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ENDOMORPHISMS OF B(*) AND CUNTZ ALGEBRAS

M. LACA

1. PRELIMINARIES

Let H be a separable infinite dimensional Hilbert space and denote by B() the
von Neumann algebra of all bounded linear operators on . The term endomor-
phism will be reserved to denote a *-homomorphism of B(#) into itself. Since the
Calkin algebra does not have nonzero representations on a separable Hilbert space,
an endomorphism of B(H) is normal; hence if it is nonzero, it must be one to one. An
endomorphism may preserve the identity operator on %, in which case it will be called
unital. An extreme case of nonunital behavior of an endomorphism ¢ is one for which
a*(I) — 0 in the strong operator topology as k — co. Such « will be called com-
pletely nonunital. The natural concept of equivalence between two endomorphisms is

called conjugacy.

DEFINITION 1.1. Two endomorphisms, a; of B(H1) and a2 of B(H2), are said
to be conjugate if there exists an isomorphism 8 : B(H;) — B(H2) such that oy =
= a3 0 f. In this case we will use the notation a; ~ as.

Note that § is implemented by a unitary operator W : Hy — Ha such that
a1(A) = W lap(WAW 1YW A € B(H,1),

so conjugacy corresponds to spatial equivalence, and thus it preserves spatial proper-
ties of endomorphisms. A weaker notion of equivalence, namely outer conjugacy, is
important in developing an index theory for endomorphisms.

DEFINITION 1.2. Two endomorphisms e, s are outer conjugate if there is an
automorphism v of B(H3) such that a; is conjugate to az 0.
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Powers observed in [11] that the commutant of the image of a unital endomor-
phism is a factor of type I, for n a positive integer or oo, and called this n the
multiplicity (or index) of the endomorphism. He showed that this index is a complete
outer conjugacy invariant for unital endomorphisms.

In [2] Arveson pointed out by viewing an endomorphism « as a normal represen-
tation of B(H) on M, that there exists a collection {Vj}7.; of isometries with mutually
orthogonal ranges, such that

n
a(A) =Y V;AV; A€ B(H).
j=1
Thus, attention was drawn again upon such collections and in particular upon the
C*-algebras they generate.

THE CUNTZ ALGEBRAS 7y,. Suppose that n is a positive integer or co and {v;}7-;
is a collection of isometries on a Hilbert space which satisfy

zn:vj'v; <.

j=1

This condition is equivalent to saying that the ranges of the isometries are mutually
orthogonal and they do not span the whole space. The C*-algebra generated by such a
collection depends only on n (up to canonical isomorphism) and not on the particular
choice of the generators. If n = 1 this is a classical result of Coburn [5}; the case
2 € n < oo was proved by Cuntz in [6, 7). The isomorphism class of C*({v;}}=;)
will be denoted by 7y, whicE by abuse will also denote a particular representative. If
n < oo the projection I — Zvjv}‘ is in 7,, and generates an ideal J,,, isomorphic to

J=1 7 -
the compact operators on a separable, infinite dimensional Hilbert space. 7; is the

well known Toeplitz C*-algebra and the corresponding quotient is (isomorphic to)
the C*-algebra of continuous functions on the circle. For 2 € n < oo, the ideal J, is
maximal in 7, and the corresponding quotient is Cuntz’s Oy, the simple C*-algebra
generated by n isometries having range projections adding up to the identity operator.
In the case n = oo, T, itself is simple, and in fact it is isomorphic to O.

REMARK 1.3. As a consequence of Cuntz’s results, whenever {V;}7_, are n
isomnetries on a Hilbert space M, satisfying Z V; Vi < I, there is a unique represen-

i
tation 7 of 7, on ¥ such that 7(v;) =V, for j=1,2,...,n.
If n < oo and Z V;V}' = I, the representation factors through O, and thus it

L
can be thought of as a representation of ,,.
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It will be convenient to include here for further reference a brief summary of
some basic aspects of the structure of 7,. The orthogonality of the ranges of the
isometries makes it possible to define an inner product on their closed linear span
£ = span {v;}}..; via (2, y}] = y*z, where 2 and y are in £. Since the Hilbert space
norm and the operator norm coincide, £ becomes a Hilbert space inside 7,. The
isometries in £ are the unit vectors and {v;}7-, is an orthonormal base.

Along the same lines, let W, denote the set of products of k isometries among
the generators {v;}7_; and let £* be the closed linear span of Wi, then a similar
argument shows that £* is a Hilbert space and W is an orthonormal basis. Moreover,
the mapping e; ® --- ® e — ey - - -ex, extends to a unitary operator from £%% onto
Ex, '

The restriction of a representation = of 7, to £ satisfies n(y)* r(z) = {z, y)I for
z,y € £ and, of course, determines the representation. It is a bit surprising that this
condition alone is enough to force a map w from a Hilbert space £ into B(H) to be
linear and bounded (in fact, isometric) and thus to extend to a representation of 7,.
This was observed by Arveson using the positivity of (7(Az + py) — Ar(z) — pm(y))*
(m(Az + py) — An(z) — pr(y)) for all scalars A and p, and the sesquilinearity of the
inner product on £. '

¥or each n let 7T, denote a particular representative of its isomorphism class,
and let {v;}7_, be a fixed set of generating isometries. £ denotes the Hilbert space of
dimension n generated by {v;}?_,, which is an orthonormal basis for £. The subspace
£ generates 7, as a C*-algebra and {z,y}] = y*z for z,y € £.

n
An important consequence of the fact that the condition Zvjv}‘ < I deter-
. . i =1 .
mines the isomorphism class of the C*-algebra generated by the isometries v; is that

whenever U is a unitary operator on £ there exists a unique automorphism yy of 7,
such that yp(z) = Uz for all z € £. The reason for this is that U transforms one
collection of isometries satisfying Cuntz’s condition into another, so the C*-algebras
generated are isomorphic. These automorphisms are called quasifree in [1], they sat-
isfy 4u (£) = £ and, in fact, they are characterized by this condition.

