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SPECTRAL INVARIANCE AND TAMENESS
OF PSEUDO-DIFFERENTIAL OPERATORS
ON WEIGHTED SOBOLEV SPACES

JOSEFINA ALVAREZ and JORGE HOUNIE

0. INTRODUCTION

A smooth real function v > 1 on R" is called a weight if all its derivatives of
positive order are bounded. Given any real number ¢ we may consider the density
dp = v*dz where dz denctes the Lebesgne measure. The Sobolev spaces H;;f, based
on this density are called weighted Sobolev spaces, where s measures regularity and
p indicates the exponent of integrability (see Definition 1.5 for details). They behave
quite well under the action of pseudo-differential operators and constitute a suitable
framework for the study of linear and nonlinear partial differential equations (we
consider pseudo-differential operators in the class £7%, (cf. [9], [11], [1]), m € R,
0<p<gl, 0<6<1, §<p). In this article we study systematically two properties
for pseudo-differential operators acting on weighted Sobolev spaces:

i) spectral invariance and

ii) tameness of the basic operations needed in order to apply the Nash-Moser
implicit function theorem.

Concerning spectral invariance, Schrohe proved in [12] that the H;;ffspectrum of
an operator in L] ; is independent of the choice of 1 < p < 00, s €R, ¢ ER, and the
weight . He also showed that the spectrum of an operator in [,215 does not change
with s,t,v if p < 1 and p = 2. Here we study the dependence on p of the spectrum
when p < 1 and show that there is a well determined interval I = [pg, pj] around
p = 2 such that the spectrum remains invariant for p € I but changes, in general, for
p outside I.

Our study of tameness was motivated by the work of Goodman and Yang [8] on
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local solvability of general nonlinear operators of real principal type where pseudo-
differential and Fourier integral operators with classical symbols are used as right
inverses for the linearization of nonlinear differential operators and tame estimates
are proved in the context of standard L2-based Sobolev spaces. Here we show how to
extend these properties to pseudo-differential operators in Hérmander’s class acting
on scales of weighted Sobolev spaces. As an application, we prove local solvability for
the semilinear equation with complex coefficients in R?

P(z,t,Dz, Dy)u + F(z,%,4,...,D7 u) = f(z,1), laj<m-1,

where P is a homogeneous linear differential operator of order m > 1 with smooth
complex coefficients, F is a complex-valued function, holomorphic in 4, ..., D%u, for
la| € m — 1, and smooth in (z,t) and f € C°(R?). We assume that P(z,t, Dz, Dy)
satisfies Tréves’positivity condition (R) [15] which is necessary (but not sufficient) for
the hypoellipticity of P. Local solvability for this equation was proved by Dehman [4]
under the stronger assumption that P is subelliptic. In our proof, the construction of
right inverses for the linearized operator involve pseudo-differential operators in the
class £9 /2

Unless otherwise specified, the functions we will consider are defined on R™ with
complex values. They will be called smooth to mean that they are of class C®. The
Bessel potential of order « is denoted by J* and L? indicates the usual Sobolev space
of order s and exponent p (L} will be identified the Lebesgue space L?, 1 < p < ).
As usual, S denotes the Schwartz space of rapidly decreasing functions and §’ its dual,
the space of tempered distributions. Given two Banach spaces X and Y, £(X,Y)
denotes the space of linear, continuous operators from X to Y. When X = Y we
write £(X) rather than £(X, X). The identity operator will be denoted by I. Given
an exponent 1 < p < 0o, p’ denotes the conjugate exponent, 1/p+ 1/p’ = 1. The
paper is organized as follows:

Section 1. Preliminary results

Section 2. Spectral invariance

Section 3. Holomorphic functional calculus

Section 4. Tame scales of Banach spaces

Section 5. Tame estimates

Section 6. A class of solvable semilinear equations

Section A. A tame right inverse for L

Acknowledgement. The question about the spectral behavior of pseudo-differen-
tial operators for p < 1 was raised by E. Schrohe at the Oberwolfach meeting on
Pseudo-differential operators, July 1989. We wish to thank him for kindly providing
references [12] and [16].
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1. PRELIMINARY RESULTS

We will consider pseudo-differential operators in the class £7%;, (cf. [9], [11], [1]),
meR, 0<p<<1, 0K 8 < 1. These are operators L of the form

(1.1) Lf(z) = (22)"" / ¢ Ep(z,O)f(6)dE, fES,

where n is the dimension of the euclidean space. The function p(z,£), uniquely
determined by L and called the symbol of L, is assumed to belong to the class S7;.
This means that it is a smooth function satisfying the estimates

(1-2) IDngp(z, < Cas(l + lgl)m-plﬂl+6la!_

ToEorREM 1.1. Let L€ LT, meR, 0< p< 1, 06 < 1. Then L € L(L?),
provided that, m < mp = —n(|1/p—1/2|(1=p)+X), A =max (0,(6—p)/2), 1< p<
< oo,

We omit the proof of this theorem (cf. [6] when § < p, [1] when § > p).

COROLLARY 1.2. Let Le LY, me€R, 0<p<<1, 0K 6< 1. Then
a) L € L(L%, LP), provided that m < s — v + my, m, as above, 1 < p < co.
b) L € L(LE, L?), provided that m s —r+mp, 1<pg2, p<egy.

Proof. a) Let us write L = J"(J="LJ*)J~*. The calculus of pseudo-differential
operators ([9], [11]) shows that the term between parentheses is in ,Cz?:,"’"". Since
m+r —s § myp, this term is bounded in L? by Theorem 1.1. It only remains to
observe that J* is an isomorphism between L? and LZ.

b) The condition p < ¢ £ p’ implies that m, € m, and then m £ s—r+m, <
€ 8—r+my. Thus, L € L(L¢, LY). L

DEFINITION 1.3. (cf. [12]) A weight is a smooth function 7 satisfying the fol-
lowing conditions

a) v(z) = 1, z € R™,

b) Dy(2) = 0(1), e #0.

We will also denote by « the operator of multiplication by v which is clearly con-

tinuous in §. Given linear continuous operators A and B € £(S), their commutator
is denoted by [A, B] = AB — BA.

