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ON HOMOGENEQUS CONTRACTIONS
AND UNITARY REPRESENTATIONS OF SU(1,1)

DOUGLAS N. CLARK and GADADHAR MISRA

1. INTRODUCTION

Let M&b(D) be the group of biholomorphic automorphisms of the unit disk, and
T be a contraction on a Hilbert space . Each p25,, in Mob(D) has the form

P26,a(2) = ezie(z —a)(1— Ez)"l, |a] < 1 and @ € [0, 7).

We call an operator T homogeneous, if T is unitarily equivalent to ©2¢,4(T") for all
#20,a in MOb(D). In this paper, we obtain a family of homogeneous operators using
the Sz.-Nagy-Foiag model for contractions, and we study a corresponding class of
projective representations of M&b(D).

Homogeneous tuples of bounded operators on a Hilbert space are discussed in
[5]. In a recent paper [8], D.R. Wilkin has studied operators in B1(D), which are
homogeneous under the action of certain Fuchsian groups.

Let us fix some notation. Let

suan={[5 2]:teP 16 = 1}
g« 1
The group SU(1,1) acts on the unit disk by
By(2) = (@z+ B)(Bz+@)?, for g = [.;_ _'Z_] m SU(1,1).

Note that as a topological group SU(1,1) is homeomorphic (in fact, diffeomorphic)
to the product space T x D; where T is the unit circle. For ¢ in SU(1,1), if we

set § = arg a(mod27) and a = ——E, then the map g — (e'?, a) is a diffeomorphism,
a
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and the inverse of this map is obtained by setting o = '¥(1 — |a[?)~'/2 and 8 =
= —ae'?(1 — |a|?)~1/2. The map @, can now be rewritten as (we will drop the tilde)

0g(2) = eB8(z — a)(1 —a2)"1.

Thus, if ¢ in SU(1, 1) is identified with (&', a), where 0 € § < 27, and |a| < 1, then
the map ¢: SU(1,1) — Mob(D), defined by

(1.1) 2(9) = a(¢”, @) = ¢y = 24,4, 0 € [0, 27)

exhibits SU(1, 1) as a two fold cover of M&b{D). The covering map is just g.
We define a function on SU(1,1) x D as follows

(1 |af)H/2

(1.2) (9, 2) = @ ()2 = (Bz + )" = & —

Note that j satisfies the relations
j(9192: z) = j(gla ‘Pynl(z))j(gh z):

Jjle,z2)=1.

Recall that a projective representation is a mapping I/: g — U, of the group G into
the unitary group U(H) on some Hilbert space such that

1. U, =1, where ¢ is the identity of G,

2. UyUp = c(g, h)Uyon, where e(g, k) is in T,

3. 9 = (Ug¢, n), is Borel function for each ¢, n € H.
The function ¢ is the multiplier associated with U and is uniquely determined by U.
It has the following properties
¢(g,€) = 1= e(e, g), where e is the identity of the group G and g € G.
c(k, gh)e(g, k) = c(k, g)e(kg, k), for g, h, and k in G.
The set of all rriultipliens M on the group G is itself a group, called the multiplier
. group. If there is a continuous function f: G — T such that

c(g, h) = F(9)f(h)f(gh)~?,
then the multiplier ¢ is said to be trivial. Note that in this case, if we set
Ve = f{9)~ Uy,

then g — V; is a linear representation of the group G that is a strongly continuous
homomorphism ([7], Lemma 8.28, p.34).
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It was pointed out in [4], that if a homogeneous operator is irreducible then it
gives rise to a projective representation of Mb(D). Since the map g — ¢, is a contin-
uous homomorphism of groups, we may lift any projective representation to the group
SU(1,1). However, it turns out that the projective representations of M&b(D) we ob-
tain from our examples of homogeneous operators are in fact linear representations
when lifted to SU(1,1). In the following section, we discuss the characteristic function
for a contraction, and obtain some simple properties of a homogeneous contraction. In
particular, we show that a contraction with constant characteristic function must be
homogeneous. Next, we point out that the study of homogeneous operators is related
to that of systems of imprimitivity, intrcduced by Mackey (cf. [7], p.58). We then ob-
tain explicitly the projective representation associated with the class of homogeneous
contractions which have constant characteristic function and show that the projective
representations of Mob(D), obtained in this manner, lift to linear representations of
SU(1,1).

