# AUTOMORPHISMS OF TENSOR PRODUCTS OF IRRATIONAL ROTATION C\*-ALGEBRAS AND THE C\*-ALGEBRA OF COMPACT OPERATORS II

# KAZUNORI KODAKA

### 1. PRELIMINARIES

First we will give a lemma about projections and semifinite, semicontinuous traces.

Let A be a (nonunital)  $C^*$ -algebra, tr a semifinite, semicontinuous trace on A and I the ideal of definition of tr. Let  $A^+$  be the unitized  $C^*$ -algebra and  $I^+$  the algebra obtained from I by adjoining the unit of  $A^+$ . In the same way as in Connes [4, Appendix 4] let  $\operatorname{tr}^+$  be a trace on  $I^+$  which coincides with tr on I and takes the value 0 on  $\mathbb{C} \subset I^+$ .

LEMMA 1. With the above notations for any projection  $f \in A$ ,  $f \in I$ .

**Proof.** Since tr is a semifinite, semicontinuous trace on A, by Connes [4, Appendix 3] there is a projection  $\tilde{f} \in I^+$  such that  $||f - \tilde{f}|| < 1$ . Thus there is a partial isometry  $z \in A^+$  such that  $zz^* = f$ ,  $z^*z = \tilde{f}$ . Hence  $\tilde{f} = z^*fz$ . Since  $f \in A$  and  $z \in A^+$ ,  $\tilde{f} = z^*fz \in A$ . Thus  $\tilde{f} \in I$ . Therefore we can see that

$$\operatorname{tr}(f) = \operatorname{tr}(zz^*) = \operatorname{tr}(z^*z) = \operatorname{tr}(\tilde{f}) < \infty.$$

Hence  $f \in I$ .

Let  $\theta$  be an irrational number in [0, 1] and  $A_{\theta}$  be the corresponding irrational rotation  $C^*$ -algebra. Let  $\tau$  be the unique tracial state on  $A_{\theta}$  and p be a Rieffel projection in  $A_{\theta}$  with  $\tau(p) = \theta$ . Let K be the  $C^*$ -algebra of all compact operators on a countably infinite dimensional Hilbert space H and T be the canonical trace on K

and let  $\{e_{ij}\}_{i,j\in\mathbb{Z}}$  be matrix units of K. Let  $(A_{\theta}\otimes K)^+$  be the unitized  $C^*$ -algebra of  $A_{\theta}\otimes K$ . Furthermore for any Hilbert space K let B(K) be the algebra of all bounded linear operators on K and for any  $C^*$ -algebra A let M(A) be the double centralizer algebra of A.

In the previous paper [6] we obtained that if the topological stable rank of  $A_{\theta}$  is equal to 1, for any automorphism  $\alpha$  of  $A_{\theta} \otimes \mathbf{K}$  with  $\alpha_* = \mathrm{id}$  on  $K_0(A_{\theta} \otimes \mathbf{K})$  there are an automorphism  $\beta$  of  $A_{\theta}$  and a unitary element  $w \in M(A_{\theta} \otimes \mathbf{K})$  such that  $\alpha = \mathrm{Ad}(w) \circ \beta \otimes \mathrm{id}$ . Furthermore in [10] Putnam showed that for any irrational number  $\theta$ ,  $A_{\theta}$  has the topological stable rank 1. In the present paper we will show that if  $\theta$  is not quadratic, for any automorphism  $\alpha$  of  $A_{\theta} \otimes \mathbf{K}$ ,  $\alpha_* = \mathrm{id}$  on  $K_0(A_{\theta} \otimes \mathbf{K})$  and that if  $\theta$  is quadratic, there is an automorphism  $\alpha$  of  $A_{\theta} \otimes \mathbf{K}$  with  $\alpha_* \neq \mathrm{id}$  on  $K_0(A_{\theta} \otimes \mathbf{K})$ .