For further reference, a few facts about the C*-algebras O,, are listed here. @, is

f
the C"-algebra generated by a collection of isometries {V;}7., such that ZVJ- V=1
For n = 2,3,...,00, O, is simple and depends only on » and not on Jt‘_hle choice of
the generators. The quasifree automorphisms yy with U of the form Al are called
gauge automorphisms, and denoted yx. The group {y» : A € T} is the gauge group
of automorphisms of O,,. The fixed point algebra {z € O, : va(z) =z (V) A€ T} of
this action is denoted by #,. It is an important tool in studying the structure of Oy
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owing to the folfowing result:

ProPosITION 1.4.(CuNTZ) [6]. If v is a fixed isometry in £, the elements of the

form
-1

m
= z o'l f; +fo+zfjvj m20, f; €Fy for |jl < m,
j=-m i=1
are dense in On. The map z v fy is well defined and extends to a (faithful, completely
positive) conditional expectation & : O — F, of norm 1; moreover,

2x

dA
?(z) = /‘YA(Q’)E;, z € On.
0

Denote by Dy, the closed linear span of products rs*, where r,s € Wi. Then
Dy, is a C*-subalgebra of 7, isomorphic to the compact operators on £2%. In fact,
the unitary operator betwenn £®* and £* determined by e, ® - ® ex +> €;...€x
implements a spatial equivalence between K(£8%) and D;. More specifically, the
isomorphism is determined by extending the map:

k
®(.,ﬁ-)e,‘ -e1.. .ekf]: . ff

i=1

to an isomorphism from K(£®%) onto Dy where ¢;, f; € £, (-, f:)e; denotes the usual
rank-one operator and Dy acts on £F by multiplication on the left.

If A is defined to be Do + Dy + -+ + Dy, then Ay C Ai4q and F, is the
norm closure of the union of the A;. In the tensor product picture presented by the
isomorphism above, the embedding corresponds to

CL+KE)® -1+ +K(E®*)  Cliq1 + K(EYR I + - + K(EEFHY)

z—2Q®nL

where I; denotes the identity on £97,

If n = dim¢& is finite Ay coincides with D;, which is isomorphic to the algebra of
n* x n* matrices. Since the embedding is the canonical one, F, is the UHF algebra
of pure type n®. The study of F, is more involved since Foo is approximately finite
but not a UHF algebra. However, it can be seen as a C*-subalgebra of the infinite
tensor product of unital C*-algebras (K(£) + CI)®*, and it turns out that much
of what is true for representations of UHF algebras also holds for a certain class of
representations of Foo.
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2. ENDOMORPHISMS AND 75

This section collects the basic results linking the representation theory of the
C*-algebras 7, to the study of endomorphisms of B(H). The starting point is Arve-
son’s observation about the relevance of n-tuples of isometries with orthogonal ranges
combined with the fact that such n-tuples determine representations of 7y,.

THEOREM 2.1. If 7 is a nondegenerate representation of T, on M then

n

(1) a(A) =Y n(v;)An(v;)* A€ B(H)

i=1

defines an endomorphism o« of B(MH). Conversely, every endomorphism of B(H) arises
in this fashion, for some n (1 < n < 00), and some representation 7 of Ty,.

Furthermore, the set E = {T € B(H) : «(A)T = TA, (V) A € B(H)} is a
Hilbert space relative to the inner product given by T*S = (S, T}I, and 7 establishes
a Hilbert space isomorphism between £ and E. In particular 7(€) = E.

This is Proposition 2.1 of [2] complemented with Remark 1.3.

The notation o = Ad, will be used to denote the relation (1) between a repre-
sentation of 7, and the endomorphisms of B(#) it implements. It will soon become
apparent that Ad, does not depend on the particular choice of an orthonormal base
for £.

If 7 is a representation of T,,, and o = Ady, then &*(I) is a decreasing sequence
of projections. If W, denotes, as before, the words of length k on the isometries (i.e.
the products of k elements chosen among the v;’s), then W; is an orthonormal basis
for £%, and whenever ¢ &€ H,

(e = Y n(s)In(s)*¢ € 7(EFYH.

SEW)

While, for » € W;,

r(r) = Y w(s)n(s) n(r)é = oF(Dm(r)E

SEW
because w(s)*7(r) = 6,,1. Hence a*(J) is precisely the projection onto the subspace
W. Unital and completely non-unital endomorphisms can now be characterized
in terms of the associated representations:
Ad, is unital if and only if 7(£)H = H, and
Ady is completely nonunital (i.e. Ad%(I) — 0 strongly as k — o) if and only if
w(EFYH \, (0) as k — co.
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The isometries determine the endomorphism, but the converse is not true; mod-
ifying a representation by a quasifree automorphism of 7, does not change the as-
sociated endomorphism. This is all that can happen, as the following proposition
shows.

PROPOSITION 2.2. Suppose that = and ¢ are nondegenerate representations of
Tn and Ty, respectively. Then Ady = Ad, ifand only if m = n and * = ¢ oy for
some unitary operator U in £.

Proof. By the last assertion of Theoremn 2.1, if the endomorphisms coincide then
7(€m) = E = ¢(£,), and since 7 and o are one to one on &, then m = n. From now
onlet £ =&, =&,. Themap U = 7~ o ¢ is well defined on £, and is a unitary
operator. By definition of U, it follows that o = w 0 yy on £, hence on all of 7y,.

Conversely, if ¢ = 7 o yy for some unitary operator U on &, then n(€) = o(£).
Thus the image of the identity operator is the same under both Ad, and Ad,. By
Theorem 2.1 (Ads(A) — Ad,(A))T = T(A — A) = 0 whenever T € () = o(€)
and A € B(H). Thus Ad,(A4) — Ad,(A) vanishes on w(£)H, which is the range of
Ad,(I) = Ads(D).

This implies that Ad,(A)— Ady(A) = (Adx(A)— Ads(A))Adx(I) =0, s0 Ady =
= Ad,.

As a consequence, the endomorphism Ad, does not depend on the particular
orthonormal basis of € used in (1); besides, the multiplicity n, = dim& is uniquely
determined by the endomorphism, as it is the multiplicity of the identity represen-
tation in the endomorphism seen as a representation of B(#). This extends Powers
definition of multiplicity to the nonunital case. However, if we are to include nonunital
endomorphisms in our considerations, this multiplicity index is not enough to char-
acterize endomorphisms up to outer conjugacy. For this, it is necessary to consider
another nonnegative integer associated with an endomorphism «. Let v, denote the

dimension of I — a(l) = I — ZV V;*, which measures by how much « fails to be

unital. This wﬂl be called the deﬁcxency of @. A slight modification of the proof
of Theorem 2.4 in [11] is enough to show that the pair (nq,v,) is a complete outer
conjugacy invariant for a.

PROPOSITION 2.3. The endomorphisms « and (3 are outer conjugate if and only
ifng = ng and vy = vg.

