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A HILBERT-SCHMIDT NORM EQUALITY
ASSOCIATED WITH THE
FUGLEDE-PUTNAM-ROSENBLUM’S TYPE THEOREM
FOR GENERALIZED MULTIPLIERS

DANKO R. JOCIC

1. INTRODUCTION

Let H denote a separable, infinite-dimensional, complex Hilbert space. Let
Cy(H) C B(H), || - {2, o(-), [ denote, respectively, the Hilbert-Schmidt class, the
class of all bounded linear operators, the Hilbert-Schmidt norm, the spectrum and
the restriction of an operator. In this paper, for nermal operators A and B we will
always denote by E(-) and B(-) respectively their associated spectral measures.

The following theorem:

THEOREM 1.1. For A, B, X € B(H) with A and B normal, A(X) = AX-XB =
= 0 implies A*(X) = A*X — XB* =,

is known as the classical Fuglede-Putnam-Rosenblum’s (FPR) theorem” (see [15]).
This theorem has been generalized in various ways under different conditions for A, B
and X, and for different (mainly differential) expresions A (and appropriately defined)
A* (see [16], [2], [3], [26]). The aymptotic versions of those generalizations have also
been proven in different operator topologies by use of R.L. Moore’s construction (see
[18], [20]).

On the other hand, the commutator A(A, B)X = AX — X B and the multiplier
M(A,B)X = AXB are the simplest cases of generalized multipliers, associated to
analytic functions f(z,w) = z — w and f{z, w) = zw respectively. Various aspects of
generalized multipliers are investigated, for example, in [9], [25], [11], [4], [5], [6], [7].

In this paper we prove an FPR type theorem for generalized multipliers.
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2. ESSENTIALLY BOUNDED FUNCTIONAL CALCULUS

THEOREM 2.1. (Boundedness of the trace variation) For arbitrary X, Y € Ca(H)
we have

> e (B(rm) X F(6,)Y™)| € 1 X122,

for every finite Borel partition {75}, {6n} of the complex plane.

Proof. B
D [be(E(ym) X F(62)Y™)| =
= Z [te(E(Ym )X F (6n)(E(7m )Y F(62))")] £
<D I6(E(rm ) X F(8a)(B(Ym) X F (8n))* WW(E(m )Y F (6 )(E(m )Y F(60))*)*/? <

' 1/2
< {Z tr(E(7m)XF(6n)(E('Ym)XF(‘Sn))*)} X

1/2
X {Ztr(E(')’m)YF(&n)(E('Ym)YF(‘Sn))‘)} =

m,n

1/2 1/2
={Ztr<E(7m)XF(6n)x*>} {Etr(E(vm)YF(an)Y*)} =

m,n m,n
= (XX 24a(Y Y2 = || X al|Y o n
According to the extension theorem given in [23] we derive the following:

COROLLARY 2.1. Let X,Y € Co(H). The mapping vy x § — tr(E(y) X F(6)Y*)
of the family of all Cartesian products of Borel sets in C can be extended in a unique
way to a complex Borel measure px,y in C? such that |uxy| < || X|[2]lY|}2-

Also, the mapping f — / fdpxy is a bounded linear functional on L,

supp ExsuppF
(suppE xsuppF, duyx,y), because

fduxy | < lIfllooliex ¥ | < I flloolIX12[1Y]f2-
(A)xo(B)

Sometimes, we use some more informative notations

f(z, w)d tr(E(2)X F(w)Y™)

suppE xXsuppF
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and
f(z, witr(dE(2) X dF(w)Y™)
suppE XsuppF
instead of
fdpxy.
supp ExsuppF

From the same inequality we conclude that for every Y € Cp(H) and every function
f, which is bounded and Borel measurable on suppE x suppF, the mapping X —
— f fdux,y is a bounded linear functional on Co(H), which is a Hilbert

suppE xsuppf
space itself (see [17]), with the norm given by (4, B), = tr(AB*). Therefore there

exists a bounded linear operator on Cy(H), denoted by f(A,B) or Ag(A, B), such
that
tr(f(A4, B)(X)Y*) = / f(z,wydtr(E(2) X F(w)Y™).
suppE XsuppF
Obviously, ||f{A, B)|| £ [|fl|ec, but some more precise considerations show that this
inequality is in fact an equality.