# 2. AUTOMORPHISMS OF $A_{\theta} \otimes \mathbf{K}$ BY NON-QUADRATIC IRRATIONAL NUMBERS $\theta$

We suppose that  $\theta$  is an arbitrary irrational number in [0, 1]. Let  $\alpha$  be an automorphism of  $A_{\theta} \otimes \mathbf{K}$  and  $q = \alpha(1 \otimes e_{00})$ . Let  $\tilde{\varphi}$  be the monomorphism of  $(1 \otimes e_{00})(A_{\theta} \otimes \mathbf{K})(1 \otimes e_{00})$  to  $q(A_{\theta} \otimes \mathbf{K})q$  defined by

$$\tilde{\varphi}((1\otimes e_{00})x(1\otimes e_{00}))=lpha((1\otimes e_{00})x(1\otimes e_{00}))$$

for any  $x \in A_{\theta} \otimes K$ . Then by easy computation  $\tilde{\varphi}$  is an isomorphism of  $(1 \otimes \otimes e_{00})(A_{\theta} \otimes K)(1 \otimes e_{00})$  onto  $q(A_{\theta} \otimes K)q$ . Since  $(1 \otimes e_{00})(A_{\theta} \otimes K)(1 \otimes e_{00})$  is isomorphic to  $A_{\theta}$ , so is  $q(A_{\theta} \otimes K)q$ . We denote by  $\varphi$  the isomorphism of  $A_{\theta}$  onto  $q(A_{\theta} \otimes K)q$  induced by  $\tilde{\varphi}$ .

By the definitions of  $\tau$  and  $\operatorname{Tr}$ ,  $\tau \otimes \operatorname{Tr}$  is a semifinite, semicontinuous trace on  $A_{\theta} \otimes \mathbf{K}$ . Let J be the ideal of definition of  $\tau \otimes \operatorname{Tr}$  and  $J^+$  be the algebra obtained from J by adjoining the unit of  $(A_{\theta} \otimes \mathbf{K})^+$ . In the same way as in Connes [4, Appendix 4] let  $(\tau \otimes \operatorname{Tr})^+$  be a trace on  $J^+$  which coincides with  $\tau \otimes \operatorname{Tr}$  on J and takes the value 0 on  $\mathbb{C} \subset J^+$ . Let  $(\tau \otimes \operatorname{Tr})_*$  be the additive map of  $K_0(A_{\theta} \otimes \mathbf{K})$  to  $\mathbb{R}$  induced by  $(\tau \otimes \operatorname{Tr})^+$ . We note that  $q \in J$  by Lemma 1.

THEOREM 2. With the above notations if  $\theta$  is not quadratic, then for any automorphism  $\alpha$  of  $A_{\theta} \otimes K$  we have  $\alpha_* = \mathrm{id}$  on  $K_0(A_{\theta} \otimes K)$ .

Proof. By Pimsner and Voiculescu [9] and Rieffel [11] we know that

$$K_0(A_\theta \otimes \mathbf{K}) = \mathbf{Z}[1 \otimes e_{00}] \oplus \mathbf{Z}[p \otimes e_{00}].$$

Since  $\alpha_*$  is an automorphism of  $K_0(A_\theta \otimes \mathbf{K})$ , we can suppose that

$$\alpha_*([1 \otimes e_{00}]) = [q] = a[1 \otimes e_{00}] + b[p \otimes e_{00}],$$

$$\alpha_*([p \otimes e_{00}]) = c[1 \otimes e_{00}] + d[p \otimes e_{00}],$$

where  $a, b, c, d \in \mathbb{Z}$  and ad - bc = 1 or -1. Let  $\tau_1 = \tau \otimes \text{Tr} \circ \varphi$ . Then  $\tau_1$  is a finite trace on  $A_{\theta}$  since  $q \in J$ . Hence there is a positive number t such that  $\tau_1 = t\tau$ . Since  $\tau_1(1) = t\tau(1)$ ,

$$t = (\tau \otimes \operatorname{Tr})(\varphi(1)) = (\tau \otimes \operatorname{Tr})(q) = (\tau \otimes \operatorname{Tr})_*([q]) =$$
$$= (\tau \otimes \operatorname{Tr})_*(a[1 \otimes e_{00}]) + (\tau \otimes \operatorname{Tr})_*(b[p \otimes e_{00}]) = a + b\theta.$$