Proof. Assume without loss of generality that o and g act on the same Hilbert
space H. If the endomorphisms are outer conjugate, then a = o4 for some auto-
morphism & of B(#). Since 6(I) = I, it follows that vy = vg. It is also clear that
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ns = ng, because they are the multiplicities of the identity representation of B(?} in
a and B.
¥ v, = v, let S be a partial isometry on # having initial projection I —a(I) and
n
final projection I—8(I). Define W = }:T; Vi +S, where the V;’s are isometries imple-
‘ j= 5 » .
menting « and the Tj’s are isometries implementing 8. Then W is a unitary operator

n n
on M, which can be verified directly by computing W*W = Z%T?Z'J}V;* +8*S =

j=1 i=1

7
= ZV, Vi +8"S = a(I) + §*S = 1, and analogously, WW* = I. Furthermore, a
i=1

similar calculation shows that T; = WV}, hence B(A) = Wa(A)W*. This implies
that & and B are outer conjugate.

Going back to the conjugacy relation, it is now posible to characterize it in terms
of representations of 7.

PROPOSITION 2.4. Suppose that m and o are nondegenerate representations of
T and T, respectively. Then Ad, < Ad, if and. only if m = n and there exists a
unitary operator U on £ such that the representations w o yy and ¢ are unitarily
equivalent.

Proof. Let H, and H, be the Hilbert spaces corresponding to 7 and ¢ respec-
tively. The endomorphisms are conjugate if and only if there is a unitary operator
W :Hy — H, such that

n n
Y o(vj)Ac(v;) = WY w(o; (WL AW)m(v;)* Wt =
ji=1 j=1
n
=Y (Wa(u )W) AWr(v; )W)
i=1
for all A in B(H,). That is, if and only if ¢ and Adw o 7 give rise to the same
endomorphism. By Proposition 2.2 this occurs if and only if m = n and there is a
unitary U on £ such that ¢ = Adw ooy

We are thus led to define a new equivalence relation which captures the conjugacy
of endomorphisms at the level of representations of Cuntz algebras.

DEFINITION 2.5. Two representations 7w and o of 7, are quasifree-equivalent,
(to be denoted ¥ o) if there exists a unitary operator U on £ such that 7 o yy is
unitarily equivalent to o.

These preliminary results make it possible to study prope:ties and relations be-
tween endomorphisms by studying the corresponding properties and relations of the
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corresponding representations of the C*-algebras 7;,. The first step in this direc-
tion is to characterize the unital and completely nonunital behaviours in terms of
representations of 7T,.

In [2] Arveson defined singular and nonsingular (later renamed essential) con-
tinuous product systems and produced a decomposition of an arbitrary continuous
product system into an essential part and a singular part. Arveson’s decomposition
(Proposition 1.14 of {2]) is analogous to the Wold decomposition for isometries on
an infinite dimensional Hilbert space, which states that every isometry is unitarily
equivalent to a direct sum of a unitary part and an isometry of pure type (which is
necessarily a multiple of the unilateral shift). His definition can be adapted to the
present situation in order to obtain a Wold-type decomposition for representations of
7., and consequently, for endomorphisms of B(H).

DEFINITION 2.6. A representation 7 of 7, on ¥ is essential if 7(£)H = H, and
it is singular if T(£%)H \ (0) as k — oo.

Arveson’s result can now be restated as a theorem for representations of 7;,.

THEOREM 2.7. If 7 is a nondegenerate representation of T, on a separable
Hilbert space H, then there exists a unique decomposition ©* = 7, + m, such that
Ad,, is unital and Ad,, is nonunital. Moreover, this decomposition is central.

A sketch of the proof, adapted from [2] follows. Let

He = (| 7(E)H
kzl

and verify that 7 is invariant under both 7(£) and n(£)*, therefore under n(7,).
The corresponding subrepresentation 7. clearly satisfies spanm.(EYM = H. If H,
is defined to be XL, then it is also invariant under 7r'(’1;,), and the corresponding
subrepresentation, w,, is singular. Uniqueness follows from the definition of H,.

If W is, as before, the collection of words of length & on the v;’s, and Z x{(ss")

SEWy
denotes the strong limit of the net {Zw(ss*) : F afinite subset of W,\.}, then
sEF
@ ( > (ss" )) H=TEH \ He,
SEW;

80 E 7(ss") converges strongly to P, the projection corresponding to H., therefore
SEW;
the decomposition is central. B
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n

REMARK 2.8. If n, the dimension of £, is finite, then py = 1 — Y _v;] is a
j=1
minimal projection in 7, which generates an ideal J, isomorphic to the compact

operators. The condition of 7 being essential is equivalent to m(po) = 0 hence to
having J, as its kernel; while singularity of 7 corresponds to 7 being nondegenerate
when restricted to J,. These situations are customarily referred to as 7 being Ju-
-singular and J,-essential respectively, so we have a most unfortunate reversal of the
terminology.

If 7 is a cyclic representation, with a cyclic vector £, then P, is cyclic for
7. and P,f2 is cyclic for 7, because the decomposition is central. In this case 7 is
essential if and only if P, = 0, and singular if and only if P.2 = 0.

This observation enables us to characterize the states which give rise to singular
and to essential representations. Suppose first w is a state of 7;; and define o*w by

n
arw(z) = Zw(vja:v;—') z€T,.
j=1
Then a*w is a positive linear functional of norm at most 1 on 7y. Note that by
iteration, a**w(z) = Z w(szs*). If n is finite, then o is just the adjoint map
SEW,
of the C*-algebra endomorphism & : z +— Zvj zvj of T,. Notice that the above

¥
)

definition of a* circumvents the problem of not being able to define z — Evj zv}
i=1

on . In this case a* is not the adjoint map of an endomorphism of the C*-algebra

Tm.

COROLLARY 2.9. Let w be a state of 7, and let 7w denote its GNS representation.
Then = is essential if and only if ||e**w|| = 1 for all k > 0, and = is singular if and
only if ||e**w|| — 0 as k — oo.

Proof. Denote by £2 the cyclic unit vector corresponding to w. Then

lle*wl = a*Fw(l)= Y (r(ss*)2,0) =
8EWh

~( T rtena) ~ 0. =1l koo
SEW,

It follows that ||a**w|| = 1 for all k > 0if and only if || P.£2|| = 1, and that [ja**w|| — 0

if and only if P,22 = 0. -

Thus, a state w will be called essential or singular according to its associated
GNS representation being such.
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REMARK 2.10. Since a**w(]) = Z w(ss*) it is possible to characterize es-

SEW,
sential and singular states in terms of their restrictions to the subalgebras Dy =

= span Wi Wy . A state w is essential if and only if ||w[Di |} = 1 for all k; it is singular
if and only if |[w[Dk|] — 0 as k — oo.