Some of the well known functional calculus formulae for normal operators (see
(8], p.131, (4)~(11) and p.154 (10)) can be rephrased as follows:

(i) (af + Ba)(4, B)X = af(4, BYX + Bo(A, B)X,
(i) (f9)(4, B)X = £(A, B){g(A, B)X),

(iii) o( f(A, B)) is exactly the essential range of o(A)x o(B) by f, being measured
by uxv, for any positive measures y and v mutualy absolutely continuous with respect
to E and F respectively.

(iv) f(4, B = F(4, B).

(v) f(A,B)X = AX if f(z,w) =z and f(4,B)X = XB if f(z,w) = w.
From (ii) and (iv) it follows that f(A4, B) is a normal operator on C,(H ), and therefore,
if X € Cy(H), the Hilbert-Schmidt equality in FPR type theorem for (essentially)
bounded multipliers coincides, in fact, with the normality of the corresponding multi-
plier. But if X isin B(H) but not in C2(H), this question has a sense only if f(4, B)X
is definable and belongs to C2(H). One posible situation is when f is analytic, and
so, we will concentrate our attention on this type of multipliers, to which we will, in
the sequel, refer as to analytic or generalized multipliers.

3. GENERALIZED MULTIPLIERS

Following [11}, for A, B € B(H), and for every function f analytic in each variable
in some neighbourhood of the set o(A) x o(B), we can define on B(H) a linear operator
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F(A, B), which is called a generalized (or analytic) multiplier (or transformator), by

f(A, BY(X) = _%5 ){ f F(z W)(A — 2)"X(B — w)~dz du,

T'aln

for every operator X € B(H). The above integrals are calculated over regular con-
toures I'y and I' surrounding o(A) and o(B) respectively. If the operators A and B
are known from context, we also use the notation Ay, and if in addition the function
f is known, we denote it simply by A. The last notation is traditional and has come
from the broadly investigated transformator X — AX — XB (see for example [1],
[12], [13], [14], [21], [11]).

Similarly, we define the adjoint multiplier:

FABY (X) = -y f j{ FEBA" — 2)~ ' X(B* — w)~'dz dw

TaTp

(where T4 stands for {z:7 € I'y}).

For such functional calculus (see [19], [11], [24]) the formulae (i), (ii) and (v) are
still valid, while (iii) and (iv) become

(i) o(£(4, B)) C £(o(4), o(B),

(v") (F(A B)eaem) ™ = £(4, B) [cara)-
Of course, for normal operators A and B and such an analytic f, a straightforward
application of the Cauchy reproducing formula shows that this transformator coincide
with the previously introduced one.

4. FPR THEOREM

In the beginning we give some well-known theorems concerning the factorization
of an analytic function.

THEOREM 4.1. (Weierstrass, see [10, p.11]) Let f be an analytic (in each variable)
function in the open set W' = U x {w: |w| < R}, where U is a neighbourhood of the
origin 0 in C such that f(0,w) # 0 in the disc {w:|w| < R}. Let also r < R for
some r such that f(0,w) has no zero on the sphere {w:|w] = r} and let k be the
number of zeros of the same function in the open disc V, = {w:|w| < r} counting
their multiplicity. Then there exists a neighbourhood W' = U’ x V. C W of the origin
in €2 jn which the function f can be represented in the following form:

f(z,w) = (w* +e1(2)w* 2 + -+ er(2)) folz, w),
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for some functions ¢;(z) in U’, and for some analytic function fo having no zeros n
w’.