Hence  $\tau_1 = (a+b\theta)\tau$ . By the definition of  $\varphi$  we can see that  $\varphi(p) = \alpha(p \otimes e_{00})$ . Then since  $\tau_1(p) = (a+b\theta)\tau(p)$ ,

$$(a+b\theta)\theta = (\tau \otimes \operatorname{Tr})(\varphi(p)) = (\tau \otimes \operatorname{Tr})(\alpha(p \otimes e_{00})) = (\tau \otimes \operatorname{Tr})_*(\alpha_*([p \otimes e_{00}])) =$$
$$= (\tau \otimes \operatorname{Tr})_*(c[1 \otimes e_{00}] + d[p \otimes e_{00}]) = c + d\theta.$$

Thus we obtain that

$$b\theta^2 + (a-d)\theta - c = 0.$$

Since  $\theta$  is not quadratic and is irrational, a=d and b=c=0. Moreover since ad-bc=1 or -1 and  $(\tau\otimes Tr)(q)=a+b\theta>0$ , a=d=1.

Let  $\operatorname{Aut}(A_{\theta})$  (resp.  $\operatorname{Aut}(A_{\theta} \otimes \mathbf{K})$ ) be the group of all automorphisms of  $A_{\theta}$  (resp.  $A_{\theta} \otimes \mathbf{K}$ ) and  $\operatorname{Int}(A_{\theta})$  be the normal subgroup of  $\operatorname{Aut}(A_{\theta})$  of inner automorphisms of  $A_{\theta}$ . For any unitary element  $w \in M(A_{\theta} \otimes \mathbf{K})$  let  $\operatorname{Ad}(w)$  be the automorphism of  $A_{\theta} \otimes \mathbf{K}$  defined by  $\operatorname{Ad}(w)(x) = wxw^*$  where  $x \in A_{\theta} \otimes \mathbf{K}$ . We call  $\operatorname{Ad}(w)$  a generalized inner automorphism of  $A_{\theta} \otimes \mathbf{K}$  and let  $\operatorname{Int}(A_{\theta} \otimes \mathbf{K})$  be the group of generalized inner automorphisms of  $A_{\theta} \otimes \mathbf{K}$ . Clearly it is a normal subgroup of  $\operatorname{Aut}(A_{\theta} \otimes \mathbf{K})$ . Let  $\operatorname{Out}(A_{\theta}) = \operatorname{Aut}(A_{\theta})/\operatorname{Int}(A_{\theta})$  and  $\operatorname{Out}(A_{\theta} \otimes \mathbf{K}) = \operatorname{Aut}(A_{\theta} \otimes \mathbf{K})/\operatorname{Int}(A_{\theta} \otimes \mathbf{K})$ . For any  $\beta \in \operatorname{Aut}(A_{\theta})$  (resp.  $\alpha \in \operatorname{Aut}(A_{\theta} \otimes \mathbf{K})$ ) we denote by  $[\beta]$  (resp.  $[\alpha]$ ) the class of  $\beta$  (resp.  $\alpha$ ) in  $\operatorname{Out}(A_{\theta})$  (resp.  $\operatorname{Out}(A_{\theta} \otimes \mathbf{K})$ ). Furthermore let  $\Phi$  be the homomorphism of  $\operatorname{Out}(A_{\theta})$  to  $\operatorname{Out}(A_{\theta} \otimes \mathbf{K})$  defined for any  $\beta \in \operatorname{Aut}(A_{\theta})$  by  $\Phi([\beta]) = [\beta \otimes \operatorname{id}]$ .

