ON COMMUTANTS OF SUBNORMAL OPERATORS

WARREN R. WOGEN

0. INTRODUCTION

If T is a bounded linear operator on a complex Hilbert space \mathcal{H} , let $\mathcal{W}(T)$ denote the weak closure of the polynomials in T and let $\{T\}'$ be the commutant of T. If \mathcal{H} is finite dimensional then it is well known that these conditions are equivalent:

- i) T is cyclic;
- ii) $W(T) = \{T\}';$
- iii) $\{T\}'$ is abelian.

Each of these conditions could be taken as a definition of "T has multiplicity one".

If \mathcal{H} is infinite dimensional (and separable), then of course (ii) still implies (iii), but all other implications are false. In fact, if $\mu(A)$ denotes the cyclic multiplicity of an algebra $A \subset \mathcal{B}(\mathcal{H})$ (i.e., $\mu(A) = \inf\{n : \exists f_1, f_2, \ldots, f_n \in \mathcal{H} \text{ so } Af_1 + \cdots + Af_n \text{ is dense in}\mathcal{H}\}$), then there are operators T so that $\mathcal{W}(T) = \{T\}'$ but $\mu(\mathcal{W}(T)) = \infty$. See [4]. Herrero says that T has a tiny commutant if $\mathcal{W}(T) = \{T\}'$. T above can be taken to be a certain forward shift with operator weights ([4]). Further, if T is the backward shift of infinite multiplicity, it is an old result of Sarason that $\mu(\mathcal{W}(T)) = 1$, while $\{T\}'$ is highly nonabelian. See also [8], [12].

Motivated by multiplicity theory for normal operators, it is natural to seek a corresponding theory for subnormal operators.

Thus let S be a subnormal operator with minimal normal extension N. (Write N = mne S.) We first need a notation of multiplicity one for subnormals. To the conditions (i), (ii), and (iii), we add

(iv) N is cyclic.

We review some known results in this setting. If S is cyclic, then $S \cong S_{\nu}$ for some compactly supported measure ν in the plane ([1], Cor. 5.3]). Here S_{ν} denotes

multiplication by z on $P^2(\nu)$, the closure in $L^2(\nu)$ of the polynomials. Also mne $S_{\nu} = N_{\nu} = \text{multiplication by } z \text{ on } L^2(\nu)$.

Yoshino ([13], ([1, Cor. 5.4])) showed that $\{S_{\nu}\}' = \{M_{\varphi} : \varphi \in P^{2}(\nu) \cap L^{\infty}(\nu)\}$. Also ([1, Cor. 12.10]), $\mathcal{W}(S_{\nu}) = \{M_{\varphi} : \varphi \in P^{\infty}(\nu)\}$. Thus, $\{S_{\nu}\}'$ is abelian but $\mathcal{W}(S_{\nu}) \neq \{S_{\nu}\}'$ in general.

If S is a subnormal bilateral weighted shift which is not invertible, then $\mathcal{W}(S) = \{S\}'$ ([1, Prop. 8.22]), but S is not cyclic ([3], [1, Prop. 8.23]). In fact, $\mu(\mathcal{W}(S)) = 2$ ([6, Th. 5]). Also N is cyclic in this case.

Motivated by these and other examples, J. McCarthy raised the following question ([7, Conjecture, p.267]).

QUESTION 1. If S is subnormal and $W(S) = \{S\}'$, must mne S be cyclic? In addition we consider the related question.

QUESTION 2. If S is subnormal, is $\mu(\{S\}') \leq 2$?

We note that many operators, including all normal operators, have cyclic commutants ([5]). As noted earlier, ([4]), there are operator weighted shifts T so that $\mu(\{T\}') = \infty$. For S subnormal and not cyclic, very little seems to be known about $\{S\}'$. All of the known previous examples satisfy $\mu(\{S\}') \leq 2$.

The main result of this note is the construction of examples which settle both questions in the negative. For each n, $1 \le n \le \infty$, there is a (pure) subnormal operator S_n so that $\mathcal{W}(S_n) = \{S_n\}'$ and so $\mu(\mathcal{W}(S_n)) = \mu(\mathcal{W}(\text{mne } S_n)) = n$.

Thus among the conditions (i)-(iv) for subnormal operators only the implications (i) \Rightarrow (iii), (ii) \Rightarrow (iii), and (i) \Rightarrow (iv) are valid. There remains the general question of what can be said in general about the commutant of a subnormal operator.

THE EXAMPLE

Fix a natural number n. We will construct a (pure) subnormal operator S with minimal normal extension N so that

$$n = \mu\{\mathcal{W}(S)\} = \mu(\mathcal{W}(N))$$
 and $W(S) = \{S\}'$.