THE FOCK REPRESENTATION. In [8] Evans introduced representations of the
C*-algebras 7, on full Fock space, analogues to the Fock representation of the CAR.
algebra on antisymmetric Fock space. Specifically, for 1 £ n € oo let £ be an n-
dimensional Hill?ert space and denote by Fg the full Fock space over £, that is,

oo
o= et
k=0
where £20 is a one dimensional Hilbert space spanned by the unit vector £ and £2*
is a Hilbert space tensor product of k copies of £, for each k = 1,2,.... The Fock
representation of 7, is the representation obtained by letting £ act on Fg by left
creation operators. More explicitly, for ¢ € £ the operator p(e) on F¢ is defined by

wle):e1@ - @errre®@e;® - Qe
3 E®F _, g8kl p5q,
and ¢(e)f2p = e.

A simple computation shows that ¢(y)*¢(2) = (e, y} for 2,y € £, hence {p(v;)}}1
is a collection of isometries with orthogonal ranges. In fact, if Py denotes the rank
one projection onto the subspace spanned by 2, then

> e(v)e(v;)* =1 = Po.
i=1

Thus ¢ extends to a representation of 7, on Fg, which will also be denoted by .
It is not hard to see that ¢ is irreducible and that 2 is cyclic, so that the state wg
induced by 2 is pure. This state vanishes on the nontrivial products formed by the
v;’s and their adjoints and is in fact characterized by this property. Since the subspace
P(EF)Fe = EB* @ £®%+1 g ... of F¢ shrinks to the zero subspace as k — oo, the Fock
representation is singular, and the endomorphism of B(F¢) it implements is completely
nonunital, with multiplicity index n = dim £ and deficiency index v = dim Py = 1.

When n = 1, F¢ can be naturally identified with #2 and ¢(v; ) with the unilateral
shift. This observation suggests the following theorem, which states that also for
n > 1 the Fock representation is the fundamental building block with which all
singular representations of 7;, are made, leaving to the essential representations the
role of the unitary part in the Wold decomposition.
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An important difference between the present situation and the study of continu-
ous product systems is that the singular component of a representation of 7, is always
a multiple of a fixed representation, while for continuous product systems, Arveson
has produced in [3] different singular states which are not quasi-equivalent to each
other.

THEOREM 2.11. A nondegenerate representation of T, on a separable Hilbert
space is singular if and only if it is unitarily equivalent to a multiple of the Fock
representation, in which case its multiplicity is v = dim[r(£)H]*.

Proof. The multiples of the Fock representation are clearly singular. To prove
the converse, assume 7 is a singular representation. Let o = Ady be the associated
endomorphism and let Mg = [x(£)H]*. Then N} is the subspace of H corresponding
to the projection (I — a(I)). For k > 0 define

4) M = 1(ERWNG = o* (I — o(I))H,

and note that M L N; whenever k # I. By singularity of =, a"(I) tends strongly to
0, so that

I=(I-a))+(a(I) = o*(I)) + (@*() ~ &*(D) + - -

in the sense of strong convergence, thus

H= é)\rk = éw(é)"‘).}\l’o.
k=0 k=0

Let ¢ denote the Fock representations of T, on Fg, and for each k& > 0 define a map
on elementary tensors '

Ui :el®-'-®ek®§'-*7r(81“'ﬁl_c)f
£®k®/\fo — N

Since for ¢;, f; € £, ffe; = (e;, f;)1, it follows that
(m(er---ea)d, m(fo- - filn) = (w(fg -~ fler---en)E,n) =
k “
(6) = [ 1{e;: fi){&m) =
=1

J
=(e1® - Rer®E, 1@ fr ®n).

(5)

Hence each Uy extends to a unitary operator from £8* ® Ap onto A} for each k =
=0,1,2,.... The direct sum of these unitaries is a unitary operator

o« oo
U:Fe@No=DE* QN ~PNe =H
k=0

k=1
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and it only remains to check that U interwines 7 on H with (¢ ® Iy) on Fz ® A, for
which elementary tensors suffice. Let z,ey,...,e; € £ and £ € Ay, then

7(2)(e1 @ - @er Q&) = m(zey - -ex)é =
=008 ®e 8 =UlpE)n®  ®e)®Iof =
=U(p®@L)(z)(e1®---Qer @)

So 7 coincides with U(p ® 1)U~ on &, hence on all of 7,,. B

Arveson’s decomposition together with Theorem 2.11 now yield the Wold Decom-
position for Representations of 7,,: A nondegenerate representation of 7, on a sepa-
rable Hilbert space is equal to the sum of an essential representation and a multiple
of the Fock representation, with multiplicity v = dim[r(£)H]* = rank(I — Ad,(I)).

One would like to have a concept of direct sum that, applied to two endomor-
phisms & and 8 of B(H4) and of B(Hg), respectively, produced another endomor-
phism ¢ of B(H, ®Hp) such that 6(A® B) = a(A) ® A(B) whenever A € B(H,) and
B € B(Hp). Unfortunately, not only this is not always possible: such § exists only if
o and 3 have the same multiplicity, but when possible it may fail to be determined
even up to conjugacy. There exist pairs 8,8’ of endomorphisms of B(Ho ® Hg) such
that

0(A® B) = a(A)® B(B) = ¢'(A® B)

yet @ and ¢ are not conjugate. Such a pair can be constructed as follows. Start with
an irreducible representation = of 7,, and a quasifree automorphism yy of 7;, such
that 7oy is disjoint from 7 (e.g. see examples at the end of Section 4). Consider the
representations 7@« and 7@ moyy; the endomorphisms they induce are not conjugate
because the factor representation 7 @ 7 cannot be quasifree-equivalent to & 7 o yy
which is not a factor representation. However, both “decompose” as Ady + Ady.

In view of this, there is little hope.that a result will carry over from subrepre-
sentations of 7, to endomorphisms. However, if two endomorphisms are conjugate,
the same holds separately, as a consequence of the uniqueness of the Wold decom-
position, for their unital components and for their completely nonunital components.
Since the Wold decomposition has the added feature that the singular part is always a
multiple of the Fock representation, the converse holds, and the components obtained
determine the original endomorphism up to conjugacy.

THEOREM 2.12. Two endomorphisms have conjugate unital parts and conjugate
completely nonunital parts if and only if they are conjugate themselves.