REMARK. By Putnam [10] we see that for any irrational number  $\theta$ ,  $\operatorname{tsr}(A_{\theta}) = 1$  where  $\operatorname{tsr}(A_{\theta})$  denotes the topological stable rank of  $A_{\theta}$ . Hence by [6, Theorem 5] for any  $\alpha \in \operatorname{Aut}(A_{\theta} \otimes \mathbb{K})$  with  $\alpha_* = \operatorname{id}$  on  $K_0(A_{\theta} \otimes \mathbb{K})$ , there are a unitary element  $w \in M(A_{\theta} \otimes \mathbb{K})$  and a  $\beta \in \operatorname{Aut}(A_{\theta})$  such that

$$\alpha = \mathrm{Ad}(w) \circ \beta \otimes \mathrm{id}.$$

COROLLARY 3. With the above notations if  $\theta$  is not quadratic, then  $\Phi$  is an isomorphism of  $Out(A_{\theta})$  onto  $Out(A_{\theta} \otimes \mathbf{K})$ .

**Proof.** First we will show that  $\Phi$  is surjective. Since  $\theta$  is not quadratic,  $\alpha_* = \mathrm{id}$  on  $K_0(A_\theta \otimes \mathbf{K})$  for any  $\alpha \in \mathrm{Aut}(A_\theta \otimes \mathbf{K})$  by Theorem 2. Thus by the above remark there are a unitary element  $w \in M(A_\theta \otimes \mathbf{K})$  and a  $\beta \in \mathrm{Aut}(A_\theta)$  such that

$$\alpha = Ad(w) \circ \beta \otimes id.$$

Hence

$$\Phi([\beta]) = [\beta \otimes \mathrm{id}] = [\mathrm{Ad}(w) \circ \beta \otimes \mathrm{id}] = [\alpha].$$

Therefore  $\Phi$  is surjective. Next we will show that  $\Phi$  is injective. Let  $(\pi_{\tau}, H_{\tau})$  be the cyclic representation of  $A_{\theta}$  associated with  $\tau$ . Since  $A_{\theta}$  is simple,  $\pi_{\tau}$  is faithful. Thus we can identify  $A_{\theta} \otimes \mathbf{K}$  with  $\pi_{\tau}(A_{\theta}) \otimes \mathbf{K}$ . We suppose that  $\Phi([\beta]) = [\mathrm{id}]$  where  $\beta \in \mathrm{Aut}(A_{\theta})$ . Then there is a unitary element  $w \in M(A_{\theta} \otimes \mathbf{K})$  such that  $\beta \otimes \mathrm{id} = \mathrm{Ad}(w)$ . Thus for any  $X \in \mathbf{K}$ 

$$(\beta \otimes \mathrm{id})(1 \otimes X) = w(1 \otimes X)w^*,$$

i.e.,

$$(1 \otimes X)w = w(1 \otimes X).$$

Since **K** is strongly dense in  $\mathbf{B}(H)$ , for any  $X \in \mathbf{B}(H)(1 \otimes X)w = w(1 \otimes X)$ . Since  $(\mathbb{C}1 \otimes \mathbf{B}(H))' = \mathbf{B}(H_{\tau}) \otimes \mathbb{C}1$ ,  $w \in \mathbf{B}(H_{\tau}) \otimes \mathbb{C}1$ . Let  $w = z \otimes 1$  where z is a unitary element in  $\mathbf{B}(H_{\tau})$ . Since  $\beta \otimes \mathrm{id} = \mathrm{Ad}(z \otimes 1)$ , for any  $x \in A_{\theta}$  and  $X \in \mathbf{K}$ 

$$(\beta(x) \otimes X)(z \otimes 1) = (z \otimes 1)(x \otimes X),$$

i.e.,

$$\beta(x)z\otimes X=zx\otimes X.$$

Since  $z \otimes 1 \in M(A_{\theta} \otimes K)$ ,  $\beta(x)z \otimes X$  and  $zx \otimes X$  are in  $A_{\theta} \otimes K$ . Thus  $\beta(x)z = zx \in A_{\theta}$  for any  $x \in A_{\theta}$ . Therefore z is a unitary element in  $A_{\theta}$  and  $\beta(x) = zxz^*$ . Hence  $[\beta] = [\mathrm{id}]$  in  $\mathrm{Out}(A_{\theta})$ . Thus  $\Phi$  is injective.

