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FURUTA’S INEQUALITY AND ITS APPLICATION
TO THE RELATIVE OPERATOR ENTROPY

TAKAYUKI FURUTA

Dedicated to Professor Tsuyoshi Ando on his sixtieth birthday

A capital Jetter means a bounded linear operator on a Hilbert space. An operator
T is said to be positive if (T'z,z) > 0 for all z in a Hilbert space. It is well known
that A > B > 0 does not always ensure A% > B? in general and also that “2” is only
a partial order on the set of positive operators, not a total ordering. We recall the
following famous inequality: if A > B > 0, then 4A* > B® for each o € [0,1]. This
inequality is the Lowner-Heinz theorem established firstly in [12] and nice operator
algebraic proof was given in [14].

In {7], as an extension of this Lowner-Heinz theorem, we established the Furuta’s

inequality as follows; if A > B > 0, then for each r 2> 0,
(BT APB")% » B®¥

and

AT 5 (ATBPAT)E
hold for each p and ¢ such that p > 0, ¢ > 1 and (1 + 2r)g > p + 2r. Alternative
proofs of this inequality arc given in [4], [8], [9] and [11]. Recently in [2], the relative

operator entropy S(A|B) for positive invertible operators A and B is defined by
S(A|B) = A¥(log A"3BA~3)A3.

In this paper, first of all, we shall show that the Furuta’s inequality can be applied
to estimate the value of this relative operator entropy S(A|B). We cite an example as
follows. Let A, B and C be positive invertible operators. Then logC 2 log A > log B
holds if and only if

S(A™F|CP) 3 S(A|4P) 3 S(A™""|BP)
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forallp > 0 and all » > 0. _

As an immediate consequence of this result, we shall show that log C > log A~! >
log B ensures S(A|C) > —2Alog A > S(A|B) for positive invertible operators A, B
and C.

Secondary we shall show somewhat precise upper bound and lower bound of the
relative operators entropy.

Finally we shall show an elementary proof of the following result. Let A and B
be selfadjoint operators. Then A > B holds if and only if ‘

Fu(p,7r) = B (erB ePArB ) Hire-rB

is an increasing function of both p and r for p > ¢ > 0 and for afixed ¢ > 0 and r 2 0.
This result is an extension of Ando’s one [1].

1. THE RELATIVE OPERATOR ENTROPY

In this section we shall show that the Furuta’s inequality can be applied to
estimate the value of the relative operator entropy. Also we shal show somewhat
precise upper bound and lower bound of the relative operator entropy.

As an extension of the operator entropy considered by Nakamura and Umegaki
[13] and the relative operator entropy considered by Umegaki [15), recently in [2], the
relative operator entropy S(A|B) is defined by

A(A|B) = A¥(log A= ¥ BA~ %) A%

for positive invertible operators A and B. We remark that S(A|I) = ~Alog A is the
usual operator entropy.

THEOREM 1. Let A, B and C be positive invertible operators. Then the following
assertions are mutually equivalent.
(1) logC 2 log A > log B,
(i) (A3C*A3)" > 4P > (A3B*A%)™ forallp > 0 and all s 2 0,
(iil) log (A™CPA") 2 log AP*2" > log (ATBPA™) for allp 2 0 and allr 2 0,
(iv) S(A™|CP) 2 S(A~?"|AP) » S(A~?|BP) forallp> 0 and all r > 0.

CoROLLARY 1. Let A, B and C be positive invertible operators. If logC 2
2 log A=! > log B then S(A|C) > —2Alog A > S(A|B).

THEOREM 2. If A and B are positive invertible operators, then for any positive
number z,

' AB-1A
(log zo — 1)4 + f”- > S(A1B) > (1 ~logzo)d - ~——.
]
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COROLLARY 2 [3]. If A and B are positive invertible operators, then

B—A»S(A|B)> A- AB 1A

CoroLLARY 38 [2]. If A, B and € are positive invertible operators, then
S(A|B)=0

holds if and only if A = B.

In order to give proofs to the results in this section, first of all we cite the following
Furuta’s inequality in [7] which is an extension of the Léwner-Heinz inequality.