LEMMA 1.4. (cf. [12]) Given L€ L, m€R, 6K p, 0<p< 1, 06 <1, the
commutator [y, L] belongs to L7
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Proof. Given f € S we have

[r.Z1£(@) = (2ay [[ explite — 3) - €lp(z, )(2) — 7)) F(s)dwi,

in the sense of oscillatory integrals. Now,

1
1&) = 10) = [z = 9) - V2(y + stz - )ds
1]

so using this expression in the above integral and integrating by parts yields
1
[v: LIf(z) = (2m)~" _/ / expli(z — y) - §]Vep(2,€) - / Vy(y + s(z — y))ds f(y) dy d¢.
0

The amplitude in the last integral belongs to S;': 5 ¥ so it defines an operator in ;C::; P
This proves the lemma.

It is clear that if we consider higher order commutators of L with ¥, the commu-
tator of order j belong to ,C::g'j L. n

DEFINITION 1.5. (cf [12]) Given s, € R and a weight v, we define

H)Y={v"'f, fe Lt}

It becomes a Banach space with the norm

llgllgzs = liv'gllzs-

We will often omit the dependence on v writing just H, ot It is clear that if y = 1
or t = 0 we obtain the usual Sobolev spaces Hy = L;. The following result extends
Theorem 1.7 in [12].

THEOREM 1.6. Let L € L7, m€R, 0< p < <6<1,6<p Then
L € £(H}3, Hpt) provided that 1 <p< 2, m< s— r+mp, mp = —n(l - p)(1/p—
-1/2), p<¢<y, tER.

Proof. Since ¥* is an isometry from H, 512 onto L2 we need only show that y* Ly~*

satisfies the hypothesis of Corollary 1.2. Following [12], assume first that ¢ is an
integer. Let us use induction on k = |¢] to prove that

‘)’tL‘)/_t € ‘CZ‘S

with m, p, § satisfying the hypotheses of Corollary 1.2. If k = 0. this is true from the
hypothesis on L. Assume it has been proved for |t| = k and let |¢{| = k + 1. By the
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inductive assumptions L' = y¥ Ly~* and L = y~¥ Ly* belong to L. Ift = k+1 we
write A =y Ly~ = L' 4+ [y, L']y~! and if t = —k — 1 we write 4 = L +y~1[L",4].
Now, using Lemma 1.4, [y, L] and [y, L”] are in £L7';'" and it is also plain that
7' € L] 5. Thus, A € L. Finally, if ¢ is real, let k = [[t]] + 1 be the least integer
2 lt]. Then, 7* = v¥* with 43 = 4!t/%. Since 0 < |t|/k < 1, 71 is itself a weight
and we may reason as before. The proof also shows that the symbol of ¥*Ly™" is
expressible in terms of the derivatives up to order [|¢|] + 1 of the symbol of L.

CoroLLARY 1.7. The norms ||J*y'g||z» and ||y'J°gl|L» are equivalent on Hj*,
l<p<oo.

Proof. One must show that the operator L = vy~ tJ~*4*J* is an isomorphism of
Hp*. Since J~° € Ly §, the proof above shows that y~*J~*y* € L7{. Hence L € L] 4
which implies that L € £(H}"). In the same way, L=1 € L(H}*).

When s = k is a nonnegative integer one checks that the norms Z 1D*(¥* )l
lel<k

and z |lv* D*gliL» also define the topology of HE".
lel<k

2. SPECTRAL INVARIANCE

Let us first recall the action of two basic commutators (¢f. [2]). Given a linear
continuous operator L : & — &' we consider

(2.1) P,L =[D;,I]= D;L - LD;,

(2.2) QjL = [——i.’z,'j,L] = iij - isz.

fLeLyand f €S then

PLf(=) = (2m) | ei»egg@,s)f@m

.’ .
QiLf(e) = emy [ =4 2, 00fe)ae
j
If &, B are multi-index it turns out that
QPPL =Q¢Qg...QenPH ... PSn,

belongs to L7577 led+él8 The next theorem of J. Ueberberg [16] generalizes a famous
characterization of pseudo-differential operators due to R. Beals [2].
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THEOREM 2.1. ([16,p.463]) Let A: S — S’ be a linear and continuous operator.
Suppose that for somem €R, §<p, 0<p<1, 0<é<1, 1 <p< o0,

Q*PPAc ﬁ(H;il-msﬂlal-'-‘-f’lﬁl, H;)

for all s € R and all multi-indexes o, 8. Then, A € Lo

It is important to point out that, because in Corollary 1.2 the hypotheses on the
order of L are sharp, the converse of Theorem 2.1 is not true unless p = 2or p = 1. The
equivalence for p = 2 was proved by Beals [2] for a wider class of pseudo-differential
operators.

PR.OPOSI'I‘ION 2.2. (Spectral invariance for fixed v, p.) Let A € L™ s 6€p 0<
LOoKéd<, mgmy=-n(l=-p)|l/p-1/2|, 1< p< 0. fA- A is
invertib]e in L(Hp%') for some A € C, sg, to € R, 7 a weight, then A— I is invertible
in L(Hp7) for every s,t €R.
The proof follows from an obvious modification of Theorem 1.8 in [12] using
Corollary 1.2 a).

PRroPosITION 2.3. Let A€ LD, 6<p 0<p<LO0KE<], m<my =
= —-n(l~-p)|1/p—1/2|, 1 < p < co. If A— X is invertible in L(Hpoto) for some
A €C, so, to ER, v a weight, then (A — AI)~! belongs to L35

Proof. Applying Proposition 2.2 with ¢ = 0 we derive that R = (4 — AI)~! €
€ L(H}) for any s € R. Using the notation in (2.1) we have

PiR=—RPj(A—AI)R=—RP;(A)R

with a similar formula for Q; R. Thus, given multi-indexes &, 8, Q*PPR can be ex-
pressed as a sum of products having as factors R and commutators with A. Induction
on |er|+|B| shows that QPP R belongs to L(H, ™ #1*I*3l8l | ) which, in Theorem
2.1, implies that R = (4 — A}~ ¢ [,g.&. |

REMARK 2.4. No operator A will satisfy the hypothesis of Proposition 2.3 with
A= 0 when p <1 and p # 2. Indeed, in this case, I = AA~* would belong to LY
with m < 0, a contradiction.

Schrohe [12] proved that the spectrum of A is also independent of v if p = 2 and
independent of 4 and 1 < p < 0o if p = 1. The next theorem extends these results.

THEOREM 2.5. (Global spectral invariance) Let A € L5 6§ < p 0<p g
€L, 0<6<1, m<my, =—n(1—p)|1/po—1/2|, 1 < po < 2. If A~ A is invertible
in L(Hpo3e) for some A € C, so,t0 €R, 7 a weight, then

a) A— Ml is invertible in L(H}?) for any s,t € R, pg < p < ph, 7 a weight,
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b} if p < 1 the range of p in a) is optimal.

