. Note that in light of Theorem 3.1 some such
condition is required to arrive at the situation of Definition 2.2.

LEMMA 3.2. Suppose S Is a contractive injective unilateral shift of multiplicity
one with positive weights {wq,w1,...}. Suppose further that ro(S) = r(S) =1 >0
and that S/r is in the class Cypo. Let X be arbitrary in rB. Then for any p in rD, m
in N, and v in ‘M of finite suppbrt

L [r®et], and [h @ M) arein K, p, n>m,

2. [lep @&, + ez eer]l,, — 0 (n— o),

3. [ ® é3]ls and [€} ® 9]s arein Ky, and

4. lio @ &Il . + iR ® 9, , — 0, (n—o0).

Proof. Examine first the sequence of negative Fourier coefficients (c_;)72 arising
from [ L f,’\'] 5 under the assumption that n > m. Recall that these are obtained
as in (3) by

.= [ &i f

(19) i = (S50 58) o = P10 R 520,
where we use the notational convention. A computation yields
(20) (co,c-1,...) = Ni(p, A, m,n) + Na(gs, A, m, n)

where

Ni(ps, Ay m,n) = - -y - (‘0,0,.. .,0‘,1,X,X2,...) +

m

n—m-—1
——
(21) +-uf‘+-wm+1---wn_1- (0,0,...,1,A,A2,...) + o +

Hn-m=1 . . T )
Fp e s (0,1,,\,z
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and
' n-m o n—m+1 5y X2
IR S W ity _.,_..,...)+...
(22) Wy ++ * W —1 Wi - Wy \ W Wy

ﬂn—m-i-j 'A" X-'H'l
+ . , TR IR
Wy * - Whngj—1 Wy Wppj—-1 Wn o Wpigj-1

(Each row of the above pair of expressions arises from the negative Fourier coeffi-
cients from products with a single non-zero entry of f§.) Denote by Dy N, and
Dy N the sequences obtained from Ni(u, A, m,n) and No(p, A, m,n) by the usual
termwise product with {1 /v };io‘ We turn next to showing that Dy, Ny and Dy N2
are absolutely summable and estimating their £! norms. First consider Dy;.Nz. A

computation gives

- | D1je N2l € \I T:‘_m z=:u (W) (fll‘l’f’;‘l)‘}{Qx
<ot oy Il Il

With similar computation for D/, N1, we arrive at

Wy 1 ”fﬂ“

+

o ” [ ® én] ”rt =T aem 1—[A|/r an f""
P |

+

Wm o Waey L= A[/r’ “f}}‘u ff

(This shows half of what is needed for assertion 1 of the lemma.}

— 0 as (n — o) for the sec-

fi—m
A computation using (w lul )

m-..wﬂ—*1

i H
ond term on the right hand side of (24) anc!l g?r € Cyo for the first term yields
l[em @ ég] "r’ , — 0 as (n — oo) which is half of what is needed for assertion 2 of the
lemma.
The computations to establish the results for [¢} ® é"'j‘] are similar and therefore
omitted, but yield the other half of what is needed for assertions 1 and 2 of the lemma.
Finally, assertions 3 and 4 follow easily. a

m
Let F' denote the set of all v = w + Za;ej{“, where w is of finite support in H

i=1
and {X}; C rD. (Thus F’ adjoins the vectors of finite support to the set F U F,



356 GEORGE R. EXNER

of Section 2.) The first part of the corollary below is immediate from Lemma 3.2 and
the second then follows from (15).

CoOROLLARY 3.3. Let S be as in Lemma 3.2. Then for any X in rD and v in F/,
[0 ® €%] and [é% ® 0] are in K, , and

o ® é3lly.e + ll[EX @ B, = 0 (n — o).
Then also [6 @ &3] and [¢} @ 9] are in K, and

16 @ Xl + l[&3 @ o], =0 (n— o0).

The next theorem follows from the preceding corollary, Lemma 3.2, (17) and the
trivial observation that rD is dominating for itself.

THEOREM 3.4. Suppose S is a contractive, injective unilateral shift of multiplicity
one. Suppose further that r» = » > 0 and that S/r is in the class Cyy. Then As has
property X§ | and therefore the dilation properties of Theorem 2.7.

Let us observe in passing that the proof of the key “vanishing lemma” (Lemma
3.2) may be modified to yield a partial result essentially (usefully?) analogous to the
property £, of [11] or [10] even with no Cog condition.

4. SHIFTS WITH RICH LEFT ESSENTIAL SPECTRUM

Now switch attention to contractive injective unilateral weighted shifts S with
the radius r; = r1(S) < r = r(5), and continue the application of the machinery
of Section 2 (and to abide by the notational convention of that section). For such
shifts the left essential spectrum ¢i¢(S) satisfies 01e(S) = {A:r1 KA r} (see [15])
and thus ¢i(S) N rD is dominating for »DB. For convenience, denote the annulus
{z:r1 < |z| < r} by A(ry,r). The collection {[Ci]s:A € A(r1,7)} will turn out in
some cases to be a satisfactory collection to show As has property X7 ;.