THEOREM A (Furuta’s inequality). Let A and B be positive operators acting on
a Hilbert space. If A 2 B >0, then

M (B 47 B7) 75 > B
and
o) AT (47 5P AT R

hold for allp > 1 and r > 0.
In order to give a proof of Theorem 1, we cite the following Lemmas.

LEMMA 1. The following (i), (ii) and (iii) are equivalent.
(i) log A > log B

(i) 47 > (A3BPA3) forallp > 0

(ii)) 47 > (43B*A3)™ forallp> 0 and all s > 0.

LEMMA 2. Let A and B be invertible positive operators. For any real number r,
2N\ r-1
(BAB)" = BA% (A%B"’A’i) A%B.

Proof of Lemma 2. We cite the following proof [10] for the sake of convenience.
Let BAY = UH be the polar decomposition of the invertible operator BA% where U
is unitary and H = lBAkl.

(BAB) = (UH*U*)" = UHYU" = BASH-1H>H~14YB =
- -1
:BA% (Hz)r_lA%B:‘-BA% (A%BZA%)T A’;‘Bz

so the proof is complete. N
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Proof of Lemma 1. First of all, by Lemma 2 we recall the following two equivalent
assertions in (%) for any p > 0 and any s > 0:

.

(%) A7 > (A%B’A%) ® if and only if (B¥APB%)™ 3 pr.

(i)« (ii) is shown in [1]. (iii)—(ii) is easy by putting s = p in (iii). We show (ii)—(iii).
Assume (ii); A° > (A$B* A%)% for all s > 0. Then by (2) of Theorem A, we have the
following inequality:

(3) As(1+20) > {A”(A%B‘A%)%A“)"%

form21andt>0. Put m=2in (3), we have

(4) As(1422) > {Aa(t-{-})BaAs(!-(-%))%% fort > 0.
Put p = s(1 + 2t) in (4), then ;IZ = _p__, so we have
(5) AP > (AFB AT

for all p and s such that p > s > 0,because p=s(1 +2t) > s
On the other hand (ii) is equivalent to the following (6) by (),

(6) (BEAPB5)Y » BP
for all p 2 0. Then applying (1) of Theorem 1 to (6), we have the following (7)
(7) {B™(B %A?Ba )?Bw}—,fé?& > Br(l+2u)

form > 1 and u > 0. Put m = 2 in (7). Then we have

(8) {BPu+E) gp prlu+ D)IHL 5 grO+29) for 4 > 0,
Put s = p(1 + 2u) in (8), then ;Ig: i , 50 We have
©) (BS47BY)™ > B

for all p and s such that s > p > 0, because s = p(1 + 2u) > p. (9) is equivalent to
the following (10) by (),

(10) 4 2 (Afp Ay

for all p and s such that s > p > 0.
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Whence the proof of (iii) is complete by (5) and (10). |
Proof of Theorem 1. (i)—(ii). The hypothesis (i) log C 3 log A, that is,log A™1 >

log C~! which is equivalent to

AP > (A-‘:"(;'-’A"%)T-ﬁ
by (i) and (iii) in Lemma 1. Taking inverses ensures
(AfcrafyH > 4

and the rest of (ii) is already obtained by (i) and (iii) in Lemma 1. For the proof from
(ii) to (i) we have only to trace the reverse implication in the proof from (i)—(ii).
(i1)—(iii). (ii) ensures the following inequality since logt is an operator monotone
function
plog(A3C " A%) > (p+ s)plosA plog(A% B A%)

for all p > 0 and all s > 0, and we interchange —2- with » and also we interchange s
with p, then
log(A™C? A7) > log(APT?") > log(A" BP A™)

for all p > 0 and all r > 0.
(iii)«(iv). (iii) is equivalent to the following inequality