Proof: If p = 1 or py = 2, a) follows from Proposition 2.3 and Corollary 1.2.
Let’s assume then that p < 1 and 1 < pg < 2. We will prove

(2.3) (A-AD"te Lo+ LY

Since £9, and £ s are both contained in £(Hy7) (2.3) proves a). To show (2.3)
observe that, since the symbol a(z,£) of A has negative order and by Remark 2.4
A # 0, there exists M > 0 such that

la(z, I < Al/2, zeR", K2 M

Let ¢(£) be a smooth cut-off function equal to 1 for || > 2M and vanishing for
€] < M. Then,

ba(z, &) F a(:’g)— 3 *“’(f) (1+ A7 a(z,£) + ex(®,€))

with ex(z,€) € $27%. In particular, by € S} + S7%. Furthermore, since Vi is com-
pactly supported, V;b; €85 7. Let By = by(z, D) be the operator with symbol by
and let d(z,£) be the symbol of the composition By (4 —AI). By the symbolic calculus
of pseudo-differential operators

(2.4) d(z,&) = ba(z,€)(a(,€) = A) + r(z,£) = p(€) + r(2,&)

where r(z,£) is given by the oscillatory integral
) 1
(2.5) r(z,8)= For f / f e i@= =MV by (2, € + s(€ — 1)) - V.a(z,€)dzdnds.
0

Since V¢by, € S’Z" 5, Vsa € S’"“ and p > §, it follows that r € Sz”"1 It is also clear
that o — 1 € S~ so0 (2.4) and (2.5) show that d(z,€) € 1+ ng‘ or, equivalently,
Br(A = M) € I+ £27%. This gives

By~ (A=A e LA~ C Lm0 s C L2

where we have used Proposition 2.3. Since By € E?,o + L35 this proves (2.3).
We now prove b). To simplify the notation we write p instead of p;. We will
consider the multiplier of Hardy-Littlewood-Hirschman-Wainger (cf. [17])

a(€) = (€)™ exp(ilé|'~*) € 5,3,



48 JOSEFINA ALVAREZ and JORGE HOUNIE

where m; = —n(1 - p)(1/p—1/2), 1 < p < 2, 0 < p < 1 and ¢™ is a smooth
function vanishing for || < 1 and equal to |[¢[™ for [£] > 2. Assume first that p < 2.
Consider some 0 # X € C for which the operator with symbol a{¢) — X is invertible in
L(Hzot) for some choice of the parameters. By the first part of the theorem it will
also be invertible in L(H,) for every s € R. Hence, a(£) — A is bounded away from
zero and we have

=5 = 3 +er(©)

where ¢y = a®?A"2/(a~)) € sf,},". Let us fix 1 < p; < p. According to Corollary 1.2
the operator with symbol ¢, will belong to £{H},) provided that 2m, < my,. This
inequality holds for py = p—¢, 0 < e € p(2—p)/(4—p), 1 < p < 2. Since a(¢)
defines an operator that is unbounded in H,?l = P for p; < p;, we conclude that
the operator with symbol equal to a(£) — A is unbounded in Hx?; , for values of py < p
arbitrarily close to p. Using interpolation we conclude that it is also unbounded for
any 1 < p; < p. The same argument applies to p’ < p; < o0.

Finally, assume that p = 2. This implies that m, = 0. Modifying slightly a(¢) we
may assume that it is bounded away from zero (and equal to exp(i|¢|*~*) for large
[€])- Hence 0 is not in the H3-spectrum of the operator defined by a(€) and the inverse
has a symbol equal to exp(—i|¢|1~*) for large [£|. In particular, it is unbounded in HY
for p # 2. |

3. HOLOMORPHIC FUNCTIONAL CALCULUS

The methods of the previous section can be used to precise a holomorphic func-
tional calculus for pseudo-differential operators in appropriate classes. Indeed, let
A€LYs, 6<p,0<pgL1,0K6< 1, mg my, =—n(1—-p)j1/po—1/2], 1 < po £ 2.
Under these conditions, Theorem 2.5 shows that the spectrum o{A) as an operator in
L(H}7) is independent of s,1,7, p provided that po € p < po- The resolvent function
R(z; A) = (21 — A)™" defines a holomorphic function on the resolvent set p(A) with
values in L{HJ3). Let f(z) be a holomorphic function defined in a neighborhood of
o(A) and let U be an open subset of the domain of f containing o(A). Assume further
that the boundary 8U of U consists of a finite number of rectifiable Jordan curves,
counter-clockwisely oriented. Then, the Dunford integral ([18, p.225))

3.1) £4) = 5 of SIRG: A)s
au

defines an operator f(4) € L(HJE), po < p < ph. By Cauchy’s theorem, f(A) is
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independent of the choice of U. The map (f, A) — f(A) given by (3.1) enjoys the
typical properties of a functional calculus.

LeMMA 3.1. Under the above hypotheses, f(A) € L3 ;.

Proof. By Proposition 2.3 R(z; A) is a continuous function on U with values in
LS 5 50 (3.1) implies the lemma. (]

THEOREM 3.2. Under the above hypotheses, f(A) € L3 o+ LT,

Proof. If p == 1 and m = 0 we have L], + L7 = LY ; so the result follows from
Lemma 3.1 with p = 1. If m < 0 (this is implied by the hypothesis when p < 1) we
know (cf. Remark 2.4) that 0 is in o(A4). Thus, we can write f(z) = f(0) + zg(2)
obtaining (cf.[18])

£(A) = F(O)T + Ag(4).

Applying Lemma 3.1 to g, we see that this is a decomposition in Eﬁ’lg + L. [ ]

4. TAME SCALES OF BANACH SPACES

A scale of Banach spaces H = {H*}, k = 0,1,2,... is a collection of Banach
spaces such that H*+! C ¥ and [}h|lz < [|hllk+1, B € HFFL. The intersection [ H*
E

is denoted H* and becomes a Frechet space with the projective topology.

DEFINITION 4.1. We say that H satisfies a convexity condition if for all j < I &
€ I+ there exist C' = C(j,1) such that if Z3 k= aj+ (1~ a)l, 0 < a < 1, then

(4.1) liAlle < ClRIEIAN®, Re!

REMARKS.

1) Observe that when C = 1, (4.1) means that j — In||h||; is a convex function
of j.

1i) When proving inequalities (4.1) it is enough to check the cases where j, k,1
are contiguous, i.e, when j =k —1, I=k+1, a = 1 — a = 1/2, because then the
general case follows by iteration.