# 3. AUTOMORPHISMS OF $A_{\theta} \otimes \mathbf{K}$ BY QUADRATIC IRRATIONAL NUMBERS $\theta$

Next we will show that for any quadratic irrational number  $\theta$  there is an automorphism  $\alpha$  of  $A_{\theta} \otimes \mathbf{K}$  with  $\alpha_* \neq \mathrm{id}$  on  $K_0(A_{\theta} \otimes \mathbf{K})$ . Let a and b be integers which generate  $\mathbf{Z}$  such that  $a + b\theta \neq 0$ . We also assume that  $b \neq 0$ . Let  $V_{\theta}(a, b : k)$  be the standard module defined in Rieffel [13] where k is a positive integer. For each positive integer n,  $M_n(A_{\theta})$  denotes the  $n \times n$ -matrix algebra over  $A_{\theta}$ . Then we can extend the unique tracial state  $\tau$  on  $A_{\theta}$  to the unnormalized finite trace on  $M_n(A_{\theta})$ .

We also denote it by  $\tau$ . Since  $V_{\theta}(a, b : k)$  is a finitely generated projective right  $A_{\theta}$ -module,  $V_{\theta}(a, b : k)$  corresponds to a projection in some  $M_n(A_{\theta})$ . We also denote it by  $V_{\theta}(a, b : k)$ .

LEMMA 4. With the above notations let q be a projection in  $M_m(A_\theta)$  where m is a positive integer. Then  $\tau(V_\theta(a,b:k)) = \tau(q)$  if and only if  $V_\theta(a,b:k)$  is isomorphic to  $qA_\theta^m$  as a module.

Proof. It is clear that  $\tau(V_{\theta}(a, b:k)) = \tau(q)$  if  $V_{\theta}(a, b:k)$  is isomorphic to  $qA_{\theta}^{m}$ . We suppose that  $\tau(V_{\theta}(a, b:k)) = \tau(q)$ . Then by Rieffel [13, Corollary 2.5],  $V_{\theta}(a, b:k)$  is isomorphic to  $qA_{\theta}^{m}$ .

We will give definitions and well-known facts on quadratic irrational numbers (see Lang [7]).

Let Q be the ring of rational numbers. If  $\theta = x + y\sqrt{d}$  where  $x, y \in \mathbb{Q}$  and  $d \in \mathbb{N}$ , then we define  $\theta' = x - y\sqrt{d}$  and we call  $\theta'$  the conjugate of  $\theta$ . Let  $\theta$  be a quadratic irrational number. We say that it is reduced if  $\theta > 1$  and  $-1 < \theta' < 0$  where  $\theta'$  is the conjugate of  $\theta$ .

By Lang [7, Chap. I, Section 1, Theorems 1, 2, Corollary 1 and Chap. IV, Section 1, Theorems 2, 3] for any quadratic irrational number  $\theta$  there are a fractional transformation  $g = \begin{bmatrix} k & l \\ m & n \end{bmatrix} \in GL(2, \mathbb{Z})$  and a reduced quadratic irrational number  $\theta_1$  such that

$$\theta = g\theta_1 = \frac{k\theta_1 + l}{m\theta_1 + n}.$$

Furthermore using Lang [7, Chap. I, Section 1, Theorems 1, 2, Corollary 1 and Chap. IV, Section 1, Theorem 3] again, we can see that for any reduced quadratic irrational number  $\theta_1$  there is a fractional transformation  $h \in GL(2, \mathbb{Z})$  with  $h \neq \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ ,  $\begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}$  such that  $\theta_1 = h\theta_1$ . Hence since  $\theta_1 = g^{-1}\theta$ , we obtain that

$$\theta = g\theta_1 = gh\theta_1 = ghg^{-1}\theta.$$

Since  $h \neq \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ ,  $\begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}$ , neither is  $ghg^{-1}$ . By the above arguments for any quadratic irrational number  $\theta$  there is a fractional transformation  $g \in GL(2, \mathbb{Z})$  with  $g \neq \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ ,  $\begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}$  such that  $\theta = g\theta$ .