Proof. That conjugate endomorphisms have conjugate unital and completely
nonunital parts is easy to see from the proof of the Wold decomposition theorem, one
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just restricts the isomorphism implementing the conjugacy to each component. To
prove the converse, assume Ad, and Ad, are two endomorphisms such that =, 4 O,
and we% .. Then 7 and o have the same multiplicity n and deficiency v, and =,
is unitarily equivalent to o, o v for some quasifree automorphism vyy. Since also =,
is unitarily equivalent to o, o 4y because they are both singular and have the same
deficiency, it follows that 7 is unitarily equivalent to o o . |

In view of the previous discussion, the study of conjugacy classes of endomor-
phisms of a given multiplicity index n can be reduced to the separate study of the
completely nonunital ones (which are characterized up to conjugacy by their defi-
ciency indices), and the unital ones, which present a much richer structure, as they
are indexed by the quasifree-equivalence classes of essential representations of 7T,. In
the case of finite n these correspond to nondegenerate representations of the quotient
C*-algebra O0,. If n = 0o, T, is simple and equal to O{," but the representations
involved are only the essential ones, i.e. those for which Ew(vj vj) = I, a condition

j=1
more restrictive than nondegeneracy. The remaining of this work is thus devoted to

study essential representations of O, for 2 € n < oo.

3. UNITAL ENDOMORPHISMS AND On

An endomorphism o of B(H) is unital if and only if @ = Ad, for an essential
representation 7 of O, on B(H), where n is Powers’ multiplicity index of a. Suppose
n

than 7 is essential and o« = Ad, is defined as before by a(4) = Zvr(v,- YA=(v;)*, it

is possible to characterize two relevant a-invariant subalgebras of B(#) in terms of &
itself.

PRrROPOSITION 3.1. Suppose 7 is an essential representation of O, on ‘H, and let
o = Ad,; it follows that
i) {A € B(H) : a(4) = A} = #(O,), and
i) N a*(B(H)) = n(Fn)
E20

Proof. To prove i) first note that 4 € #(0,) implies a(A) = A because 4
commutes with 7(v;) for j = 1,2,...,n, in which case a(4) = AZTF(UJ)W(UJ)

= Al = A. Thereverse inclusion follows from the fact that if «(A) = A then a(A*) =
= A" as well, so both A and A* commute with 7(£) by the last assertion in Theorem
2.1. This, in turn, implies that A commutes with #(£) U 7(€)* hence with 7(0,).
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In order to prove ii) let k¥ > 0 and consider r,s € W;i. Repeated application of
Theorem 2.1 yields o*(A)n(r) = w(r)A for A € B(H), and also o*(A*)7(s) = m(s)A*
so that o¥(A)7(rs*) = n(rs*)a*(A). Thus o*(B(H)) C s(WiW})'.

Conversely, suppose A € #(WpW;), and let B = 7(s3)Am(so) where s is any
element in W. Then

ot(B) = z: n(s)r(s5)Am(s0)7(s)* = 2 w(ssp)AT(ses™) =

BEW) SEW
= Z w(ssg)m(s0s*)A = Z x(ss*)A=of(D)A=A
2EW, 1EW,
so A € a*(B(H)). Thus of (B(H)) = (Wi, W})' for every & 2 0 and ii) follows from
the fact that F, is the C*-algebra generated by :}Sj WiWy. |
>0

When one (or both) of these subalgebras is trivial the endomorphism is of a more
elementary nature, in that it does not act trivially (or as an automorphism) on a
nontrivial subalgebra of B(H).

DEFINITION 3.2. An endomorphism o of B(H) is ergodic if {A € B(H) :
: a(A) = A} = CI, and it is strongly ergodic (a shift in Powers’ terminology) if
N o’ (B(H)) = CI.
0

Thus o = Ad, is ergodic if and only if 7 is irreducible, and it is strongly ergodic if and
only if w[F, is irreducible. A first step to understand general endomorphisms of B(#)
is to study irreducible representations of O, and, in particular, representations of O,
whose restrictions to F,, are irreducible, modulo the quasifree-equivalence relation. In
order to include infinite multiplicity in the study, it is necessary to develop a better
understanding of the fixed point algebra F.,.

ESSENTIAL STATES OF F,. Specifically, we need to carry out an analysis of
essential states of F,, which enables us to decide when a state 1s primary (i.e. a
factor state) and when two primary states are quasi-equivalent, in terms similar to
those given by Powers in [10] for states of UHF algebras. Along these lines, we will
prove that product states are primary, and use the shift o* on essential states of Fy,
to characterize quasi-equivalence of factor states. The main results are stated in a
form which is valid for 2 € n € oo, provided that when n = oo the states involved
are assumed to be essential.

Let £ be an infinite dimensional Hilbert space, and for each i € N let X; be an
isomorphic copy of the compact operators on £. Construct the C*-algebraic tensor
product of the unital C*-algebras K; = K; + CI, that is, let

c=QK:.
i=1
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For each j = 1,2,... the subalgebra D; generated by the elements T3 @ ---® T; ®
QI®I®--for T; € K; and 0 < i < j is naturally isomorphic to K(£%7). Letting
A; =Dp+D1+Dy+---+Dj, Foo can be seen as the C*-algebraic direct limit of the
sequence{A; }52,.

Any state w on this direct limit is determined by its restrictions to the sequence of
subalgebras {A4;}. If w is essential, then w|D; has norm one because it is supported
on the compacts D; =2 K(£®7) at the j*™ level for each j = 1,2,..., so there is a
positive £; € D; with tri2; = 1 such that

) w(T)y=t(T) T e A;.
The sequence {£2;};en satifies a coherence condition:
(8) tr(Qj+1(T ® I)) = tl‘(ﬂjT) Te .Aj,

and indeed, any sequence f2; € D; with trf2; = 1, satisfying (8) gives rise to an
essential state of Fo, via (7). The same coherent sequence naturally determines a

o
state & of C = @ K, which extends w and is locally normal in the sense that & [D;
j=1
is a regular (normal) state of D; = K(£87). This is the unique state extension of w to

i .
C, because at each level w[.A; extends uniquely to @ K;. Thus, any essential state

w of Fu, has a unique extension to a state & of C, V;Eilch is locally normal.

Let F be a finite subset of N, and let Kr denote the C*-subalgebra ® K
generated by K; with i € F, where K; has been identified with its image in the :cfagsor
product C. In other words, Ky is generated by the elementary tensors é A; where
A; € Kiifi € F and A; = T otherwise. Thus Ky, ;3 coincides with D; and K = CI
if F=0.