2. THE CHARACTERISTIC OPERATOR FUNCTION FOR A CONTRACTION

Sz.-Nagy-Foiag model theory for contractions associates to each contraction an
operator valued holomorphic function @r(z) on the unit disk.
Let us fix the following notation.

Dr =VT=T'T
Dy =/I-TT*

Dy = ranDr
Dre = ranDyp.
Or(z) = =T + 2Dy (I - 2T*)"' Dy € L(Dp,Dr-)
Az =+/T-0707
H=Hp, . 0Arl,
M={(Orf,Arf): f € Hp,}
Mt=HoM.

By Sz.-Nagy-Toias theory, T is unitarily equivalent to the operator

T:(f,9).— (2f,e'g)
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on H, compressed to M. The compression of 7 will again be denoted T'. It is the
basic theorem of Sz.-Nagy and Foiag that two completely non unitary contraction
operators T1 and T, are unitarily equivalent if and only if their characteristic func-
tions coincide, that is, there exist (constant) unitary operators U and V such that
UOr,(z)V = ©r,(z), for all z in the unit disk (cf. [6], Proposition 3.3, p.256). The
dimensions of D and Dy« are called the defeet indices of 7'

THEOREM 2.1. Let T' be a completely nonunitary contraction with at least one
of the defect indices equal to 1. The operator T' is homogeneous if and only if the
characteristic operator function for T is a constant.

Proof. If ©p(z) denotes the characteristic operator function for 7', then the

characteristic operator function ©,, () satisfies

(2.1) Ug@py(ry(2)V; = Or(p7 (),
(cf. [6], p. 240). If T is unitarily equivalent to ¢,(T) for all ¢ in G then
UpOpy(r)(2)Vy* = O1(2).
It follows that
U3UL0r()Vy"Vy = Or(e7(2).

Since g, acts transitively on the unit disk, setting z = 0 and w = ¢, 1(0), we obtain
U, U,0r(0)V)*V, = Or(w).

We note that ||©7(w)}] is in fact equal to ]]@T (0)|I, and if one of the defect indicies is 1,
then the characteristic function @7 (w) is either a Dy~ or a Dy.- valued holomorphic
function on the unit disk. In any case, the unit ball of the range is strictly convex,
and by the strong form of the maximum principle for vector valued analytic functions
(cf. [1}, Corollary III.1.5, p. 70), it follows that ©7(z) is a constant.

The converse statement is trivial. Certainly if the characteristic function Or(z)
is constant, then using (2.1) we find that

UgOy,(1)(2)Vy = (95" () = O1(2),

that is, the characteristic functions @r and O, (r) coincide. In other words, T is
homogeneous and the proof is complete. =

Unfortunately, there exist completely non unitary contractions with nonconstant
characteristic functions, which are homogeneous. In fact, all the homogeneous oper-
ators in B;(D) discussed in [4], except the unilateral shift, are contractions of class
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C's, and their characteristic functions are inner. If the characteristic functions of any
of these operators were to be a constant then 7'|Dr would have to be an isometry.
However, this is not the case for any of the homogeneous operators in B; (D).

CoRroLLARY 2.1. The unitary dilation U of a homogeneous operator is itself
homogeneous and is therefore a bilateral shift of uniform multiplicity.