It is well known (see, e.g., [15]) that r,(S) = 1i’£ni1%f|wk+1 < W |* and #(S) =
= li'{ns:p |Wk41 + - - Wren|>. They may be used as in [15] to construct a pair of vectors

associated with some A in A(r;,r). Let € > 0 be given, and choose ¢ and b so that r; <

I
< a < |A| < b < r. Choose I solarge that l—;\l) < € and k so that |wiqy -« - wppt|t >

P
> b. Choose p so large that (le\_) < ¢ and m so large that m > [ + &k and also
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|wmtt - ~wm+p]% < a. (Call some (finite) sequence of indices (k + 1,...,m + p)
satisfying these conditions a (A, €)-Ridge block.) Define the vector gy = ga(k,1,m,n)
by

B1% w1 WheiWiq2 W41 " Went
(25) ax= (0,0,..., L S e T e e v S VRPN B
- .
A computation in [15] shows iw_gﬁmﬂiﬁ < £. Then defining ¢ = cx(k,i,m,p) by
normalizing,
gx
26 oy = 2
9 ol
we have
(27) 138, — Aéal| < e.

A computation of the (finitely non-zero) negative Fourier coefficients of [éx ® éx]g
(where we use the notational convention of Section 2) yields a sequence (do,d_y,...)
satisfying

(28) ld_;| < I¥], 0<3,

independent of k,l,m and p. Observe for later use that the negative Fourier coeffi-
cients of [C\]4 satisfy a similar inequality.

For A in A(ry,r) we next construct the needed sequences of vectors for [C)]s. It
is noted in [15] that for any such A, ¢ > 0, and M there exists a (A, €)-Ridge block with
lowest index k + 1 larger than M. Choose a positive sequence {e,}5%, converging
to 0, and choose then a sequence of (A, g,)-Ridge blocks By (ky, ln, ma, pr) satisfying
knt1 4+ 1> pa. Denote by ¢} the unit vector associated with R, as in (25) and (26).
It follows easily from (28) that

(29) [Eh ® 3]s € Krs.

In fact, it will be convenient to have the following uniform bound:
1

| 2 an

(30) " [CA ®CA] “r,I$ 1— lAl/rs n EN‘

It is clear from (3) and (26) that the 0** Fourier coefficient of any [¢} ® 7] is
1, as is the 0" Fourier coefficient of [C3]s. From e, — 0 and (27) as applied to
the ¢} it is easy to show that the ~1%* Fourier coefficient of [¢} ® &3] approaches A,
the —1%* Fourier coefficient of [Cy]s, as n — co. The argument extends as well to
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Fourier coefficients of higher negative index, and this, (30) and a similar observation
for [C\]g, and the definition of || - [|,; yield the following lemma.

LEMMA 4.1. Let S be a contractive injective unilateral weighted shift with posi-
tive weights and ry < r. Let X be in the annulus A(r,r), and let {€}}32, be a

sequence of unit vectors constructed for A as above. Then
&R ®&]-[Calllrs =0 (7 — ).

One may begin the effort to use Definition 2.2 by choosing, for each A in A(ry,r),
a sequence of unit vectors {é}}5%, as above. Since for each A and u in A(ry,r) and n
and m in N the vectors ¢} and ¢} are of finite support the next lemma is immediate
from S a shift and (3).

LeMMA 4.2. Let S be a contractive injective unilateral weighted shift with posi-
tive weights and vy < r. Then we have

(31) N[Er@é&lls € Kryy A p€ Alr,r), n,meN,
and, for any A and p in A(ry,r) and m iz N,

(32) e @] lles =0, n— oco.

The other vanishing condition is more troublesome. The next lemma is the
best we have been able to achieve and includes only partial results even with a Cyo
hypothesis. (Contrast the case of T in A for which it is automatic for such sequences
associated with o1(T"); see also Li [13] for a discussion of similar difficulties in another
setting.) For any A in A(r1,7), € > 0, and k in N denote by Li (), €) the length of the
shortest (A, €)-Ridge block with lowest index greater than k.

