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ON COMMUTANTS OF SUBNORMAL OPERATORS

WARREN R. WOGEN

0. INTRODUCTION

If T is a bounded linear operator on a complex Hilbert space H, let W(T') denote
the weak closure of the polynomials in T and let {T} be the commutant of T. If H
is finite dimensional then it is well known that these conditions are equivalent:

i) T is cyelic;

i) W(T) = {T¥;

iii) {T} is abelian.
Each of these conditions could be taken as a definition of “T" has multiplicity one”.

If M is infinite dimensional (and separable), then of course (ii) still implies (iii),
but all other implications are false. In fact, if p(A) denotes the cyclic multiplic-
ity of an algebra A C B(H) (i.e., p(A) = inf{n : 3fi, f2,...,.fn € H s0o Afi +
+ -+ Afnis dense inH}), then there are operators T so that W(T) = {T}’ but
#(W(T)) = oo. See [4]. Herrero says that T" has a tiny commutant if W(T) = {T}.
T above can be taken to be a certain forward shift with operator weights ({4]). Fur-
ther, if 7" is the backward shift of infinite multiplicity, it is an old result of Sarason
that u(W(T)) = 1, while {T}' is highly nonabelian. See also [8], [12].

Motivated by multiplicity theory for normal operators, it is natural to seek a
corresponding theory for subnormal operators.

Thus let S be a subnormal operator with minimal normal extension N. (Write
N = mneS.) We first need a notation of multiplicity one for subnormals. To the
conditions (i), (ii), and (iii), we add

(iv) N is cyelic.

We review some known results in this setting. If § is cyclic, then S = S, for
some compactly supported measure v in the plane ([1], Cor. 5.3]). Here S, denotes
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multiplication by z on P?(v), the closure in L?(v) of the polynomials. Also mne S, =
= N, = multiplication by z on L%(v).

Yoshino ([18], ({1, Cor. 5.4])) showed that {S,} = {M,, : ¢ € PX(¥)(L*(v)}.
Also ([1, Cor. 12.10)), W(S,) = {M, : ¢ € P=(¥)}. Thus, {S,} is abelian but
W(S,) # {S.} in general.

If S is a subnormal bilateral weighted shift which is not invertible, then W(S5) =
= {S¥ ([1, Prop. 8.22]), but S is not cyclic {[3), [1, Prop. 8.23]). In fact, y(W(S)) =
= 2 ([6, Th. 5]). Also N is cyclic in this case.

Motivated by these and other examples, J. McCarthy raised the following ques-
tion ([7, Conjecture, p.267)). '

QuesTIoN 1. If § is subnormal and W(S) = {S}’, must mne S be cyclic?
In addition we consider the related question.

QUESTION 2. If S is subnormal, is u#({S}') € 27

We note that many operators, including all normal operators, have cyclic com-
mutants ([5]). As noted earlier, ([4]), there are operator weighted shifts T 5o that
#({TY) = oo. For S subnormal and not cyclic, very little seems to be known about
{SY. All of the known previous examples satisfy u({S}') € 2.

The main result of this note is the construction of examples which settle both
questions in the negative. For each n, 1  n < oo, there is a (pure) subnormal
operator S, so that W(S,) = {Sp}’ and so u(W(Sp)) = p(W(mne S,,)) = n.

Thus among the conditions (i)-(iv) for subnormal operators only the implications
(i) = (iii), (ii) = (iii), and (i) = (iv) are valid. There remains the general question
of what can be said in general about the commutant of a subnormal operator.

THE EXAMPLE

Fix a natural number n. We will construct a (pure) subnormal operator S with
minimal normal extension N so that

n = p{W(8)} = u(W(N)) and W(S)={S}.

We begin by choosing n + 1 positive measure vg,14,...,V, supported in the
annulus {z : 3 £ |z| £ 1} with the following properties: '
(2) Each v; is circularly symmetric. That is, dv;(re?) = dp;(v)dé for some

positive measure p; supported in [-;—, 1];
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(b) vo Ly forl1 € j < nandp; ~pforljl<n (L denotes mutual
singularity and ~ denotes mutual absolute continuity);

(¢) The unit circle is in the support of each v;;

{(d) For each j,0 £ j € n, we have

|[=™ ”L(v,) tm=0,1,2,...} =00..

an l£3qw)

i#5

Of course the crucial property is (d). We postpone the construction of the these
measures until the end of the paper.