Proof. Since T is unitarily equivalent to ¢4(T), it follows that the unitary dilation
U is also unitarily equivalent to ¢,(U). However, ¢, acts transitively on the unit
circle, and if p is the spectral measure for U then p o ¢, must be equivalent to the
measure z for all g, that is, the measure p is a quasi invariant (cf. [7], p. 14) measure
on the unit circle, the measure class of such a measure y is the same as that of the
Lebesgue measure on T. If T' is homogeneous, then Ag(e'*) has constant rank, a.e.
This implies that the multiplicity is constant and the proof is complete. |

Let Liny(H) denote the set of invertible operators on H and let L: G — Liny(H)
be a uniformly bounded homomorphism. The map L is said to be unitarizable,
if there exists an invertible operator £ such that LL,£~! is unitary for all g in G.
There are known examples (cf. [3], Theorem 5) of uniformly bounded homomorphisms
L:SU(1,1) ~ L;ny(H), which are not unitarizable.

ProrosiTioN 2.1. An irreducible contraction S is similar to a homogeneous
operator T if and only if Lg‘l.S'Lg = ,(5) for all g in G, and the map L:g — L, is
an uniformly bounded map into L;n,(H), which is also unitarizable.

Proof. Suppose LTL~! = S. Let U:g — U, be the projective representation
associated with the homogeneous operator T = £~'S£. The map L:g — LU, L
is a uniformly bounded representation of G, which is evidently unitarizable, and
L71SLg = p4(8).

On the other hand, if S is any operator such that L;1SL; = ¢,(S) and the map
L:g — L, is uniformly bounded, then to say g — L, is unitarizable means that for
some invertible operator £, the operatoxr LL,L~1 is unitary and we have

LLLHLSL™MLLIL™ = L(pg(S))L™ = g(LSLTY).

Thus, the operator 7' = LS£~! is homogeneous and is similar to S. The proof is now
complete, [ ]

If T and ¢,(T) are similar for all g, we say that the operator T is weakly ho-
mogeneous. How are the homogeneous operators related to weakly homogeneous
operators? If, for example, we can find an operator T, which is weakly homogeneous
but not similar to any homogeneous operator, with the added property that the map
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L:g — L, implementing the similarity is both uniformly bounded and a homomor-
phism, then in view of the proposition, we would have obtained a representation of
SU(1,1), which is not unitarizable.

3. SYSTEMS OF IMPRIMITIVITY

Let G be a locally compact, second countable, continnous group and X be a
locally compact metrizable space. If G acts continuously and transitively on X, then
X is a transitive, G-space. Let ¢ be a s-homomorphism of C(X) into £(H) and
U:g — U, be a projective unitary representation of G on H. Then (U,¢,X) is a
system of imprimitivity based on X, for the group G if we also have

(3.1) Ugd(f)U; = ¢(fog™") for all g in G.

If X is a compact then classification of such systems of imprimitivity is obtained
through classification of *-homomorphisms of the C*-algebra C(X). Mackey shows
that, if X = G/H for some closed subgroup H of G, then there is a one-one cor-
respondence between systems of imprimitivity based on X and representations of G
induced from the subgroup H. A good reference for all this material is ([2], [7]).

Let U:G — U(H) be a projective representation of a locally compact group G,
and let X be a transitive G-space. Let A be a function algebra, that is, a subalge-
bra (not necesarily closed with respect to *) of the C*-algebra of continuous functions
C(X), and ¢: A — L(H) be a contractive homomorphism. Define a system of imprim-
itivity for the group G over the function algebra A, to be a triple (U, ¢, X) satisfying
(3.1). Typically, if G = SU(1, 1), then there is a subgroup H such that G/H = D, and
the algebra A is the disk algebra A(D); in this case we identify A(D) as a subalgebra
of the C*-algebra C(T).