DEFINITION 4.2. We say that H is tame if there exists a 1-parameter family of
linear smoothing operators

Sg :HY > H®, 631,

satisfying
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T1) ||Soulle < Ced*~H|lull;, ve M, <k,

T2) llu— Soully < Cet? ~*llulle, u € H*, 5 <,

T3) hm ftu = Ssullx = 0, u € HF.

The followmg two propositions will be useful in the sequel. For the proof we
refer, for instance, to [8].

PROPOSITION 4.3. If H possesses a I-parameter family of smoothing operators
satisfying T1) and T2), then it verifies a convexity condition.

PROPOSITION 4.4. Let H,G be scales of Banach spaces satisfying a convexity
condition. If j < k, ! < m are such that j +m =k +1 then

(42) lullellofle < Cn(llullilivllm + llullmlls),  © €H™, u€G™.

LEMMA 4.5. Let v be a weight (cf. Definition 1.3). There is C > 0 such that

vz +y) <1+ Clyr(z), z.y€R"

If t € R we have
7@ <A+Cly) M (z-y), =zyeR™
Proof. By Taylor’s formula and the fact that 4 > 1 has bounded derivatives
Yz +3) < 7(z) + Clyl € 1(z) + C1(2)lyl = 1)L +Clyl).

The second estimate follows from the first one in a standard way.. [ ]

PROPOSITION 4.6. The scale {H = Ht:}, k=0,1,...,istameiff1<p< oo
and satisfles conditions T1) and T2) of Definition 4.2 if p = oo. In particular, it
verifies a convexity condition.

Proof. Let ¢ 2 0 € S have a compactly supported Fourier transform @(£) equal
to 1in a neighborhood of the origin, In particular,

/cp(z)dz =1, /:c"go(a:)dm =0, a#0.
As usual, we set pg(z) = 0%p(6z), 6 > 1, and define
(4.3). Seu = g * u

To prove T2) consider two non-negative integers j < k and u € §. By Corollary
1.7, an equivalent norm in H; = H}* is given by

> I Dulirs.

fal<)
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Set v = D%u for || < j and write, according to (4.3),

sv(z) = [ o(a - v/ONpl).

Expanding v in Taylor series up to order k — j around z we get

s = Y Tre O [P ey

|Bl<k J

+M 3 //(1—s)"‘-’y”c.o(:ei)3—(’«‘-‘53//9)"1‘1‘1s

(=i~ D iS5

The first sum reduces to v(z) so, using Lemma 4.5, we estimate |y* D*(Spu(z) —

—u(2))| by

coi-k Z / /(1 s 1P o(y)(1 +C[sy/9|)| ]7 (z — sy/8) D® v(z — sy/6)dyds.
18l=k—j
Since (1+C|ys/0)! < (1+Cly|)!*l for 0 € 5 < 1, & > 1 we obtain, by a variation
of Young’s inequality that

(44),  |1V*D*(Seu—u)llzs < CE* 37 |Igllzally DPollze < COFlullae,

18|=k~j

[r1

where we have written ¢(y) = ¥*(1+ C'|y||t|<,o(y). Adding estimates (4.4) over all
|| € j we obtain
[1Sou = wllyys < OO ~*{|ufl

as required.

The proof of T1) is similar and simpler: when differentiating u * g one lets act
at most k — j derivatives on @y and at most j derivatives on u. To prove T3) for
p < oo it is enough to check that Ssu — u in H* for u € S and then use the density
of § in HE.

The following result shows that the Gagliardo-Nirenberg inequality is valid in the
scale {HF:1} of weighted Sobolev spaces. n

PROPOSITION 4.7. Let « be a weight, t € R. If 1 < g, r £ oo are real numbers,
1 < j < k are integers and we write
j = al+ (1 — a)k,

J
1 1 1
—=a-+(1-a)=,
p q ( )T
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there exists a positive constant C = C(g,r, k,t) such that

(4.4) g < O onrall A ales £ €S

Proof. The result follows by induction in k once it has been proved for k = 2.
When & = 2 only the case { = 0, j = 1, k = 2 is relevant. Hence, a = 1/2 and
1/p =1/2¢ + 1/2r. We must show that

Ifllzs < CUAEAIARE

where the Sobolev norms are taken with respect to the measure du = y*?dz. Since
the argument is essentially one-dimensional we give the proof for n = 1 to simplify
the notation. If f € §(R) and 1 < p < oo we have, in the sense of distributions,

d 1 (p=27F7 - FIAY )
T P2F) = 1F Py + (= SIS P *Re (F F) Py +
AP P + 115 P TRty
Integrating this with respect to dz we obtain
Jieran< - [if15-21r1d+ Cotl [ 1715P= 1 a

= Il + CI?:

with C depending only on y. Since 1/¢ + 1/r 4+ (p — 2)/p = 1, an application of
Hélder’s inequality gives

€ (0= DI AAlzswllF 117 ) < 0 = DIFLeall AE2C 1 lz500-

Estimating the integrand of I» by the triple product |f[}f/|P=2|f"| and reasoning as
before we get

B < Pl zall F Iyl 2 ety < P ot | AU 2 oy 1112500 -

Adding the estimates obtained for I; and I, yields

(4.5) 171 sy < @LCHL+ 1) = D Fllzegull 1B72 A lz500-

On the other hand 1/p = 1/2p+ 1/2r so an application of Holder inequality gives

IAlzoquy < IAIZeGu AN E 2y < WAL Il o
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which implies

(4.6) ”f“ip(“) < ”f”lﬂ(u)”-fIFIE(zy)”f“LS(#)'

Adding (4.5) and (4.6) gives

ey < P(CIEI+ 1)”f”L9(u)”f”[,r(zp)”f”L;(u)

which implies

(4.7) fllz2ey < BCII+ D)2 N bl -

Estimate (4.7) can be easily extended by density to arbitrary f € §. A lim-
iting argument shows that (4.7) is also valid for p = 1. Finally, assume that
p = oo. We have ¢ = r = co. Starting from the well known inequality sup |¢'(z)| <
< Csup |g(2)[*/2sup |¢"(2)[/2, ¢ € S, and letting g = v f we easily obtain (4.4) for
k=2, j=1, I =0. This completes the proof. B

We now state explicity a particular case of Proposition 4.7 that we will need
later. It is obtained setting ¢ = co and I = 0 in (4.4). Thus,

P

, fes.
PO

i

e,

(48) ”f“H" t C”f”Lﬂ‘(dx)“f”;(f.al/r ) b=
We now consider the scale of symbols 8% = S;',‘gk defined by
(49) 8" ={a(=z,&): (1 +|g) 1P Dapla(z,€) € L®, |a] + 8] < k).

endowed with the obvious norm. The norm in 8% = Sg"‘f will be denoted by ||| ||}m.k
or just by {{| - ll|x if there is no possibility of confusion about the order of the symbols.
Notice that ﬂ o, e 8,77 is just the usual space of smooth symbols Shis-

PROPOSITION 4.7. The scale (4.9) verifies a convexity condition.