THEOREM 5. Let  $\theta$  be a quadratic irrational number in [0, 1]. Then there is an automorphism  $\alpha$  of  $A_{\theta} \otimes K$  such that  $\alpha_* \neq \mathrm{id}$  on  $K_0(A_{\theta} \otimes K)$ .

*Proof.* Since  $\theta$  is quadratic, there is a fractional transformation  $g = \begin{bmatrix} d & c \\ b & a \end{bmatrix} \in$ 

 $GL(2, \mathbb{Z})$  with  $g \neq \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ ,  $\begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}$  such that

$$\theta = g\theta = \frac{c + d\theta}{a + b\theta}.$$

The conditions  $g \neq \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ ,  $\begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}$  and  $a + b\theta \neq 0$  imply  $b \neq 0$ . And we may assume that  $a + b\theta > 0$ . By Rieffel [11] we can take a projection  $q \in M_m(A_\theta)$  such that  $\tau(q) = a + b\theta$  where m is a positive integer. Then  $qM_m(A_\theta)q$  is strongly Morita equivalent to  $A_\theta$  and  $qA_\theta^m$  is the  $qM_m(A_\theta)q - A_\theta$ -equivalence bimodule. By Rieffel [13, Theorem 1.4],  $\tau(V_\theta(a,b:1)) = a + b\theta$ . Hence by Lemma 4 we obtain that  $qA_\theta^m$  is isomorphic to  $V_\theta(a,b:1)$ . Thus by Rieffel [13, Theorem 1 and Corollary 2.6],  $qM_m(A_\theta)q$  is isomorphic to  $A_\eta$  where  $\eta = \frac{c + d\theta}{a + b\theta}$ . However since  $\theta = \frac{c + d\theta}{a + b\theta}$ ,  $qM_m(A_\theta)q$  is isomorphic to  $A_\theta$ . Let  $\varphi$  be an isomorphism of  $A_\theta$  onto  $qM_m(A_\theta)q$ . Then  $\varphi(1) = q$ . We consider the isomorphism  $\varphi \otimes \mathrm{id}$  of  $A_\theta \otimes K$  onto  $(q \otimes 1)(M_m(A_\theta) \otimes K)(q \otimes 1)$ . Since  $M_m(A_\theta)$  is simple, q is a full projection. Thus by Brown [2, Lemma 2.5] there is a partial isometry  $w \in M(M_m(A_\theta) \otimes K)$  with  $w^*w = I_m \otimes 1$  and  $ww^* = q \otimes 1$  where  $I_m$  is the unit element in  $M_m(A_\theta)$ . Then  $Ad(w^*)$  is an isomorphism of  $(q \otimes 1)(M_m(A_\theta) \otimes K)(q \otimes 1)$  onto  $M_m(A_\theta) \otimes K$ . Let  $\psi$  be an isomorphism of  $M_m(A_\theta) \otimes K$  onto  $A_\theta \otimes K$  with  $\psi_* = \mathrm{id}$  of  $K_0(M_m(A_\theta) \otimes K)$  and let  $\alpha$  be the automorphism of  $A_\theta \otimes K$  defined by

$$\alpha = \psi \circ \mathrm{Ad}(w^*) \circ (\varphi \otimes \mathrm{id}).$$

Then  $(\mathrm{Ad}(w^*) \circ (\varphi \otimes \mathrm{id}))(1 \otimes e_{00}) = w^*(q \otimes e_{00})w$  and in  $K_0(M_m(A_\theta) \otimes K)$ 

$$[(\mathrm{Ad}(w^*)\circ(\varphi\otimes\mathrm{id}))(1\otimes e_{00})]=[w^*(q\otimes e_{00})w]=[w^*(q\otimes e_{00})(q\otimes e_{00})w]=$$

$$= [(q \otimes e_{00})ww^*(q \otimes e_{00})] = [(q \otimes e_{00})(q \otimes 1)(q \otimes e_{00})] = [q \otimes e_{00}].$$