We begin by choosing n+1 positive measure v_0, v_1, \ldots, v_n supported in the annulus $\{z: \frac{1}{2} \leqslant |z| \leqslant 1\}$ with the following properties:

(a) Each ν_j is circularly symmetric. That is, $d\nu_j(re^{i\theta}) = d\rho_j(\nu)d\theta$ for some positive measure ρ_j supported in $\left[\frac{1}{2},1\right]$;

- (b) $\nu_0 \perp \nu_j$ for $1 \leqslant j \leqslant n$ and $\rho_j \sim \rho_l$ for $1 \leqslant j, l \leqslant n$. (\perp denotes mutual singularity and \sim denotes mutual absolute continuity);
 - (c) The unit circle is in the support of each ν_j ;
 - (d) For each $j, 0 \leq j \leq n$, we have

$$\sup \left\{ \frac{||z^m||_{L^2(\nu_j)}}{\sum_{l\neq j} ||z^m||_{L^2(\nu_l)}} : m = 0, 1, 2, \ldots \right\} = \infty.$$

Of course the crucial property is (d). We postpone the construction of the these measures until the end of the paper.

For a compactly supported measure ν in \mathbb{C} , let $P^2(\nu)$ be the $L^2(\nu)$ -closure of the polynomials. Let N_{ν} be the normal operator of multiplication by z on $L^2(\nu)$ and let $S_{\nu} = N_{\nu}|P^2(\nu)$. Then S_{ν} is a cyclic subnormal operator and $N_{\nu} = \text{mne } S_{\nu}$. (See [1].)

For each ν_j as above, S_{ν_j} is subnormal weighted shift ([1, Th. 8.16], [10, Prop. 25]). Also note that each $F \in P^2(\nu_j)$ is analytic on the open disk D ([1, Prop. 8.19]). We consider an extension of property (d).

LEMMA. Fix $j, 0 \le j \le n$, and suppose $F \in P^2(\nu_j), F \ne 0$. Then,

$$\sup \left\{ \frac{||z^m F(z)||_{L^2(\nu_j)}}{\sum_{l \neq i} ||z^m||_{L^2(\nu_l)}} : m = 0, 1, 2, \ldots \right\} = \infty.$$

Proof. Since $F \in P^2(\nu_j)$, F is analytic on D. Thus if $M(r) = \frac{1}{2\pi} \int_0^{2\pi} |F(re^{i\theta})|^2 d\theta$, then M is a positive increasing function of r. Thus

$$||z^m F(z)||_{L^2(\nu_j)}^2 = \int |z^m F(z)|^2 d\nu_j = \int_{\frac{1}{2}}^1 r^{2m} M(r) d\rho_j \geqslant M(1/2) ||z^m||_{L^2(\nu_j)}.$$

Now apply (d).

The Lemma implies that if F is analytic on D and if the mapping defined on polynomials by $p \mapsto Fp$ extends to a bounded linear operator from $P^2(\nu_l)$ to $P^2(\nu_j)$, $j \neq l$, then F = 0.

Let N be the normal operator on $\bigoplus_{j=0}^{n} L^{2}(\nu_{j})$ defined by $N = \bigoplus_{j=0}^{n} N_{\nu_{j}}$. We will construct our example S by restricting N to a certain invariant subspace \mathcal{H} , where $\mathcal{H} \subset \bigoplus_{j=0}^{n} P^{2}(\nu_{j})$. It is instructive to see why $T = \bigoplus_{j=0}^{n} S_{\nu_{j}}$ fails to be the desired

72 WARREN R. WOGEN

example. Each S_{ν_j} is a (cyclic) weighted shift, so T is an operator weighted shift. The range of T has condimension n+1 and it is easy to see ([1, Cor. 12.10]) that $\mathcal{W}(T) = \{\varphi(T) = \varphi(S_{\nu_0}) \oplus \cdots \oplus \varphi(S_{\nu_n}) : \varphi \in H^{\infty}\}$ and that $\mu(\mathcal{W}(T)) = n+1$. We will show in Claim 2 to follow that $\mu(\mathcal{W}(N)) = n$. Finally, the Lemma can be used to show that $\{T\}'$ splits. That is,

$$\{T\}' = \bigoplus_{n=0}^{n} \{S_{\nu_j}\}' = \{\varphi_0(S_{\nu_0}) \oplus \ldots \oplus \varphi_n(S_{\nu_n}) : \varphi_0, \ldots, \varphi_n \in H^{\infty}\}.$$

Thus $\{T\}'$ is cyclic and properly contains $\mathcal{W}(T)$.