PROOF. It is enough to show that |Ha|||1/ 2||[a]||1" 2, for this implies the general
case. Taking the Taylor expansion of order two in the variable &; and keeping the
other variables fixed we get

2
(1) = ale,8) + G5, €~ &)+ § 325 (3,6 + 0~ D)y - &5
J

where 0 < @ < 1. This implies

a8
(4.10) a—g'”;(z’ﬁ) < 2lllallloln; — &1 Iy — &

1]6%
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Given £ select 7 such that

ek = 7k, k ?é j;
& =mni+ (1 + €D 1llall3 2 allls 2.

Notice that [n— £ < (1+ [£1)°/2 < (1+ €)/2 s0 (1 I€]) ~ 1+ | +6(n — &)}, Hence,
substitution of (4.11) into (4.10) gives

(4.11)

A+ | S @) < Cllall*Mally”, 5 =1,...n
Similary,
(1+I£I)“ (zé)‘ < ClllallleMallly’?, §=1,....n.
Since a(z, €)| < ma|||1/2ma|||1/2mmuy,weobtam|||a|“1 Clielic”?llallla’. =

5. TAME ESTIMATES

We now consider tame maps.

DEFINITION 5.1. Let H = {H*}, F = {F*} be scales of Banach spaces, 2 C H°.
A (possibly non-linear) map T : 2 — F? is said to be tame if there exist integers
7, ko, 7 < ko 2 0, a subset U of £2 open in H¥° and a sequence of positive constants
(C%), such that

(5.1) IThlle < Cillbllesr, h€UNHT, k2 ko—,

(this requires T(U NH*+7) C F* k> ko — 7).

Consider a map of two variables defined on scales, i.e., T : H® x G° — F© where
F, G, H are scales of Banach spaces. The usual way of proving that T is tame is to
obtain estimates of the form

(5.2) T (R, )l < Ce(lihl- Ilglﬂk+r + Blle+-llgll-), &2 ko=,

with 7 fixed. Indeed, on the set U = {||A|| + ||g|]- < R} (5.2) implies (5.1) for pairs

(h,g).
For simplicity we shall denote the norm in HFZ by || - [|p,e Without explicit
reference to t and +.

PROPOSITION 5.2. The map

{Hy% x L} 3 (u,v) — uv € {H}1}
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is tame. More precisely, there exists a positive constant Cy = Ci(n, p) such that

(53)  |luollps < Crlllullpellolize +lullpliolizy e HES, v € Lg.
Proof. Indeed, using Leibniz rule and Proposition 4.4
. .
Nluvllpe < Cr D llullp,e—sllvllze < Crlllullpelivlize + llullpollzllze)- i
— ‘

By Sobolev’s imbedding theorem, |[v]|z= < C||v||zz2 if 7 > n/p. Furthermore, if
t20, [[vllzze) < lIvllzecyriazy < Cllvllp,r- This observation leads to

CoroLLARY 5.3. Let t > 0. The map
LR % HERY D (u0) — uo € {E33)
is tame and there are estimates

fuvllp,e < Cr(llullp ket llvllp,r + ”u”P,T”v“P.k-i-T)v u,v € H:;f’t,

with 7 = [nfp] + 1.

We now study the tameness of the composition ¢ ou when ¢ € L® and u € Hz’f,":'
If we wish to allow ¢ to depend on several variables it is convenient to consider vector
valued weighted Sobolev spaces which will be denoted H},’;,: (R",R™). Let £2 be an open
subset of R™ containing the origin. We will assume that ¢ : 2 — C has bounded
derivatives of order < k, ¢(0) = 0, and u € H}2(R",R™) verifies u(R") C £2. Under
these conditions the map u — ¢ o u takes HX! into H}:! and the composition is a
tame map. In fact we have

PROPOSITION 5.4. Under the above hypothesis the following estimate holds

(5.9) llg o ullpx < Ce(1+ ([Vullze ) " (llelizee lullpk + llelicge {lullp,)

Proof. Consider a ball B of radius r centered at the origin and contained in £2.
We have

m
o(u) =Y u;g;(w), w€ B, |[¥jlle < Vel
=1
Thus, using a cut-off function supported in B we may write ¢ = 1 + @2 with
lo1(0)] < ClIVellzeul, [[@llz= < ll¢liz= and g2 supported in B. fu € L?(R",R™)
the measure of {|u| < r} is bounded by r~?|u|[},. It is now easy to conclude that

(5.5) llp o uller < Cllgllzellullzs-



56 JOSEFINA ALVAREZ and JORGE HOUNIE

k

Let & be a multi-index of length & > 0. Then DZ(pou) = ZFJ where Fj is a sum
ji=1
of terms of the form

Co (DY) o uDPruy, -« DPiuy
ﬂ.’)’d b

Bl 1851k
=3, [Bil>0

where 4; € {1,...,m}. Applying Holder irequality to each term of the sum we get

1D (p 0 Wllzryisazy < C Y ellogp )l D% Vaullzostyinasy - D% Vel Laicytoasy,
5,8
where |6 = |81} ~ 1 and ¢; = p(k — j}/|6:]. The inequality holds because 1/¢; +---+
+1/¢; = 1/p. Now, with the notation of weighted Sobolev spaces and taking advantage
of (4.8) we have the estimate

1D Vullza(yraz) < [Vl yiatisra € ClUVUllztan I V6llnmse

where b; = |6;|/(k — j) = p/qi. Notice that the sum E 161 = Z(Iﬁ,! -1)=k-—jso
=1 =1
it turns out that by + - - -+ b; = 1. This implies

la

1D%(¢ 0 w)llLs(yirazy < C Y llellzs IVull 2|Vl g2-se <

i=1
< C(1+ |1Vl |z (el llullp e + llellgllullp.s),

where we have used convexity estimates (4.2) to obtain the second inequality. Adding
inequalities (5.6) for 0 < || < k and using (5.5) we get (5.4). u

(5.6)