A7" log(ATCPATYA™" > A" log(APT)ATT > A" log(ATBPAT)ATT
for all p 2> 0 and all r > 0, that is,
S(S7¥|CP) 2 S(A™*|4P) > S(A™?"|BP)

forall p>0and allr > 0.
(iv)—(i). Put » = 0 and p = 1 in (iv), then

logC 2 logA > logB

so the proof of Theorem 1 is complete. u

Proof of Corollary 1. In Theorem 1 we interchange A with A~ and also we put
p=2r = 1, so we have the desired result. n

Proof of Theorem 2. First of all, we cite the following obvious inequality for any
positive real numbers z and z,

z 1
(11) logzo— 1+ = > logz > 1-logzo ~ ——.
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We can interchange z with positive operator A~¥BA~% in (11), then

-3BA-%
A {logzo -14 A—-i&} At > S(AI1B) >
0

ip-ta}
QA%{I—logzo-A——B— A
Lo
that is, .
_ AB™14A
(logzo — 1)A + g 2 S(A|B) 2 (1 = logzg)A — ~
0

so the proof is complete. u
Proof of Corollary 2. Put zg = 1 in Theorem 2. n

Froof of Corollary 3. Put $(A|B) = 0 in Corollary 2, then
B—A>202>A-AB™ 4

that is, B > A and AB~A4 > 4, namely B~1 > A~!, so that A > B and we have
A = B and the reverse inplication is obvious. n

2. ELEMENTARY PROOF OF EXTENDED RESULTS OF ANDO'S ONE

In [1], Ando established the following fine result.

THEOREM B. Let A and B be selfadjoint operators. The following assertions are
mutually equivalent.
(i) A> B.
(ii) e~ 54 (e54eBed4) ¥ =54 < 1 for all + > 0.

(iii) e=54 (eF4erBed4) Ye54s, decreasing function of r > 0.
Related to Theorem B, we shall state the following results.

THEOREM 3. Let A and B be positive invertible operators. Then the following
assertions are mutually equivalent.
(i) log A > log B.
(ii) For afixedt > 0 and r > 0, Fy(p) = (B™ 4? B’)% is an increasing function
ofpforp>¢>0.
(iii) For a fixedt > 0 and r > 0, G4(p) = (A" B? A’)ﬁ% is a decreasing function
ofpforp>t>0.

THEOREM 4. Let A and B be positive invertible operators. Then the following
assertions are mutually equivalent.
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(i) log A = log B.
(ii) Forafixedt 2 0andr 2 0, F(p,r) = B"(B"APB");’E';' B~T is an increasing
function of both p andr forp 2t 2 0.
(ili) For afixedt > 0 andr > 0, G(p,7) = A"'(A’BPA")?"-*F%A" is a decreasing
function of both p and r forp 2t 2 0.

THEOREM 5. Let A and B be selfadjoint operators. The following assertions are
mutually equivalent. -

(i) A> B.
(ii) For a fixedt » 0 and 7 2> 0, Fe(p,r) = e™*& (efBeMefB)%% e "B is an
increasing function of both p and r forp 2t 2 0.
(iii) For 2 fixed t 0 and r 2 0, Ge(p,r) = ™™ (efAePBeM)ﬁ%e-M is a
decreasing function of bothp andr forp 21 2 0.

The following result is obtained in [10].

THEOREM C. If A> B > 0, then for fixedt 2 0 and r 2 0,
. 1437
(i) Fi(p) = (B’APB")P$5' is an increasing function of p forp 2t > 0.
t42r
(i) Gi(p) = (A'BPA")P$§' is a decreasing function of p forp 2t > 0.

In order to give proofs of results in this section, we cite the following Lemma 3.

LEMMA 3. Let A and B be positive invertible operators. If log A > log B, then
for each r > 0,

(i) BrAP*+ BT > (BrApBr)ﬂEFL,‘,f'
pte+43r
(i1) (ATBPAT) #¥37 > AT BP*S AT hold for each p and s such thatp > s 2 0.
Proof of Lemma 3. First of all, we cite (12) by (i) and (iii) of Lemma 1.

(12) AP > (A‘%B?"A%)Fﬂ—’

forp>0and > 0.
The Léwner-Heinz theorem ensures the following (13) by (12)

(13) A (A5B2’A§) i

forp>2s>0andr > 0.