LemMa 3.3. Let (n,M,$) be the GNS triple associated with &. Then = is
faithful and m(Foo ) = w(C)’.

Proof. = is faithful because for each j > 1 its restriction to D; is isometric. The
inclusion (2) in the second assertion is obvious. To prove (C) suppose T € 7(Foo )’
and let F be any finite subset of N. Since T’ commutes with K1 maxr} C Foo then
T commutes with Kr, and therefore T commutes with 7(C). |

From this it follows that 2 is cyclic for the action of m(Fu ), because the sub-
space 5pan 7(Feo)f? is invariant under 7(C) and contains {2, hence it is all of H.
As a consequence, 7[F, is unitarily equivalent to the GNS representation of w and
T(Foo)’ = w(C)" so that w is primary (pure) if and only if & is primary (pure).
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LeMMA 3.4. For each finite subset F of N, the restriction of # to Ky is nonde-
generate.

Proof. Let e;; be a system of matrix units for Kp; it suffices to show that
m
Zw(eﬁ) is weakly convergent to the identity I on B(H). If G is a finite subset of
i=1

m
N containing F and z € K¢, then z"Ze,-;z — 2%z o-weakly in Ky, and since the

i=1
m

restriction &[Kg is regular, then & (z"Zeg;z) tends to &(2*z) as m — oo. In terms
i=1
of the cyclic vector §2 this means

m
<Z w(es)m(z) 12, 1r(:c).(2> - (n(2)2,7(z)2) as m — oo.
i=1

Since £ is cyclic and | J{K¢ : G finite and F C G C N} is norm-dense in C, the
polarization identity yields weak convergence. a

PRrOPOSITION 3.5. A state w of Fe, is primary if and only if given ¢ > 0 and
my € N there exists m € N such that for j > 0

(9) lw(AB) — w(A)w(B)| < €|l All || Bl

whenever A € K{1,....m,} and B € Ky, .. m+i}-

Proof. By the previous remarks w is primary if and only if & is primary. Define
a family of von Neumann algebras indexed by the finite subsets of N by letting

(10) Mp = W(K:p)".

Since 7(Kr) is nondegenerate, von Neumann’s bicomutant theorem shows that Mp
coincides with the weak-closure of n(KCr), therefore each My is a type I factor con-
taining the identity I of B(H), Mr and Mg commute with each other whenever
FNG =0, and Mpyg is generated by Mp U Mg as a2 von Neumann algebra.
Therefore the C*-subalgebra of B(#) generated by the family {Mp: F finite and
F C N}, and the state & are in the conditions of Theorem 2.6.10 in [4]. It is easy to
adapt the statement of that theorem to the present situation in which the index set
is the collection of finite subsets of N, and conclude that & is primary if and only if
for any mg € N and any € > 0 there exists some m € N such that for any j > 0, the
inequality
IG(AB) — &(A)s(B)| < €| Al | B
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is satisfied whenever A € My . m,}, B € M{m, .. m4;}- Since the state & restricted
to M is normal, it suffices that the above condition be satisfied for compact operators
A € K{1,..,mo}, and B € Kym, .. m4j) for every j 2> 0, hence the criterion may be
stated, as in (9), in terms of w itself. m

In particular, as expected, an essential product state w of Fy is primary, the reason
being that w(AB) = w(A)w(B) for A € K{1,...m,} and B € Kynm, ... m+j} provided
that m > mg and j > 0. Furthermore, one can obtain the following characterization
of quasi equivalence of essential primary states of F, in terms of «*-shifted states.

ProrosITION 3.6. If wy and wy are two essential factor states of F,, then

(11) wi Awy if and only if || (wy —~ws)l| — 0 as j — oo.

REMARK 3.7. For finite dimensional £, a* is the adjoint of & and

lla*? Gy = wa)| = ll(ws = we)led (Fn)|

so Proposition 3.6 is a restaternent of Theorem 2.7 of [10] (see also [9, Thm. 12.3.2}).
The point here is that it also applies to essential states of Foo.

00 .
Proof. Denote by « the endomorphism of ) K; induced by the standard right-
i=1
-shift: 1 ® ---@T; — IQ@Ti @---®T;. In general, w; is quasi-equivalent to wy if

and only if —2—(w1 +ws) is primary, which happens if and only if %(d‘;l +&3) is primary.

Theorem 2.6.11 of [4] applies here so %(L‘Z;l + &9) is primary if and only if
(&1 — @2) 1 (Of| =0 as j— oo

The norm of this restriction is determined by the compacts at the jth level, D; =
=Kq,...j}- Since w is an essential state of Foo, a"w = (@ 0 @)[Foo, therefore

[(@1 — Sa2) 0 & | = |l (w1 — wa)|

which completes the proof. n

4. STRONGLY ERGODIC ENDOMORPHISMS

Early in the short history of endomorphisms of type I factors, R. Powers proved
that a shift with a pure normal invariant state is conjugate to another shift if and only
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if the other shift also has a pure normal invariant state [11, Thm. 2.2]. The proof uses
a C*-algebra isomorphic to B(£)®* which is naturally embedded in B(H) once the
shift has been given; here £ is a Hilbert space of dimension equal to the multiplicity
of the shift being considered. This C*-algebra is F,, if dim€ < oo, and it contains
Foo if dim€ = o0o0. In both cases it is weakly dense in B(H), and the restriction of
a vector state of B(H) to F, is an essential pure state. Such considerations suggest
that one ought to consider the states of ¥, that arise from vector states of B(}) via
the representation implementing a strongly ergodic endomorphism in order to study
conjugacy.

More specifically, suppose « is a strongly ergodic endomorphism of B(H) and
let 7 : O, — B(H) be a representation implementing o (i.e. o« = Ad,). Because of
strong ergodicity, the image of F, under 7 is weakly dense in B(#); so if {2 is a unit
vector in H, then w(zr) = (n(z)R2, 2} for z € F,, defines a pure state. This state is
essentjal by the assumption that o be unital. Since

a*w(z) = Zw('vj zv)) = 2(7((3:)#(0;)0, (v} )$2),
3 i

a*w is a convex linear combination of vector states in an irreducible representation,
therefore o*w is quasi-equivalent to w.

DEFINITION 4.1. An essential state w of Fnis quasi-invariant if it is quasi-
equivalent to a*w,

Thaus, if a representation of O,, implements a strongly ergodic endomorphism, the
restriction to F,, of a vector state is quasi-invariant.