LEMMA 4.3. Let S be a contractive injective unilateral weighted shift with posi-
tive weights and ry < r. Suppose there exists a set A C A(ry,r), dominating for rD,
such that one of the following conch'tians holds:

1. Forall X in A and € > 0, — wk VLA &) =0, k- oo,

2. 8/r € Coo, and for any A m A and € > 0 there is a sequence of (disjoint)
(A, €)-Ridge blocks of uniformly bounded length,

3. S/r € Coo, and for any X in A we have the collection of all terms

1 +Z (wk+1 ww) (I_Ar—l)J
n 25 1/2
(1+ 3 (Bmaony () )

1=
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uniformly bounded in k and n togethér,
4. For all X in A we have

B G
Fpe )

i=1

—0, n—

Then there exists A’ C A dominating for rD and sequences {3}, of unit
vectors as usual for {[C,]s: X € A’} satistying, for any v in H of finite support and A
in A, - ‘

(33) @i =0, n— oo,
In particular, for any pp and A in A’ and m in N,

(34) & ®&]llri =0, n— oo

Proof. The basic estimate to show each of these conditions sufficient is as follows.
Suppose A in A(ry,r) and a (), €)-Ridge block (k+1, ..., m+p) with ¢y the associated
unit vector are given. Recall that ¢; (j = 0, 1,...) denotes the standard j** basis vector
for H. Suppose M < k is given. One may compute that, for all j < M,

m+p—k

wk+1".wk+j 2' ._r.- j
ey (e (g,
WM-1 WM W i=1
lle; @ealil < '.M_j TTRE-MAL ot 50\ 2
. . mdp— ]
Wei- - Weti Y2 (7
(” ; (F=) (|)\|) )

Observe that the first term on the right hand side is, for a fixed M, uniformly bounded
for all j < M. Further computations using any one of the hypotheses yield (33). B

The following theorem then obtains from Lemmas 4.1, 4.2, and 4.3, (15), and
Definition 2.2.

THEOREM 4.4. Let S be a contractive injective unilateral weighted shift with
ry < r. Suppose there exists a set A C A(ry,r), dominating for rD, for which one
of the conditions of Lemma 4.3 holds. Then As has property X{ ; and therefore the
dilation properties of Theorem 2.7.

It is easy to construct shifts S for which S/r is not power bounded and to which
Condition 1 of the lemma applies; essentially, what is needed is that the weights vary
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rapidly from blocks of large weights to blocks of small weights. To construct a shift

to which 4 applies, the following numerical lemma is useful.

LEmMA 4.5. For any R > 1,

Proof. Estimate each sum by the sum taken from n/2 to n and compute. [ |

The shift whose weights are 1,1/1/2,1/2/3, ... then satisfies Condition 4 with
r = 1. It is easy then to intersperse these weights with blocks of large and blocks of
small weights to produce a shift T with r = 1 which is not power bounded and has
r<1;let S =T/||T||

The construction via Ridge blocks of sequences of vectors for the cosets [Cx] may
work even in the absence of a Cyg assumption. Consider a shift whose weights are as

indicated:
n1 i "j
PR G ~ - -~
L 111 1 V2 V211 %2 /2
,4):1';2!"')11—7"': 2:4:4: 9 1000 9 3
nsz 9 ng
e s, e e,
TT 1% #1119 0
4’4)-"’4) IR 9 :474:41 9 ety 9 g

We leave to the reader to check that this is a contractive shift S with spectral radius
r = 1/2 and ry = 1/4 and that S/r is not power bounded. Further, the numbers
n1,ng,... may be chosen so as to ensure (33).

We know of no shift, in the class Cpo or not, for which this construction using
points of the left essential spectrum can not provide suitable sequences of vectors.

5. REMARKS AND QUESTIONS

It is appropriate to remark at the outset that this work shares some of the
goals of the work of W.-S. Li [13] on polynomially bounded operators and uses a
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complimentary if distinct approach: to generalize the situation for an operator 7' in
A we give up rspec(T) = 1 while she gives up ||T]} = 1. While these studies were
pursued independently we wish to thank Li for early access to her results and some
enlightening discussions on that approach.

The property Xj ; yields subspaces invariant (not merely semi-invariant) for an
operator. The following definition generalizes that used in [10], [14], and [7] from
r=11t0 0 < r<1. Let V denote closed linear span.

DeFINITION 5.1. Let T be a contraction and M be an element of Lat(7T"), the
lattice of subspaces invariant for 7. We say M is an r-analytic invariant subspace for
T if there exists a non-zero conjugate analyitic function e: A — ey from rD into M
such that

(35) (TIM—XN)ex=0, AerD.
If in addition

(36) V er= M

AErp
we say M is a full r-analytic invariant subspace for T'.
We may obtain the following much as in [10], [14], and [7].

ProposiTioN 5.2. Let S € £L(H) be an absolutely continuous contraction such
that As has property X§ , for some r > 0. Then S has a cyclic r-analytic invariant
subspace. .

With more work one may obtain a cyclic full r-analytic invariant subspace (as in
{10, Proposition 5.3]), and if S is one of the shifts studied then we may obtain a dense
set of vectors generating cyclic full r-analytic invariant subspaces. These results are
relegated to the remarks because there appear to be impediments to their hoped-for
culmination in the reflexivity of Ag as in {10]. The reflexivity result [17, Proposition
37] appears encouraging nevertheless.
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