For $f \in \bigoplus_{0}^{n} P^{2}(\nu_{j})$, write $f = \bigoplus_{0}^{n} f(j)$, where $f(j) \in P^{2}(\nu_{j})$. This notation will allow us to avoid double subscripts. Now for $1 \leq k \leq n$, define $f_{k} \in \bigoplus_{0}^{n} P^{2}(\nu_{j})$ by $f_{k}(j) = 1$ if j = 0 or k and $f_{k}(j) = 0$ otherwise. Let \mathcal{M}_{k} be the cyclic invariant subspace for N generated by f_{k} . Note that $N|\mathcal{M}_{k} \cong S_{\nu_{0}+\nu_{k}}$. Let \mathcal{H} be the closed span of $\{\mathcal{M}_{k}\}_{1}^{n}$ and let $S = N|\mathcal{H}$. S bears some resemblance to the "nonexample" T. However, while T is an orthogonal direct sum, the Lemma shows that each pair of "summands" \mathcal{M}_{j} and \mathcal{M}_{l} meet at angle zero.

CLAIM 1. N = mne S.

Proof. For $1 \leq k \leq n$, let \mathcal{N}_k be the reducing subspace for N generated by f_k . Then $N|\mathcal{N}_k \cong N_{\nu_0+\nu_k} \cong N_{\nu_0} \oplus N_{\nu_k}$, since $\nu_0 \perp \nu_k$. Thus $\mathcal{N}_k = L^2(\nu_0) \oplus L^2(\nu_k)$, viewed as a subspace of $\bigoplus_{j=0}^{n} L^2(\nu_j)$. Thus the span of $\{\mathcal{N}_k\}_1^n$ is $\bigoplus_{j=0}^{n} L^2(\nu_j)$, so that N = mne S.

CLAIM 2.
$$n = \mu(\mathcal{W}(S)) = \mu(\mathcal{W}(N))$$
.

Proof. First note that for any subnormal operator S, $\mu(W(S)) \geqslant \mu(W(\text{mne }S))$. Also by contruction of S, we see that $\mu(W(S)) \leqslant n$. Since $\nu_1 \sim \nu_j$ for $1 \leqslant j \leqslant n$, multiplicity theory for normal operators shows that $N \cong N_{\nu_0} \oplus (\bigoplus_{i=1}^n N_{\nu_i})$. Thus $\mu(W(N)) = n$. This establishes the claim.

Claim 3.
$$\mathcal{W}(S) = \{S\}'$$
.

Proof. Let $A \in \{S\}'$. For $1 \le k \le n$, let $F_k = Af_k$. Our goal is to show that there is a function $\varphi \in \mathcal{H}^{\infty}$ so that $F_k(j) = \varphi f_k(j)$ for all k and j.

For
$$m \ge 0$$
, $||S^m f_k||^2 = ||z^m||_{L^2(\nu_0)}^2 + ||z^m||_{L^2(\nu_k)}^2$ while

$$||AS^m f_k||^2 = ||S^m F_k||^2 \geqslant ||z^m F_k(j)||_{L^2(\nu_s)}^2$$

for each j, $0 \le j \le n$. Since A is bounded, the Lemma implies that $F_k(j) = 0$ unless j = 0 or k.

A similar argument shows that $F_k(0) = F_l(0)$ for $1 \le k \ne l \le n$. In fact, let $g = f_k - f_l$. Then $g(k) = 1 \in P^2(\nu_k)$, $g(l) = -1 \in P^2(\nu_l)$, and g(j) = 0 if $j \ne k$ or l. Thus for $m \ge 0$, $||S^m g||^2 = ||z^m||_{L^2(\nu_k)}^2 + ||z^m||_{L^2(\nu_l)}^2$, and $||AS^m g||^2 = ||S^m(F_k - F_l)||^2 \ge ||z^m(F_k(0) - F_l(0))||_{L^2(\nu_0)}^2$. Thus the Lemma shows $F_k(0) = F_l(0)$.