We now consider coordinate changes. Let & : R* — R"® be a diffeomorphism
with inverse ¥ and assume that det ¥’ > ¢ > 0. If ¢ has bounded derivatives of
any order the same happens to ¥. Set v; = v o ¥. Then ¥ is a weight if 7 is a
weight. Furthermore, the change of variables f — f o & takes H}f 5, into HF k * and
the composition is tame. We have

ProrosiTION 5.5. If @ and f are as above there are estimates

(57) 11f o Bllggs < Cull + [V Blze) (WSl et 11V Bllzge + [ Fllgns, [V @lze)

Proof. If || = k > 0 we know that D*(f o &) is a sum of terms of the form

Y Cprs(D'f)o8DM 8, - DPi gy,

1Bl 4 +16;]=k
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where &, ..., &, are the components of ¢ and 1 £ j € k. Hence,

ID(fe B)2) S C Y IVOllzz, _, -~ IVl _ (D7) o &(2)!.

iv.8

Set & = [Bi| — 180 8, + -+ 8 = k — j. Using convexity estimates

IVolzz < Vel v e)zs ™

we get
|D%(f o #)(=)| < CZ ST IVORIV ez (D7) 0 8(2)| <
(5.8) i=1lyj=j4
k
SCA+[VE|=)1Y" 3 Vel , (D7 1) 0 #(2)|.
i=1|yj=j

Set g= fo &. Then

ol <€ 3 [ 10912 ().
jol<k
Estimating the integrand with (5.8) and performing the change of variables y = &(z)
we obtain right away

k
k=1 ’4
llgllfyss € CA+UT B ED 3 1A s IV llE

i=0
which after the usual convexity estimates yields (5.7). |

DEFINITION 5.6. A weight v is called stable if for any diffeomorphism & of R*
with inverse ¥, satisfying the hypotheses of Proposition 5.5, the ratios y o ¥/v and
y0 &/~ remain bounded. In particular, the weights v and ;3 = 7o ¥ define the same
weighted Sobolev spaces which become invariant under composition with &.

EXAMPLE: The weight y(£) = (1 + [€]?)!/? defined on R" is stable.

Let’s now return to the scale of symbols 8* = .S"“’" introduced at the end of the
last section. If e € 575", b€ S, ", 0<p< 1,0 6 < 1, é £ p, we have the bilinear
map (a,b) = aod, where ao b is the symbol of the composition a(z, D) o b(z, D) of
the pseudo-differential operators with symbols a and b. The composite symbol is thus
given by the integral

(5.9) aob(z,€) =

(2:-)“ //e-i(ﬂ—l)'(e-’))a(z,f’)b(z,é)dzdﬂ,
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which is absolutely convergent if a and b are, for instance, compactly supported, and
can be given an oscillatory meaning in the general case. Furthermore, there exists
7 = 7(6,n) and a positive constant C such that

(5.10) (1 + K)™™ ™ |(a 0 8)(2, )] < Clllalllm,+{1[Blllm, -
Using the “Leibniz rule”
D@(a L] b) = (Dga) o b +ao ng,

De(aob) = (Dea)ob+ao Deh,
we obtain by induction from (5.10) and the convexity properties of Proposition 4.7

ProPOSITION 5.7. Assume that 0 < p <1, 0 €6 <1, 8 < p. The bilinear map
(87t x 87%) 3 (a,8) > aob e {SPF™ )
is tame and there are estimates

(5.11) llla 0 blllmsmek € Crllllalllm, 4+ 111blllme,r + Hlalllem, 113} lm 47

fora e Sm k+T andbe S;':‘;'H".

We now consider the bilinear map (a, f) ~ a(z, D) f where a(z, D) is the pseudo-
differential operator with symbol a(z,£) € Sm’k and f is a function in a weighted
Sobolev epace. Let 1 < p < o0, 0 < p £ 1 0€£6<1, 6 p, meER, and
set mp = —n(l — p){1/p — 1/2|. Then, by Theorem 1.6, if a € 875, a(z, D) maps
continuously H* = Hp7: into HF~™+ms  Furthermore, tracking the steps of the
proof one determines v = 7(n,m, 6, p,v,t) and positive C (also depending on these
parameters) such that

(5.12) lla(z, D) fllo < CHlalllm rllflim-rm,

where || ||, denotes the norm in H*. Differentiating under the integral sign and using
the Leibniz rule yields

(5.13) D'(a(z,D)f) = Y capaalz, D)D*f

atf=y

where a,(z, D) is the pseudo-differential operator with symbol D.a(z,£) € S;’;" Slat,

Applying (5.12) to each term of (5.13) and using the convexity properties of Propo-
sition 4.7 we get



SPECTRAL INVARIANCE AND TAMENESS 59

PROPOSITION 5.8. Let 1 <p <00, 0<p<1,0£6<1, 6Kp mteER, and
set my = —n(1 — p)|1/p— 1/2|, ¥ a weight. The bilinear map

{S7* x HEZY 3 (a, f) — a(2, D)f € {H}3)
is tame and there are estimates

(5.14) lla(z, D) fllx < Ce(lllalilm,k+rllflimem, + alllm, || fllm—m,+2)-

6. A CLASS OF SOLVABLE SEMILINEAR EQUATIONS

Consider the semilinear equation in 2 neighborhood £2 of the origin in R?
(6.1) P(z,t, Dy, Di)u+ F(z,t,u,...,Dg ) = f(z,1), |ef<m-1,

where P is a homogeneous linear differential operator of order m 2 1 with smooth
complex coefficients, F is a complex-valued function, holomorphic in u, ..., D%u for
|al € m —1 and smooth in (z,t), and f € C°(f2). We assume that

P(2,t,Ds, D;) = D + s (2,8) D2 D, + -+ - + ao(z, {) D"
with principal symbol
2(2,4,8,7) = 1™ + a1 (2,8)7™ "2 + .. .+ ap(z, 1™

satisfies Tréve’s condition (R) (cf. [15]), namely:
For every (zq,t0) € 2, (€0, 70) € R?\ {0} and every complex number z such that

p(zo,%0,€0,70) =0, Vg, 5 Re zp(2o, 0,80, 70) # 0,

the function Im zp does not change sign in a neighborhood of (zg,ts,&0, 7o) in the set
Zz = {(I)LE, T) . Rﬁzp(ﬁo, tO;EOg 1'0) = 0},

In [4] Dehman proved that equation (6.1) is locally solvable in C* assuming that
P is subelliptic, which requires that the restriction of Im zp to the null bicharacteristics
of V¢, r,Re zp only possesses zeros of finite even order. It is easy to see that this
condition implies (R). On the other hand, if P = D; +ib(z,t)D, with b > 0 vanishing
of infinite order at the origin it will satisfy (R) but will not be subelliptic. Here we
prove,
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THEOREM 6.1. If P(x,t, D,, D;) verifies condition (R) the semilinear equation
(6.1) is locally solvable in C* at the origin.