For a compactly supported measure v in C, let P2(v) be the L?(v)-closure of the
polynomials. Let N, be the normal operator of multiplication by z on Lz(u) and let
S, = N,|P?(v). Then S, is a cyclic subnormal operator and N, = mne S,. (See [1].)

For each v; as above, S, is subnormal weighted shift ([1, Th. 8.16}, [10, Prop.
25]). Also note that each F' € P%(y;) is analytic on the open disk D ([1, Prop. 8.19)).

We consider an extension of property (d).

LemMa. Fix j, 0 < § € n, and suppose F € P%(y;), F # 0. Then,

I P@lleagsy

> 12 lzag

15

=0,1,2,... 7 =co.

27
Proof. Since F € P%(v;), F is analytic on D. Thus if M(r) = 51; / |F(re'|?d8,
o

then M is a positive increasing function of 7. Thus
1
Iz F ()2 = / |2™ F(2)*dv; = / r2™ M (r)dp; 2 M(1/2)[|" ||ay)-
1

Now apply (d).

The Lemma implies that if F is analytic on D and if the mapping defined on poly-
nomials by p — Fp extends to a bounded linear operator from P2(;) to P2(v;), j # 1,
then F = 0.

Let N be the normal operator on @ L?(v;) defined by N = @ N,;. We will

construct our example § by restricting N to a certam invariant subspace H, where
H C @Pz(u,) It is instructive to see why T = @S fails to be the desired
0
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example. Each S,; is a (cyclic) weighted shift, so T is an operator weighted shift.
The range of T' has condimension n + 1 and it is easy to see {{1, Cor. 12.10]) that
W) = {o(T) = 0(50) & - ® ©(Sv,.) : ¢ € H*®} and that u(W(T)) =n +1. We
will show in Claim 2 to follow that u(W(N)) = n. Finally, the Lemma can be used
to show that {T'} splits. That is,

{T} = é{sv,»}’ ={¢o(Swo) ® - - ® n(Sy,) : 00, .- .00 € HZ}.
0

Thus {T'} is cyclic and properly contains W(T').
n n
For f € @ P%(v;), write f = @ f(5), where f(j) € P*(v;). This notation will
0 0

n
allow us to avoid double subscripts. Now for 1 < k < n, define fx € @ P*(v;) by
0

fu(j) = 1if j = 0 or k and fi(j) = O otherwise. Let My be the cyclic invariant
subspace for N generated by fi. Note that N|Mj; = S,,4,,. Let H be the closed
span of {M;}} and let S = N|{H. § bears some resemblance to the “nonexample”
T. However, while T is an orthogonal direct sum, the Lemma shows that each pair
of “summands” AM; and M; meet at angle zero. L

CrLaiIM 1. N =mneS.

Proof. For 1 £ k < n, let N; be the reducing subspace for N generated by fi.
Then NNy = Nygyw, = N,y ® N, since vp L v, Thus My = L(vo) @ L2(vi),
viewed as a subspace of é[ﬁ(uj). Thus the span of {N}} is éL’“’(uj), so that
N = mneS. ° ° H

CrLamM 2. n = u(W(S)) = u(W(N)).

Proof. First note that for any subnormal operator S, u(W(S)) > p(W(mne S)).
Also by contruction of S, we see that u(W(S)) < n. Since vy ~ v; for 1 < § < n,
multiplicity theory for normal operators shows that N = N,, & () N,,). Thus

1

w(W(N)) = n. This establishes the claim. n
Cramm 3. W(S) = {S}.

Froof. Let A € {S}. For 1 € k < n, let Fy = Afi. Our goal is to show that
there is a function ¢ € H™ so that Fi(5) = @ fi(j) for all k and j.
Por m > 0, [[S™ el = [1+™/[2a(y0) + 1273, while

AS™ fill® = IS™ Felf® 2 [|2™ Fe(IZacw,)

for each j, 0 € j < n. Since A is bounded, the Lemma implies that Fi(7) = 0 unless
j=0ork.
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A similar argument shows that Fi(0) = F(0) for 1 € k # 1 £ n. In fact,
let g = fi — fi. Then g(k) = 1 € P2(»), g() = —1 € P*(v), and g(j) = 0 if
j # korl. Thus for m > 0, {|S™g|* = ||2™]12a,) + 121123y, and lAS™ gl =
= ||[S™(Fe—~F)|* 2 ||z"‘(Fk(0)-—-F;(O)”%,(yo). Thus the Lemma shows F(0) = F;(0).