(B4 B7) " = pr Ak (aBBY A3) T abEr by Lemma 2
< BTATA*ARBT by (13)

= BrArte g
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so we have (i) in Lemma 3. By the hypothesis we have log B~! > log A~!. Then by
(i) in Lemma 3,
(A“fB—PA-r) =T £ A""B_(""")A_'

for each r 2 0 and for each p and s such that p > s > 0. Taking inverses gives (ii) in

Lemma 3. B
Proof of Theorem 3. ‘1o
(i)=(iii). In Lemma 3, IT-:-:EE? € [0,1] by the hypothesis p > ¢ > 0, by (i) in

Lemma 3 we have the following inequality by the Lowner-Heinz theorem
ar i42r
Fi(p+s) = (BrAp+sBr) s > (B'A”Br)%g? = Fy(p)

which is the desired result (ii).

(1)=(iii). This proof is easily shown by the same way as one in (i)—(ii) by using
(ii) in Lemma 3.

(ili)—(i). Put ¢ = 0 in (iii), for any sequence {pz} of increasing real numbers
such that pp > pa_1 2 -~ 2 pa 2 pr =0, then _

A¥ > (A"B”A”)"fb‘n T2 (AfBP»Af)—%rpa frv

so we have A% > (A"BPA")#%’ for p > 0 and r > 0, which means that (iii) in
Lemma 1 holds, so we have (i) by Lemma 1.

(ii)—(i). This proof is also easily shown by the same way as one in (iii)—(i). B

Proof of Theorem 4.
(1)—(ii). First of all, we show the following inequality

(14) (A‘?‘BZ*‘A%)% > (A§B25A§)%

for » > s > 0. By (iii) of Theorem 3, we have

ty4p ti+p
(15) (A%Bz"A%)sh? < (A’%Bzuql%)ﬁ
for2r>2s2>t >0t.
Put a = p-:t € [0,1] since p > t > 0 and #; > 0, by the Lowner-Heinz
1

Theorem, taking o as exponents of both sides of (15) and moreover taking inverses
of these both sides, we have (14).

=

F(p,r) = B~ (B APB")#Hr B~ = A% (A%BWA%) " A% by Lemma 2

> A% (A%Bz"A%) e ASforr2s20 by (14)
=B (B’APB‘);TI':T: B™® by Lemma 2

=F(p,s)forr>2s20-
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so we have (ii) since F(p,r) is an increasing function of p by Theorem 3.

(i)—(iii). Also by the same way as one (i)~ (ii), we have (iii) from (i) using (ii)
of Theorem 3.

(ili)—(1). Put ¢ = 0 in (iiii), for any sequence {pi} of increasing real numbers
such that p, 2 pn—1 2 -+ 2 ps = p1 = 0, then we have

AT (AT AT)ATT 2 AT (ATBRANEER AT
> A~ (ATBPr AT)RFT AT

so we have the following inequality
(16) A > (ATBPA")#¥% for p> 0 and r 3 0.

(16) means that (iii) in Lemma 1 holds, so by Lemma 1 we have log A > log B
which is desired (i).

(ii)—(i). This proof is easily shown by the same way as one in (iii)—(i).

Proof of Theorem 5. We have only to replace A by e* and also B by P in
Theorem 4. ]

Proof of Theorem B. In (iii) of Theorem 5, we put t = 0 and 2r = p and also we

1
recall that A > B holds if and only if (e54e™Pe54)?  e™ hols by Lemma 1, so that
Theorem 5 easily implies Theorem B. .

Proof of theorem C. As logt is an operator monotone function, so the hypothesis
A 2 B 2 0 ensures log A > log B and Theorem 3 implies Theorem C. B

Mean theoretic proofs of the results in this section will appear in [6] which is an
extension of [5].

The author would like to express his sincere appreciation to Professor F.-H.
Vasilescu and also the staffs of Institute of Mathematics of the Romanian Academy
for their hospitality to him during 13th International Conference on Operator Theory
which has been held and has been excellently organized.
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