As remarked in [4] it is enough to prove the theorem for m = 1. We may also
assume that F'(z,t, u) vanishes identically outside a compact subset of $2. The method
of proof is in application of the Nach-Moser implicit function theorem ([8], [13], [14]) to
the map u — &(u) = Pu+ F(u) acting on a suitable scale with loss of one derivative.
One possible option is the scale of Sobolev spaces L2(£2). One takes k > 2 so that
all functions are bounded. The map & is tame and twice Fréchet differentiable in
By N L2, where B, is a small ball of FZ which insures that the composition F(u, ,t)
can be defined. The hypothesis in the Nash-Moser theorem that requires more care is
the existence of a tame right inverse for the linearization of @. Taking 2 = [T, T] x
x[—T, T] and using an extension operator from [T, T] to R we can inject the scale
L(), into the scale L(f2r), with 27 = R x [~T,T]. The latter can be imbedded
into the scale F* given by (A.8) (see the appendix) with, say, p = 2 and y=1.In
this way we may take advantage of the results of the appendix.

The linearization @'(u)v of @ is given by

&'(u)v = Pv+ Fy(z,t, u)v.

After a suitable local change of coordinates and division by a nonvanishing factor we
may assume without loss of generality that

o . a
P(z,t,Dy, D)=L = 5 1b(z,t)a-,

with b(z, t) real valued. Notice that condition (R) implies that & does not change sign
in £2, say b > 0. Modifying b outside a neighborhood of the origin we may assume
that it is compactly supported (in particular, it is defined throughout 27 and it is
bounded with bounded derivatives). Let @ be the tame right inverse of L described
in Theorem A.l1 and set

¥(u)f = exp[-Q(Fu)] Q(f exp[Q(Fu)]).
Of course, ¥(u)f is linear in f and it is readily verified that
V'(u) ¥(u)f = f.

Because of the way the scale {F*} is built out of the scale {H ¥} the tameness prop-
erties for the product and composition valid for the latter (guaranteed by Propositions
5.2, 5.3 and 5.4) carry over to the scale {F*}. Then, the same estimates (A.12) for Q

imply tame estimates

62) (12 fllr < Cellivllzxllfllz2 + lullzlfl), sweFF, k=23,...
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By the Nash-Moser theorem there is an integer ko and a positive € such that the
equation

(63) Lu+F(z,t,u)y=f, feF~,

can be solved in F*~*s provided k > ko and there exist ug € F* such that ||[Luo +

+F(z,t,u) — fll7x < €. Furthermore, the solution is in F* if f € F°°. Thus,

to finish the proof it is enough to construct an approximate solutioni uo when the

right hand side of (6.3) is compactly supported. This is done in a standard way
oo

by the power series method. Set U(z,t) = Zu,-(x)tj and formally determine the
i=1

smooth functions u;(x) by plugging U into equation (6.3). Each function u;(z) is

compactly supported in R because U(z,0) = 0 and, for large =, (6.3) reduces to

U = 0. Choose a function ug(x,t) € C2(R x [~T,T]) whose Taylor series at (z,0) is

o0

given by the (formal) series Z u;(z)t’ (use Borel’s lemma). Then all derivatives of

Lug + F(z,t,ug) — f(z,1) u;—t:) order ko are uniformly small for small t. Modifying
f outside a neighborhood of {t = 0} we may achieve the same for all £. Hence, we
can make ||Lug + F(z,t,u0) — f]lx*o as small as we wish for the modified f and
therefore solve the equation (6.3) in F*°. This also solves the original equation in a
neighborhood of the origin and proves the theorem.

A. A TAME RIGHT INVERSE FOR L

Consider the first-order linear differential operator in two variables

0 8
Al = —j g ]
(A.1) L 5 1b(m,t)32, zeR, |t|<T

We write £2r = R x [~T, T] and assume that

i) b(z,t) is real and nonnegative,

i1) all derivatives of b are bounded, i.e., belong to L®(f27).

The size of T' will be decreased a number of times. We also write

¢
B(a,t,¢') = / bz, 5)ds.
3

The next lemma describes a function which is central to the construction of a parame-

trix for L. This parametrix (with minor modifications) was used to study the global
hypoellipticity of L in [10]. The proof is a routine modification of the results in [10]
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and will be left to the reader. The only novelty here is that z is allowed to vary
unboundedly but the estimates remain uniform because of the hypotheses on b.

LEMMA A.l1. Let L be as above. There exists a function ¢(z,t,t') in Qp x[-T, T,
such that z — p(z,t,t') is bounded with bounded derivatives and such that

(A.2) |DeD? DY(Le(z,t,1))| € C(N, &, B, 7)| Bz, £, E), N=0,1,...
and
(A.3) o(z,t,t') = z, (zft’) € 2.

Furthermore, if T is decreased conveniently we also obtain that

B(a: t,t') < Ime(z,t,t') € -2-B(:c,t,t’), t>t,
(A.4) 2 ’ ,
B(z,t,t) Img(z,t,t') € §B(x,t,t), i<,
and
(A.5) |Repz(z,t,t) — 1] < 1/2.

Now we consider a function 0 < 7t (¢) < 1 € C*(R) such that +(¢) = 0 if
£ -1 andn+(§)=11f£,1andsetn =1—gt.

LeEmMa A.2.
i) For ~T < t' <t € T the function

@t (2,61, 1) = 7t (€) exp(—Im p(z, £, £)€)

is a symbol of class S? | 2(R) as a function of (z,£) depending continuosly on the
parameters t,t’. More generally,

D{Dia*(z,¢,t,¢') € SI¥E,(R) j,k=0,1,...

uniformly and continuously on t,t' fort’' <t
i1) Similarly,
a” (2, 5: ts tl) = ’7—‘(6) exP(_Im Sa(x: t: tl)E)
satisfies, as a function of (z,£),

Dja~(z,6,4,t') € S14[,(R) 5,k=0,1,...

uniformly and continuously ont < t'.
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Proof. It is enough 'to prove i), for the proof of ii) is analogous. Clearly, (A.4)
shows that Imy(z,t,¢) > 0 for ¢ < ¢ and the reverse inequality holds for ¢ < t'.
Thus, |at(z,£,t,t')] € C because ¢ is bounded. Consider the function \ﬂm_go(m,t—,t’)
for t' £ t. By a result of Glaeser ([7), [5]) it is continuously differentiable and any first

order derivative is uniformly bounded (recall that all derivatives of ¢ are bounded).