Since  $\tau(q) = a + b\theta$ ,

$$[q \otimes e_{00}] = a[1 \otimes f_{11} \otimes e_{00}] + b[p \otimes f_{11} \otimes e_{00}]$$

in  $K_0(M_m(A_\theta) \otimes \mathbf{K})$  where  $\{f_{ij}\}_{i,j=1}^m$  are matrix units of  $M_m(\mathbb{C})$  and we identify  $M_m(A_\theta)$  with  $A_\theta \otimes M_m(\mathbb{C})$ . Hence  $\alpha_* \neq \mathrm{id}$  on  $K_0(A_\theta \otimes \mathbf{K})$  since  $\psi_* = \mathrm{id}$  of  $K_0(M_m(A_\theta) \otimes \mathbf{K})$  onto  $K_0(A_\theta \otimes \mathbf{K})$  and  $b \neq 0$ .

REMARK. Let  $T^2$  be the two-torus and  $C(T^2)$  the  $C^*$ -algebra of all continuous functions on  $T^2$ . We identify  $C(T^2)$  with all countinuous functions f on  $[0,1] \times$ 

 $\times [0,1]$  with  $f(s_1,0) = f(s_1,1)$  and  $f(0,s_2) = f(1,s_2)$  for  $s_1,s_2 \in [0,1]$ . Let  $\tilde{u}$  and  $\tilde{v}$  be the unitary elements in  $C(\mathsf{T}^2)$  defined by

$$\tilde{u}(s_1, s_2) = e^{2\pi i s_1}, \quad \tilde{v}(s_1, s_2) = e^{2\pi i s_2}.$$

They generate  $C(\mathsf{T}^2)$  and  $K_1(C(\mathsf{T}^2)) = \mathsf{Z}[\tilde{u}] \oplus \mathsf{Z}[\tilde{v}]$ . Let  $\sigma$  be the action of  $\mathsf{R}$  on  $\mathsf{T}^2$  by translation at angle  $\theta$  and we consider the action of  $\mathsf{R}$  on  $C(\mathsf{T}^2)$  induced by  $\sigma$ . We also denote it by  $\sigma$ . Then we can consider the crossed product  $C(\mathsf{T}^2) \times_{\sigma} \mathsf{R}$  of  $C(\mathsf{T}^2)$  by  $\mathsf{R}$  and by Green [5] it is isomorphic to  $A_{\theta} \otimes \mathsf{K}$ . We identify them. In the same way as in Connes [4] for any  $\sigma$ -equivariant automorphism  $\beta$  of  $C(\mathsf{T}^2)$  we can define an automorphism  $\widehat{\beta}$  of  $C(\mathsf{T}^2) \times_{\sigma} \mathsf{R}$ . However if  $\beta$  is a  $\sigma$ -equivariant automorphism of  $C(\mathsf{T}^2)$ ,  $\beta \circ \sigma_t = \sigma_t \circ \beta$  for any  $t \in \mathsf{R}$ . Hence by the Fourier expansion on  $\mathsf{T}^2$  we can see that there are real numbers  $\eta_1$  and a  $\eta_2$  such that

$$\beta(\tilde{u}) = e^{2\pi i \eta_1} \tilde{u}, \quad \beta(\tilde{v}) = e^{2\pi i \eta_2} \tilde{v}.$$

Therefore if  $\theta$  is quadratic, the automorphism  $\alpha$  of  $C(\mathbf{T}^2) \times_{\sigma} \mathbf{R}$  constructed in Theorem 5 can not be induced any  $\sigma$ -equivariant automorphism of  $C(\mathbf{T}^2)$ .