Next we show that for $1 \le k \le n$, we have $F_k(0) = F_k(k)$ as analytic functions on D. Since $F_k \in \mathcal{H}$, F_k is in the closure of $\mathcal{M}_1 + \mathcal{M}_2 + \cdots + \mathcal{M}_n$. Thus there are n sequences $\{p_m^{(1)}, \ldots, \{p_m^{(n)}\}\}$ of polynomials so that

$$\lim_{m \to \infty} \sum_{j=1}^{n} p_m^{(j)} = F_k(0) \quad \text{in } P^2(\nu_0),$$

$$\lim_{m \to \infty} p_m^{(k)} = F_k(k) \quad \text{in } P^2(\nu_k),$$

$$\lim_{m \to \infty} p_m^{(j)} = 0 \quad \text{in } P^2(\nu_k), \text{ for } 1 \leqslant j \leqslant n, \ j \neq k.$$

Since convergence in $P^2(\nu_j)$ implies uniform convergence on compact subsets of D [1, Prop. 8.19], we see that $\sum_{j=1}^{n} p_m^{(j)}$ converges pointwise on D to both $F_k(0)$ and $F_k(k)$.

We have shown that the 2n functions of form $F_k(0)$ or $F_k(k)$, $1 \leq k \leq n$, all coincide on D. Denote this function by φ . Since $\varphi \in P^2(\nu_j)$ for each j and since $\{z^m\}_0^{\infty}$ is an orthogonal basis for $P^2(\nu_j)$, the Taylor series of φ at 0 converges in $P^2(\nu_j)$ to φ . Thus $Af_k = F_k \in \mathcal{M}_k$, $1 \leq k \leq n$, and \mathcal{M}_k is hyperinvariant for S. Now a standard argument [1, p.147] shows that $\varphi \in \mathcal{H}^{\infty}$.

We see that $A = \varphi(N)|\mathcal{H}, \ \varphi(N) \in \mathcal{W}(N) \text{ so } \varphi(N)|\mathcal{H} \in \mathcal{W}(N|\mathcal{H}) = \mathcal{W}(S), \text{ and } \{S\}' = \mathcal{W}(S).$

REMARK 1. It is easy to see that S is in fact an operator weighted shift. Let \mathcal{N} be the span of $\{f_k\}_1^n$. Then the subspaces $\{S^m\mathcal{N}\}_0^\infty$ are pairwise orthogonal, $\mathcal{H} = \bigoplus_{0}^{\infty} S^m\mathcal{N}$, and S acts as subnormal operator weighted shift relative to this decomposition. While it is known [4], that operator weighted shifts can have tiny commutants, it is perhaps surprising that such shifts can be taken to be subnormal.

REMARK 2. These examples can be strenghtened slightly. If S_n denotes the example with cyclic multiplicity n, let

$$S = \bigoplus_{1}^{\infty} (2^{-n-1}S_n + 2^{-n+1}I).$$

Then ([2]) the spectra of summands of S are sufficiently disjoint that $\mathcal{W}(S) = \bigoplus_{1}^{\infty} \mathcal{W}(S_n) = \bigoplus_{1}^{\infty} \{S_n\}' = \{S\}'$. Also $\mu(\mathcal{W}(S)) = \mu(\mathcal{W}(\text{mne } S)) = \infty$.

74 WARREN R. WOGEN

We close this note with a construction of measures ν_j , $0 \leqslant j \leqslant n$ satisfying (a)-(d). Since $d\nu_j = d\rho_j d\theta$, it is enough to construct positive Borel measures ρ_j , $0 \leqslant j \leqslant n$, supported in $\left\lceil \frac{1}{2}, 1 \right\rceil$ so that

- (b)' $\rho_0 \perp \rho_j$ for $1 \leqslant j \leqslant n$ and $\rho_j \sim \rho_l$ for $1 \leqslant j, l \leqslant n$;
- (c)' 1 is in the support of each ρ_j , $0 \le j \le n$;
- (d)' For each $j, 0 \leq j \leq n$, we have

$$\sup \left\{ \frac{||t^m||_{L^2(\rho_j)}}{\sum_{l\neq j} ||t^m||_{L^2(\rho_l)}} : m = 0, 1, 2, \ldots \right\} = \infty.$$

Let δ_r denote point mass at r. Choose a positive sequence $\{a_k\}$ so that $a_k \ge k \sum_{k+1}^{\infty} a_j$ for each $k \ge 1$. For example, we can take $a_k = k^{-k}$. Each measure ρ_j will

have form $\rho_j = \sum_{k=1}^{\infty} b_k(j) \delta_{r_k}$. We first specify the coefficients $b_k(j)$.

Let $b_k(0) = 0$ if k is even and $b_k(0) = a_k$ if k is odd. For each fixed j, $1 \le j \le n$, let $b_k(j) = 0$ if k is odd. For k even, let $b_k(j) = a_k$ if $\frac{k}{2} = j \pmod{n}$ and let $b_k(j) = \frac{a_k}{k}$ if $\frac{b}{2} \ne j \pmod{n}$. Thus $0 \le b_k(j) \le a_k$ for all j and k, so each ρ_j is a finite measure. The choice of the $b_k(j)$ shows (b)' holds.