Suppose now that a; = Ad,, and ¢y = Ad,, are two strongly ergodic endomor-
phisms which are conjugate. Then by Proposition 2.4 73 is unitarily equivalent to
71 o vy for some unitary operator U on £. Since the restrictions to F, of 7y 0 vy
and wy are irreducible, whenever w; and ws are vector states for m; and mp, their
restrictions to F, are quasifree-equivalent. Summarizing, if @ = Ad, is a strongly er-
godic endomorphism of B(#), and if £2 € K is a unit vector, then w(z) = (n(z)2, 2)
defines an essential, quasi-invariant, pure state of ¥,. Furthermore, if a; and a5 are
conjugate, then w; and w, are quasifree-equivalent.

The state a*w may fail to be pure even when w is. The next lemma introduces
another state related to w which is as pure as w and which is useful in giving a
characterization of quasi-invariance in terms of unitary equivalence.

LEMMA 4.2. Suppose w is a state of F,, and define w'(z) = w(vizv) forz € F,.
Then ' is pure if and only if w is pure. Moreover, w is quasi-invariant if and only if
it is unitarily equivalent to w’.
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Proof. It is clear that w' is a state on F,. To prove it is pure, consider F,
embedded in (CI + K(£))®*°, where dim€ = n. Separating the first factor in the
tensor product, the state w’ appears as the tensor product of two pure states. In fact,
w’ = wy, @w corresponding to the decomposition F, = (CI+K (&))@ (CI+K(£))®>,
where w,, is the vector state of K(£) corresponding to v; € £. Thus &' is pure if and
only if w is pure. For n = oo the argument applies to the unique extension @ of w
obtained in the discussion preceding Lernma 3.3. A simple computation shows that
a*(w') = w, so the second assertion follows from the fact that quasi-equivalence of
factor states of F, is an asymptotic property, Proposition 3.6. Both w and «’ being
pure, quasi-equivalence can be replaced with unitary equivalence. [ ]

The following theorem characterizes the situation in which there exists a lifting of an
irreducible representation of F, to a representation of O, on the same Hilbert space.
It generalizes Powers’ construction of a strongly ergodic endomorphism, showing that
the notion of quasi-invariance is enough to characterize strong ergodicity.

THEOREM 4.3. The GNS representation of F, associated with an essential pure
state extends to a representation of @y, “on the same Hilbert space if and only if the
state is quasi-invariant. This extension is unique up to a gauge automorphism.

Proof. If the extension exists, the discussion at the beginning of the section shows
that the state is quasi-invariant.

Let w be an essential quasi-invariant pure state of F,, and let 7 be the associated
GNS representation on the Hilbert space #, with cyclic vector 2. Suppose 7, extends
w, then

mi(v;) = w(v;o])m(v1) 7=1,2,...,n,

and

m1(v1)7(2)2 = m(vizv])m(v1)R2.

Since the v;’s generate O, and m(F,)f? is dense in H, the extension 7, is completely
determined by £/ = n(v,)92.

For z € Fy, {x(2)2', 2') = (w(vizv,)$2, 2) = w'(z), and thus £’ is determined
uniquely up to a scalar multiple of modulus one because 7 is irreducible. If 7 is
another extension, then mo(v1)12 = A8’ for some A € T and this implies 7; = 309

To prove existence, suppose w is quasi-invariant, by the preceding lemma w is uni-
tarily equivalent to w’, so there is a unit vector 2’ € H such that '(2) = w(v{zv) =
= (r(z)f2, {7’} for all z in F,,. Define V; on vectors of the form n(z)#2 by

(12) Vi iw(z)2 v x(vizv})2' = € F,
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then observe that

(Var(@)2, Nin(0)2) = (m(n 20} ', r(uryo}) ) =
(13) = (r(v1y*vivzv]) R, ') = o' (1" z}) =
= w(y"x) = (W(."}).Q, w(y).‘f)) z,4 € Fy.

Vectors of the form #(z)2 are dense in H, so the map 14 defined above extends to
an isometry on M, which will also be called 1;.

From setting z = y = I above, it follows that V12 = m(v19})2’ is a unit
vector. Since m(vyv7) is a projection and £’ has modulus one, it follows that V12 =
= w(nvi)’' = . Fixnow & € Fy, then Vin(z)n(y)R2 = Vir(24)2 =m(vizyv}) ' =
= m(nizvy)m(v1yv} )2 = w(v120])Var(y)2 for all y in F,, so

(14) Wr(z) = n{vizv])V)  z € F,.
From this, it is clear that V;V}* < m(v,v}). To prove the reverse inequality, note that
m(v10])m(2) ' = w(v10} )2 (2)n(m v VIR =
= (v (v W)Vi2 = Viz(vizu))R € Fa.

Since &' is cyclic, this yields m(v10}) < V¥, and it follows that Vi Vi* = m(vyv?).
Once Vi has been chosen there is only one possible choice for the remaining
isometries, i.e.:

(15) Vi=wmyvi)Vi j=12,...,n
Computing
V3V = Vem(onof (vl )Va = Vi (o vl ) Vi =
=WaluwiDh =KW n =1

shows that V; is an isometry for each j = 1,2, ..., n. In addition they form an essential
Cuntz system because

ViV = Y w(ue Vil (o) =
(16) H I
= ZW(vijvleﬂvlv;) = Er(v,-v;) =1,
J J

by the assumption that w, and hence m, is essential. Since {V;}}., is an essential
Cuntz system of isometries on H, there exists an essential representation # of O, on
M such that #(v;) = V; for j = 1,2,...,n.
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It still remains to show that #]F, = =, for which it suffices to prove that the two
representations ¢oincide on elements of the form rs*, where both » and s are in Wy
for k = 0,1,...,n. This is enough because such elements generate Fy. The proof is
by induction on the length of the words.

For k = 0, it is obvious that #(rs*) = I = x(rs*) whenever r,s € Wy. Suppose
equality hoids for words up to length k, and let r,s € W so that v and v;s are in
Wi41. Then

F(virs*v}) = ()7 (rs" ) (v) = m(v v} Yar(rs* )V w(viv]) =
(17 = w(vu)m(virs* o) Wi Vit w(vi o)) =
= m(viv}virs o] )m(viv])m(viv]) = m(virs” v}).

So #(z) = w(x) whenever x € Fu. n

COROLLARY 4.4. If 7y and 7, are representations of O such that their restrie-
tions to F, are irreducible and quasifree-equivalent, then w1 and m are quasifree-
-equivalent themselves.