This gives the estimate

a ,
ID,,.Imga(::, t:t’)l Y C[ vim ga(m,t,t’)l

which implies for ¢/ < ¢
|Dza*(2,€,4,t) € C(L+ [¢)?

using the trivial estimate 1/se~* < C, s > 0. Similarly, the estimate se™* < C, s 2 0,
yields
|Dea*(z,6,t,8)| < CA+ D7

and by induction one gets | Df Dfa*| < Cjx(L + [€|}//2~* for j,k = 0,1,... and ¢/ < 2.
The estimates for the derivatives of a* with respect to ¢ and ¢’ can be treated in the
same way. Now set for f € C®(£2r)

oo

t
K flat) =g [ [ et @Fe e,
i J

—0Q |

t o
K fat)=5- [ [ éoet (i, ),
T —o0

where f(& ,t') indicates the partial Fourier transform of the function f(z,t’) with
respect to the first variable. If we write

R @0 =5 [ [ e igrote tm @FE V)deat,
-7~ ’

t o
Rt =g [ [ & ierote i ©F e tat,
T —o0

it follows from direct computation that

LETf=9"(D)f + R"f,

(A.6) o o
LK~f=n"(D)f + R"f.
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Observe that, in view of (A.2), we have for any N =0,1,...and ¢/ < ¢
fexp(—Im(z,t,t")¢) Lyp(z, t, )T (€)] <

< Cw exp(=B(,1,1')6/2) B(z,1,¢)V i+ (§) < Cw(1 + €))7,

and similar estimates hold for DI D} D!, exp(—Im @) Le(z,t, t')y+ (€). Hence, we may
regard R* (resp.R~) as a smooth function of ¢ and #' with values m the space of
regularizing operators L~°°(R) that map &'(R) into S(R). Writing K =K*t+K-
and R= R* + R~ we obtain
LKf=f+Rf
since by construction 5+ (D) + 5~ (D) = L.
For fixed ¢ and ¢’ the function z — Re(z,t,t') is a diffeomorphism of R with

bounded derivatives by Lemma A.1. Let’s denote 9(z,t,t") its inverse. It follows that
the composite

@t (z,¢,1,t) = at(¥(z,1,1),,8,1)

is also a symbol in Sf 1/2 with the same properties as a*. If At 4+ denotes the pseudo-
differential operator with symbol a*(z,¢,t,¢/) depending on ¢,t' as parameters, then

k]
(A7) K*f@t)= [(ataf)oRepat,
T

with an analogous formula for K=. By Theorem 1.6 A} "+ (tesp. Ar,) maps the
weighted Sobolev space HS% of Deﬁmtmn 1.5 into itself, provided that 1 < p < oo.
On the other hand, composition with Rey takes H® = H;:f, into H* if v is stable,
which we shall assume from now on (cf. Definition 5.6 and Proposition 5.5). Now it
follows from (A.7) that if f € C°([~T,T]; H}%) so does K* f (xesp. K~ f). More
generally, consider the tame scale

(A.8) Fr={f(z,t) € C(-T,T}; HE:) : Dif e HE3*, 0<j<k}

for a certain choice of 1 < p < 00, t € R and ¥ a stable weighﬁ, endowed with the

obvious norm. One checks that the operators K+, K~ and K map each F* into

itself for k = 0,1,..., and the operators Rt, R~ and R map F* into F® = [} FF.
k

Furthermore, we have tame estimates

(A.9) K fll7» < Cillfller  FEFE, k=0,1,...

(A].O) ”Rf”f-! < TCkJ”f”.‘F" f < :’t—ks kaj = 03 1,...
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Let’s explain the presence of the factor T" in (A.10). Writing
3
REf(z,t) = / (B;’f,,f) o Re pdt’
FT

it follows from (A.2) and the definition of R* that the symbol of Dj Bff,, vanishes
identically for ¢ = ¢ and all j. Thus,

-t
DiR:f(z,1) = / Di[(BE,f) o Re g]dt
FT

and the weighted Sobolev norm of the left hand side can be estimated by the lenght
of the interval, which does not exceed 27", times the supremum in ¢ of the norm of
the integrand.

Let’s now fix a positive integer k. In virtue of (A.10), we may choose T so that
the operator norm of R in F* is < 1/2. In particular, we may invert I + R in F*
with norm < 2. In this case, the operator norm of (I + R)~! in F* has a bound
independent of & but T may shrink when k — 0. To prove that tame estimates for
R carry over to tame estimates for S = (I + R)™! one follows the usual inductive
procedure ([4], [8]). Suppose, for instance, that we start at k = 0 and the operator
norms of R and S in 0 are respectively < 1/2 and < 2. If v = Su we have v = u— Rv
and [[vlls < 2|Jul|zo. Now,

llellzs = sup{llv(-, Dllae + oz Dl + e (s Dllc,
using the norm |jofls1 = ||v]|xo + || Dzv|jne in H1. To estimate

[ollzer < {lullner + [|Ro||200

write
1Ds(Ro)llse < [|RDz0lln0 + |[Ravllzo € |RDzv]lago + Clioflae,

where we have used that R, is an operator with the same continuity properties as R.
Then,

sup [[v(, D)l < Cllullzs + | R(Dz0)lro < Cllull + (1/2)sup || Dzv|l5¢o-

Similarly, .
sup lo(s iz € Cllullz: + (1/2) sup | Dev|lao.

Adding these inequalities we obtain ||v]|x1 < Cllu|lz + (1/2)|[v]|>: which implies
||Sull7: < 2C||ul|7:. Keeping up this procedure we get

(A1) Sullz, < Cellullzr, k=0,1,...
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Notice that the choice of T was done once and for all at the first step.

We may now define Q = KS = K(I + R)~! which is a right inverse for L and,

being the composition of the tame operators K and S,will satisfy the tame estimates

(A.12) |Qull7. € Cellullzx, uweF*, k=0,1,...

We have proved

THEOREM A.1. Let L be the operator (A.1) satisfying the conditions i) and ii)

and Jet 1 < p < o0, t € R, 7 a stable weight. For T small enough, there exists an
operator Q continuous on each space F* given by (A.8) and such that

0o

10.

11.

12.

13.

14.

15.

LQf=f feF*: k=0,1,...
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