THEOREM 4.2. (Factorization theorem, see [10, p.13]) Let U be a (simply con-
nected) open set in C and let the function f be analytic in U x V such that for every
fixed z € U the function f(z,-) has in V exactly m geometricaly different zeros. Then
those zeros analyticly depend on z, i.e. there exist: analytic in U functions {o;}iz4, a
function fo, analytic and with no zeros in U x V, and some natural numbers {k;}IZ,
such that

m

f(za 'w) = H(w - a;(z))k‘fo(z, w)
=]

for every (z,w) €U x V.

THEOREM 4.3. (Discriminant set, see [10, p.11]) Let the function f be analytic
in the bounded open set W = U x V in C2 with zero set having no accumulation
points on 8U x V. If m < oo is the maximal number of geometricaly different zeros
of f(z,w) in V with z € U fixed, then G, the set of points at which this maximum is
obtained, is an open set everywhere dense in U. Moreover, there is a function A(z)
analytic in U (not identical to zero) having a set U \ G for its zero set (on U).

COROLLARY 4.1. (see [10, p.15]) Let the function f be analytic in the bounded
open set W = U x V in C? with zero set having no accumulation points on U x 8V
Then there is a Weierstrass polynomial F such that Zp = Z; and such that for every
fixed z € G all the roots of the polynomial F(z,-) are simple.

COROLLARY 4.2. (see [10, p.15)) The discriminant set of f, i.e. the projection
on U of the set
{(E,'t}) eUxV:F(,n) = E%F(E,n) = 0},
is the zero set of the above mentioned polynomial F'.
Now we give our main FPR. theorem for generalized multipliers.

THEOREM 4.4. (FPR theorem for generalized multipliers) Let A, B, X € B(H),
with A and B normal, and let f be analytic in some neighbourhood of the set o(A)x
xo(B). If Ay(X) € Co(H), then A}(X) € Co(H) with

1A (X2 = [|AF(X)]]2-
Proof. Using the additivity of the spectral measure, it is sufficient to prove that

for every connected component U x V of the above mentioned neighbourhood of the
set 0(A) x o(B), we have A} (E(U)XF(V)) € C2(H) and

NA(EWXF(V )2 = [AHEW)XFV )]l
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If f = 0 this is obvious.
If f # 0, then the set oo: = {z € o(A): (Vw € V)f(z,w) = 0} is finite according
to the theorem of uniqueness. For every € > 0 let o.:= ¢(4) \ U B(s,e) and Uy: =

AETg

:=U\ |J B(s,/2). Obviously o; C U.. Also, for the operator A.:= A[g(s. )1, we
&ECq
have o(4.) = o..

For every (z,w) € o(A;) x o(B) there exists v, > 0 such that V;,:=
:= B(w,r;w) C V and such that the function f(z,-) has no zeros on 8V,, (if
f(z,w) = 0 it exists because zero w is isolated, and if f(z,w) # 0, by continu-
ity). By continuity of f and compactness of 8V; 4 there is ;4 > 0 and there is
Urwi= B(w,2€,,4) C U, such that f £ 0on U,y X OV, 4.

So we have that m, the maximal number of geometricaly different zeros of f(-, w)
on U, , is finite, and also, that D, ,, the set of points where this maximal number
is not obtained is exactly the set

{ectiu:@enaren=2ren=o},
where F is the Weierstrass polynomial associated to f on U, ... It also coincide with
the set of zeros of the discriminant of ¥ on U, ,, which is an analytic function, and
thus we have ¢, 4:= D, 4 N ﬁ(w,e,,w) to be finite. So, for every ¢ > 0, the set
o= U D, v is finite according to compactness of .. Once again, that will allow

feoc
us to “eliminate” a small neighbourhouds of &1 by letting or: = o(A, )\ U B(s,2¢')
€01
and Up:= U, \ U B(s,¢") for an arbitrary ¢’ > 0. Obviously o¢+ C U, and, for a