It remains to specify $\{r_k\}_1^{\infty}$. This sequence will be defined inductively, satisfying $r_k \to 1$. Thus (c)' will hold. Note that $||t^m||_{L^2(\rho_j)}^2 = \sum_{i=1}^{\infty} b_k(j) r_k^{2m}$. Thus for each k,

$$(*) b_k(j)r_k^{2m} \leqslant ||t^m||_{L^2(\rho_j)}^2 \leqslant \sum_{1}^{k-1} a_i r_i^{2m} + b_k(j)r_k^{2m} + \sum_{k+1}^{\infty} a_i.$$

Let $r_1 = \frac{1}{2}$. If r_2, \ldots, r_{k-1} in $(\frac{1}{2}, 1)$ have been specified, we choose r_k as follows.

First choose $m = m_k$ large enough that $\sum_{1}^{k-1} a_i r_i^{2m_k} < \frac{a_k}{k}$. Then choose r_k so $1 - \frac{1}{k} < r_k < 1$ and $r_k^{2m_k} > \frac{1}{2}$.

To see that (d)' holds, note that if k is odd, then using (*), $||t^{m_k}||_{L^2(\rho_0)}^2 \ge \frac{a_k}{2}$, and for $1 \le l \le n$, $||t^{m_k}||_{L^2(\rho_l)}^2 \le \frac{a_k}{k} + 0 + \frac{a_k}{k}$. Thus

$$\frac{||t^{m_k}||_{L^2(\rho_0)}}{\sum\limits_{l=1}^n ||t^{m_k}||_{L^2(\rho_l)}} \geqslant \frac{\sqrt{k}}{2n}.$$

For j fixed, $1 \le j \le n$, and k even with $\frac{k}{2} = j \pmod{n}$, we have $||t^{m_k}||_{L^2(\rho_j)} \ge \frac{a_k}{2}$, and for $0 \le l \le n$, $l \ne j$, $||t^{m_k}||_{L^2(\rho_l)} \le \frac{a_k}{k} + \frac{a_k}{k} + \frac{a_k}{k} = \frac{3a_k}{k}$. Thus

$$\frac{||t^{m_k}||_{L^2(\rho_i)}}{\sum_{l\neq i} ||t^{m_k}||_{L^2(\rho_l)}} \geqslant \frac{\sqrt{k}}{n\sqrt{6}}.$$

So (d)' holds.

REFERENCES

- 1. Conway, J. B., Subnormal operators, Pittman, Boston, 1981.
- 2. CONWAY, J. B.; Wu, P. Y., The splitting of $A(T_1 \oplus T_2)$ and related questions, Indiana Univ. Math. J., 26(1977), 41-56.
- HERRERO, D. A., Eigenvectors and cyclic vectors for bilateral weighted shifts, Rev. Un. Mat. Argentina, 26(1972), 24-41.
- 4. HERRERO, D. A., A dense set of operators with tiny commutants, Trans. Amer. Math. Soc., 327(1991), 159-183.
- KERCHY, L., On the multiplicity of the commutant of operators, in Operator theory: Advances and applications, Birkauser Verlag, Basel, 1988, 233-243.
- 6. Lubin, A., Lifting subnormal double commutants, Studia Math., 67(1980), 315-319.
- MCCATHY, J., Analytic structures for subnormal operators, Integral Equations Operator Theory, 13(1990), 251-270.
- 8. NIKOLSKII, N. K.; VASYUNIN, V. I., Control subspaces of minimal dimension and root vectors, Integral Equation Operator Theory, 6(1983), 274-311.
- OLIN, R. F.; THOMSON, J. E., Lifting the commutant of a subnormal operator, Canad. J. Math., 31(1979), 148-156.
- SHIELDS, A. L., Weighted shift operators and analytic function theory, Math. Surveys Amer. Math. Soc., 13, 49-128.
- SOLOMYAK, B. M.; VOLBERG, A. L., Multiplicity of analytic Toeplitz operators, in Operator Theory: Advances and applications, Vol. 42, 1989, 87-191.
- WOGEN, W. R., On some operators with cyclic vectors, Indiana Univ. Math. J., 27(1978), 163-171.
- YOSHINO, T., Subnormal operators with a cyclic vector, Tohoku Math. J., 21(1969), 47-55.

WARREN R. WOGEN
Department of Mathematics,
University of North Carolina,
Chapel Hill, North Carolina 27599-3250,
U.S.A.

Received April 5, 1991; revised June 28, 1991.