Note that if T" is homogeneous, then we obtain a projective unitary representation
U:g — Uy of G such that

U, TU; = ¢-T,

where we have set ¢ - T = ¢, (T). If ¢ is the contractive homomorphism of the disk
algebra A(D) defined via p — p(T') then we see that

(3.2) Usd(p)U3 = Upp(TYUy = p(U,TU;) = po ¢y (T),

where we are thinking of g = =%, so that the map h — U, is a projective represen-
tation. The relation (3.2) is the imprimitivity relation on the disk algebra. On the
other hand, given a system of imprimitivity for G over the disk algebra, we obtain a
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homogeneous operator T simply by setting T' = ¢(z). Thus, there is 2 natural one to
one correspondence between homogeneous contractions and systems of imprimitivity

over the disk algebra.

THEOREM 3.1. Let (U,4,T) be a system of imprimitivity over C(T). If 'H
is a semiinvariant subspace for ¢(id|T) and each U, leaves H invariant, then the
operator T = Py (id|T) is homogeneous with U;TU; = ¢,4(T). Conversely, given an
irreducible homogeneous operator T' (or, equivalently, a system of imprimitivity over
A(D)), let g — V; be the associated projective representation of G on H satistying
V,TV; = @y(T). Let Wr be the minimal unitary dilation for T on K containing H
as a semiinvariant subspace. Then there exists a projective representation U:g — U,
of G, on K, which leaves H invariant, U;WrU; = ¢,(Wr) and U, I'H =V,

Proof. One-half of this theorem is easy to prove. We need only observe that if
‘H is invariant for Uy, then the projection Py commutes with U, and U;. Thus,

Py (f o pg)Pu = PnlUy¢(£)Ug Py = Uy Prud(f)PrUy.

For the converse, we take Wy to be the matrix

Dy -T*
Dr-

L -

where the box as usual denotes the (0,0) entry. If we restrict Wr to the subspace

Dr for n < —1,
oo
Kpr={(hn)e & H:hoe M forn=0and 3,
n==-0Q
Dre’ forn>1

then Wy is a minimal unitary dilation of 7. However, since T is an irreducible
homogeneous operator on H, there is a projective representation g — V, of G such
that VTV = ¢,(T). Let U, be the diagonal operator acting on & H, with each
diagonal entry equal to V,. Note that ¢,(Wr) is a minimal unit:;'y dilation for
the operator ¢,(T") (cf. [6], Proposition 4.3, p.14). Since the unitary operator V;
intertwines T' and ¢, (T), it is clear that U, will map K7 onto Ky (7). However,
Kr is equal to K, (r). Therefore, U, is a unitary operator on Kz which leaves the
subspace M invariant. It is also clear that U, intertwines Wr and @4(Wr). Since Vj
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is a projective representation of the group G and U, is defined to be a block diagonal
matrix with each diagonal block equal to Vj, it follows that U, is itself a projective
representation of the group G. This completes the proof of the theorem. a

The second half of the theorem says that every system of imprimitivity over the
disk algebra A(D) lifts to a system of imprimitivity over the C*-algebra of continuous
functions C(T).

4. CONTRACTIONS WITH CONSTANT CHARACTERISTIC FUNCTION AND UNITARY
REPRESENTATIONS OF SU(1.1)

THEOREM 4.1. Let T be a completely nonunitary contraction with constant
characteristic function
‘@T(z) =C e E(DT,DT-),

where C' is independent of z, and [[C|| < 1. Then for any linear fractional transfor-
mation ¢ mapping D onto B, ¢(T) is unitarily equivalent to T

(4.1) o(T) = U, TU.

Furthermore, the unitary operators U, can be chosen so that p — U, is continuous
in the strong operator topology and so that

UﬂbUQP = c(‘b: So)U'P“J’

where ¢(1, ) is a complex constant of modulus 1.