Proof. There is a unitary operator W from H; to H2 and a quasifree automor-
phism vy of Oy such that the representations 71 and Adw o 73 o yy coincide on Fy.
Thus both are extensions to @, of the same irreducible representation of F,. By the
uniqueness part of Theorem 4.3 this implies that they differ by a gauge automorphism
7a. That is, 71 = Adw o w3 o 7y on O, so 7y is quasifree equivalent to 3.

THEOREM 4.5. The extension procedure of Theorem 4.3 establishes a bijection
between the conjugacy classes of strongly ergodic endomorphisms of index n and the
quasifree-equivalence classes of essential quasi-invariant pure states of Fy,.

Given an essential quasi-invariant pure state of 5, Theorem 4.3 yields a repre-
sentation of O,,. This representation gives rise to an endomorphism which is strongly
ergodic because its restriction to F, is irreducible. Thus the given state appears as
the restriction of a vector state to F,. Corollary 4.4 then ensures that quasifree equiv-
alent states give rise to conjugate endomorphisms. To obtain the inverse map, given
a strongly ergodic endomorphism, take the restriction to F, of any vector state in
any representation of ¢, implementing the endomorphism. The discussion preceding
Theorem 4.3 shows that conjugate endomorphisms give rise to quasifree-equivalent
states by this process. 2

It is interesting to note that Theorem 4.3 yields a pure extension of a quasi-
invariant pure state w from F, to O, via &(z) = (#(z)R2, 2), for z € On. The next
proposition shows that this extension is very far from being gauge-invariant.
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PROPOSITION 4.86. Ifw and & are as in Theorem 4.3 then & o v, is a pure
extension of w for each A € T; furthermore,

&';07;\5&07,, if and only if A = p.

Proof. Since v, is an automorphism of @, leaving F,, pointwise fixed, it is plain
that each & o, is a pure extension of w. The last assertion of the proposition reduces
to proving that & o 4, ~& if and only if A = 1.

Assume @ 0 7, ~&. Then there must be a unit vector £ € H such that

| (#(2)¢,€) =@ oma(z) = (F(n(2))2,2) z€0O,.

Since 7x(2) =  when z € F,, it follows that the vector states obtained from ¢ and
§2 coincide, because they are equal on the weakly dense subalgebra #(F,) of B(H).
Hence the state & is actually equal to the state & o y.

Choose z € F, such that ((v1)R2,#(z)2) = &(z*v1) # 0; such an z exists
because #(F,) is dense in H. Since

(z*v1) = 7a(z* )7,\(1)1) =z"dvy = dz*vyy,

it follows that & o ya(z*v1) = A& (z*vy), ‘which equals &(z*v,) only if A = 1, because
w(z*vy) #0. [ ]

This method of extending quasi-invariant pure states of F, to pure states of O,
can be generalized to periodic states, that is, to states w which are quasi equivalent
to a*Pw for some p > 1. However, all the extensions of a given state obtained in this
fashion give rise to conjugate endomorphisms.

EXAMPLES OF STRONGLY ERGODIC ENDOMORPHISMS. As a rule, product states
are the main source of eamples, so we now specialize the discussion to such states.
Let £ be a separable Hilbert space and view F, as embedded in (CI + K(£))®°.
Consider states of the form w = ® wy,,where {£;}{2, is a sequence of unit vectors in
£, and {wy,} is the correspondm‘g sequence of vector states of K(£).

If U is a unitary operator on £, the quasifree automorphism yu transforms a

pure product state according to

(@“h) oW = éwuﬁ_

i=1 =1
It follows from Proposmon 3.6 tha.t the necessary and sufficient condition for unitary
equivalence between @ wy, and ® wy, is that the infinite series Z(l I fi, 9:)]) be
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convergent. Thus the states ® wy, and ® wy, are quasifree-equivalent if and only if
i=l
there is a unitary operator U on £ such that

(18) Z(l ~ (£ Ugi)) < eo.

Furthermore, o* acts by shifting the factors in the tensor product one place to the

o]
left so @ wy, is quasi-invariant if and only if
i=1

Z(l - Kfia.f:‘—1)]) < 0.

In order to characterize quasi invariance, denote by 8; the angle between the
subspaces Cf; and Cf;_1. Thus [{f;, fi—1}| = cos §;, and the state determined by the

sequence {f;} is quasi-invariant if and only if the series EG‘? converges.
i

1. Assume f; = f € £ for all i > 1, then ®wf is an invariant pure product
state. All pure mvamant states are of this form, [11 Theorem 2.4]. If g; = g € & for

alliz 1, then ® wy; is another such state, and there clearly exists a unitary I/ on £
(e
which sends g to f, so every term of the series (18) vanishes. Thus, all shifts having

pure normal invariant states are in the same conjugacy class, which is a restatement
of Theorem 2.3 of [11].
2. Let vy and vs be two orthogonal unit vectors in £, fix § € [0,7/2] and

consider a sequence {#;} in [—~,n] satisfying Zﬂf < oo, and such that the set
. i

of limit points of s, = 29,- is the interval [0,8]. Let f; = cos(s;)v — sin(s;)va.
i=1

Since Eﬁf < ©0, the state determined by the f;’s is quasi-invariant. Moreover

i

if § # &', the state corresponding to &, cannot be quasi-free equivalent to the one

corresponding to 8. The reason is that the two sets of limit points are not congruent

via a unitary transformation of £, therefore the distance between corresponding terms

of the sequences f; and U f! does not tend to zero, causing the series Z(l——](f,-, urhl

X i
to diverge. Thus the endomorphisms obtained from different values of § are not
conjugate to each other and we have uncountably many conjugacy classes of strongly
ergodic endomorphisms.

11 .
3. Lets € (Z’ 5] and let f, = cos(n~*)v; +sin(n~*)vs. Since

Oy =n"*" — (n + 1)-3 o= n”"[l _ (1 + l/n)"’] — O(n_(H'l)),
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20,2, < oo hence the corresponding state is quasi-invariant. Assume &' # s Itis

n
clear that if the unitary operator U does not fix the unique limit point of the sequence,
then the series Z(l = [{fn, U£:)]) hopelessly diverges. So suppose U fixes the one-

i
-dimensional subspace corresponding to v; = lim f,, = lim ;. For such U the angle
between the subspaces Cf, and CUf, is at least n=* —n~*'. Since Z(n" - n"')2
el

diverges, different values of s give nonconjugate shifts.
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