s€o;

given (z,w) € o+ x o(B) there is £} ,, > 0 such that U} ,:= B(z,&} ) C Uz N Ve,
Since the zero set of f has no accumulation points on U;,w % 0V; v, and since the
number of geometricaly different zeros of f(z,-) is constant, we will have, according
to Theorem 4.2 that

ey =TI ften
k=0

on U; , X V; u, for some n € N, with fi(¢, 1) = n — ax(€) for some analytic (in V; )
functions a(€), for every 1 < k < n and some fo(£,n) analytic and having no zeros
mU,, x V.
Define

Azw = Alpw: 1,

Biw = Blpwv. ,)u
and

X.w = E(U}],) XAlrw, -
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The commutativity of the operator family {A;,, A}, Y-, on B(E(;,)H,
F(V,,w)H) and Theorem 1 in {26] consequently give

Aj (f_[ Ag, (Afn(-Xz.w))) A}; (H A (Afo(Xz,w)))

k=2 k=2

2 2

I1 As (A (A (X: )

k=2

2
Using the same arguments n — 1 times we get

Ag, (H A (Xz,w))

k=1

= N

2

Ag, ( II A;,‘(x,,w))

k=1

IT A% (Ar(Xzw))
k=1

2 2

Since the transformator A} A'f‘u1 is an isometry on B(E(U} ,)H, F(V;w)H), then
the above expressions are equal to

s ([ antren)

k=1

b

2

and this implies
A (Xzw)ll2 = [[AF(Xzw)ll2s

and hence
1B(U; ) A (XY (Ve w)ll2 = |E(U; o )AHX)F (Vz,u)ll2-

According to the compactness of 6( 4.+ ) x o(B), there is a finite covering {U}, ,,. %
X Vziw; H1, which, according to the additivity of vector functions u, u* defined by

By x 8) = E(7)A;(X)F(6)

and
#*(y x 8) = E(7)A}(X)F(8),
gives
I I
1 B (U Uiw: X Vz;,w.-) = |ln (U Usws X I/z;,w.-)
i=1 2 i=1 2

Still more, the strong continuity of every spectral measure in the corresponding
Hilbert space gives that the measure Gz, defined by

Gz(y % 6) = E(7)ZF(9),
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is additive and strongly continuous for all Z € B(H) and ¢-additive and C3-continuous
whenever Z € Co(H).
Since oy is finite, the strong continuity of u* and Ca-continuity of u gives

5= El'i_rﬂ)E ( U B(s, 26')\0’1) 1(X)=0

8€oy
and
Co— lim E ( U B(s, 26’)\0’1) Ay(X) =0.
=0 s€o1
Having
I \
(oe \ o1) x o(B) \ U(Uzi,m X Vziw:) © ( U B(s,2¢')\ ‘71) x o(B),
s=1 360’1
we obtain
I
§— el'iinn #* (LJI U.;;,w; X I/Zi,wi) = E(G’e \ UI)A;(X)
1= .
and

I
2= clliinop (U U;.‘,w,a x V;:,',we) = E(O‘e \ al)Af(X)'

$=1

Now, having both sides of equality (1) less or equal to ||Az(X)||2, the uniform
boundedness principle on Cy(H) gives E(g.\01)A%(X) € C2(H), but this imply that
we also have

I
Cy— el,ilno l“* (U U;:‘,W:‘ X Vzg,w.') = E(O'c \ UI)A} (X)

i=1

The limit process in (1), together with |[|X f(s, B)||z = |IX f(s, B)]|2 for all 5 € a3
gives

1E(ee)AH X2 = |E(ee)As(X)]]2-

The similar procedure with ¢ instead of ¢, talking account that Xf(3, B*) =
= X f(s, B) = 0 for all s € oy, gives A%(X) € C(H), and finally

A3z = [1A,(X)]]s- a
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