In fact we suppose that there is a  $\sigma$ -equivariant automorphism  $\beta$  of  $C(\mathsf{T}^2)$  with  $\alpha = \widehat{\beta}$ . Then  $\beta_* = \mathrm{id}$  on  $K_1(C(\mathsf{T}^2))$ . By Connes [4] there is the Thom isomorphism  $\varphi^1_\sigma$  of  $K_1(C(\mathsf{T}^2))$  onto  $K_0(C(\mathsf{T}^2) \times_\sigma \mathsf{R})$  such that  $\widehat{\beta}_* \circ \varphi^1_\sigma = \varphi^1_\sigma \circ \widehat{\beta}_*$ . Hence we obtain that  $\widehat{\beta}_* = \mathrm{id}$  on  $K_0(C(\mathsf{T}^2) \times_\sigma \mathsf{R})$  since  $\beta_* = \mathrm{id}$  on  $K_1(C(\mathsf{T}^2))$ . However this contradicts  $\alpha_* \neq \mathrm{id}$  on  $K_0(C(\mathsf{T}^2) \times_\sigma \mathsf{R})$ .

Acknowledgement. I wish to thank Prof. A. Sheu for his informing me that Prof. I. F. Putnam showed  $tsr(A_{\theta}) = 1$ , Prof. T. Suzuki for his helpful suggestion on quadriatic irrational numbers and Prof. H. Takai for his many valuable advices and constant encouragement. I also wish to thank the referee for a number of suggestions for improvement of the manuscript.

## REFERENCES

- BLACKADAR, B., K-theory for operator algebras, M.S.R.I. Publication, Springer-Verlag, 1986.
- BROWN, L. G., Stable isomorphism of hereditary subalgebras of C\*-algebras, Pacific J. Math., 71(1977), 335-348.
- BROWN, L. G.; GREEN, P.; RIEFFEL, M. A., Stable isomorphism and strong Morita equivalence of C\*-algebras, Pacific J. Math., 71(1977), 349-363.
- CONNES, A., An analogue of the Thom isomorphism for crossed products of a C\*-algebra by an action of R, Adv. in Math., 39(1981), 31-55.
- GREEN, P., The structure of imprimitivity algebras, J. Functional Analysis, 36(1980), 105-113.

- KODAKA, K., Automorphisms of tensor products of irrational rotation C\*-algebras and the C\*-algebras of compact operators, Tokyo J. Math., 13(1990), 457-468.
- 7. LANG, S., Introduction to diophantime approximations, Addison-Wesley, 1966.
- 8. PEDERSEN, G. K., C\*-algebras and their automorphism groups, Academic Press, 1979.
- PIMSNER, M. V.; VOICULESCU, D., Exact sequences for K-groups and Ext-groups of certain cross-product C\*-algebras, J. Operator Theory, 4(1980), 93-118.
- PUTNAM, I. F., The invertible elements are dense in the irrational rotation C\*-algebras,
   J. Reine. Angew. Math., 410(1990), 160-166.
- 11. RIEFFEL, M. A., C\*-algebras associated with irrational rotations, Pacific J. Math., 93(1981), 415-429.
- 12. RIEFFEL, M. A., Dimension and stable rank in the K-Theory of C\*-algebras, Proc. London Math. Soc., 46(1983), 301-333.
- 13. RIEFFEL, M. A., The cancellation theorem for projective modules over irrational rotation C\*-algebras, Proc. London Math. Soc., 47(1983), 285-302.
- 14. TAKESAKI, M., Theory of operator algebras I, Springer-Verlag, 1979.

KAZUNORI KODAKA
Department of Mathematics,
College of Science
Ryukyu University,
Nishihara-cho Okinawa 903-01,

Japan.

Received April 12, 1991, revised August 29, 1991.