Next we show that for 1 € k < n, we have Fi(0) = Fi(k) as analytic functions
on D. Since F € H, F} is in the closure of My + Mo+ ..+ M. Thus there are n

sequences {pﬁ%), . {pﬁr’: )}} of polynomials so that

n
Aim 3 = Fi(0) in P(),
=

o (k) _ o p2
Jim pi) = Fi(k) in P*(m),

n}ingops,{) =0 in PYw), for1<j<n, j#k.

Since convergence in P3(v;) implies uniform convergence on- compact subsets of
n

D (1, Prop. 8.19], we see that Z pY) converges pointwise on D to both Fj(0) and
i=1
Fy(k).

We have shown that the 2n functions of form Fi(0) or Fi(k), 1 € k € n, all
coincide on D. Denote this function by ¢. Since ¢ € P2(v;) for each j and since
{z™}§° is an orthogonal basis for P?(v;), the Taylor series of ¢ at 0 converges in
P2(1;) to . Thus Afy = Fr € My, 1 € k € n, and M; is hyperinvariant for S.
Now a standard argument [1, p.147] shows that ¢ € H>.

We see that A = p(N)|H, o(N) € W(N) so o(N)|H € W(N|{H) = W(S), and
{SY = W(s). =

REMARK 1. It is easy to see that S is in fact an operator weighted shift. Let
N be the span of {fx}?. Then the subspaces {S"N}$ are pairwise orthogonal,
H = éS’"N’ , and S acts as subnormal operator weighted shift relative to this
decompuosition. While it is known [4], that operator weighted shifts can have tiny

commutants, it is perhaps surprising that such shifts can be taken to be subnormal.

ReEMARK 2. These examples can be strenghtened slightly. If S, denotes the
example with cyclic multiplicity =, let

[+ ]
S =P ""18, + 27,
1

Then ([2]) the spectra of summands of S are sufficiently disjoint that W(S) =
= @W(Sn) = GIB{S',,}’ = {S}. Also u(W(S)) = u(W(mne S)) = co.
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We close this note with a construction of measures v;, 0 £ j < n satisfying
(a)-(d). Since dv; = dp;d#, it is enough to construct positive Borel measures p;, 0 <

< j < n, supported in %, 1] so that
(b)Y po Lpifor1<j<nand pj~pfor1gjlgn
(¢)’ 1 is in the support of each p;, 0K j € n;
(d)' For each j,0 < j € n, we have

tm
Mt leagey im=0,1,2,... ) = oo.

}:llt llz2¢ony

I#5
Let 4, denote point mass at ». Choose a positive sequence {ai} so that a; >
o0

P kz a; for each k > 1. For example, we can take a; = k~*. Each measure p;i will
E+1

o
have form p; = Zb" (7)8s, . We first specify the coefficients bx(7).

k=1
Let 5:(0) = 0 if k is even and bz(0) = a; if k is odd. For each fixed j, 1 < j € n,
let bk(j) 0if k is odd. For k even, let bx(j) = ax 1f—’S = j(modn) and let b(j) = —’5-

if = ;é J (modn). Thus 0 < bx(j) < ax for all j and k, so each p; is a finite measure.
The choice of the b;(j) shows (b)’ holds.
It remains to specify {ry}$°. This sequence will be defined inductively, satisfying

v ~ 1. Thus (¢}’ will hold. Note that []t”‘llz,:(p 3= Ebk(j)r,f’". Thus for each k,

k=1

(% be(i)rE™ < (™20, < Y air2™ + b (F)rE™ +§ja,
1

k+1 7

Let ro= -

;. Ifry,...,7p=1 in (-1- 1) have been specified, we choose ri as follows.

2 b
k-1 a 1
First choose m = m;, large enough that Za;r?m* < f Then choose r; so 1 — % <
1

<re<1and r'“""* > -1-

2
To see that (d)’ holds, note that if k is odd, then using (), Ht'"*ni,(po) > E;E-,
and for 1 1 g Htm"”p(,,,) + 0+ -k— Thus

1t 220y o VE

n = o
Sl | zagen

[£-31
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For j fixed, 1 £ j € n, and k even with k = j(modn), we have |[i™* |12,y 2 —2—-,
<

)
3
n, U# 4, 0™ ||zaga) < ,: 4% 2 T Thes

and for 0 £ % & z

”f’"f‘”p(,,ﬂ > \/)‘?
Y 1t |zagy ~ VB

1%

So (d)’ holds.
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