Froof. By Sz.-Nagy-Foiag theory, T is unitarily equivalent to the operator

T:(f,9) = (2f,¢"9)

on H, compressed to M, in the notation of Section 2. The compression of 7 will
again be denoted T

T: (fa g) - PM*(zf: ei!g):
since M is invariant under 7', the operator T is a (power) compression. Thus,
(4.2) O(T)S,9) = Prmal(e(2)f, o(e)g)

holds for ¢ analytic in |2] < 1. In particular, (4.2) holds for a linear fractional
transformation ¢ as in the statement of the theorem.
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The following is a characterization of the space M+:
(48) ME={(f,-C*I-CC)M?freMh): f € H}, . h(e™) € H},}
Indeed, since C*(I — CC*)~Y/2 = A=1C*, we have, for g € H,
((f,=C*(I—CC*)='?f),(Cy, Ag)) = (f,Cg) ~ (C*f,9) =0

and {(0,e~"*R), (Cg, Ag)) = {¢7*h, Ag) = 0, since Ag € H},_ and ¢~k L H}, . This
proves D in (4.3).

To prove C in (4.3), suppose (g1,92) € H is orthogonal to the right side of (4.3).
Since (g1,92) L (0,e™h), we have g, € H3,_,. Now for f € H, _,

(91,92) L (f,—C*(I - CC*y~1/2f).

So

(91, f) = (92, C*(I - CC*)V/2f),
or

g —({I~CcCc*yYV2Ce, LHE ..
It follows that

a=I~-CC*) 20y = CcA-lg,
and therefore
(91,92) = (Ch, Ah) € M (where b = A™'gy € H3,).
Now we prove that
(4.4) Py (0, ko) = (—CAhg, C*Cho)
for ho € Dr (i.e., ho a constant function in L3,). First,
| (~CAho, C*Chy) =
= (=(I = CC*)?Cho, C*(I ~ CC*)M*(I — CC*)/*Cho) =
= ~((I = CC*)2Cho, —C*(I - CC*)"H2(I = CC*)*Chg) € M.
Secondly,
(0, ko) — (—CAhg, C*Chp) = (0, ho) + (CAhg, —C*Cho) =

= (CAhy, A%hg) € M.
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This proves (4.4).
Now, we can characterize the action of T' on M~ by

T(f,-C*(I - CC*) *f +e ) =
= Ppa(zf,—C*(I — CC*)~Y2%ef + h) =
= (2f,—C*(I - CC™)~ 2% f + e (e" (A — 1(0)))) + Pas(0,4(0)) =
= (2f, =C*(I — CC*)~ 2 f 4 e~ (e (h — h(0)))) + (—CAK(0), C*Ch(0)) =
= (zf = CAR(0), —=C*(I — CC*)~H2e! f 4 h = A?h(0)).
Now we will write ¢ for a4 4, which has the form
0(z) = e%®(z — a)(1 — az)~" € M5b(D).
We define elements of ML by
&(f,n) = p(e")"" (1 - ae™) " (f,—C*(I - CC*)/*f), f € Dr+

#(f,~n) = $@)(1 - ae=*)"1(0, f), f € Dr.

For n = 1,2, ..., it is clear that, for a given ¢ and for n = 1,42, ..., {®#(f,n)} form a
basis for M+, Furthermore,

(B(f,n), 8(g,m)) =0ifn £ m.
Also, ifn > 0
(B(f,n), (g, m)) =
= (1 —ae*)™1f, (1 — ae™) " g)+
+{(1 — @)~1C"(I - CC*)~Y2f, (1 - ae)~1C*{(I — CC*)~ V%) =
= (1 - la*)"M[{f,9) + (I — CC*)~2CC* (1 - CC*) 5, g)] =
=(1-|ay" NI+ CC*(I - CC*)Mf9) =

= (1~ |af’)~H{I - CC*) f, g).

and if n < 0,
(8(f,n),8(g,n)) = ((0,(1 — @)~ £),(0, (1 — @)~ 1g) =

= (1= |a’)"}{f, 9)-
For @(el*) = ei*, we denote &(f,n) by I(f,n) (I for identity function).
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Define the operator U,: M+ — M* by
UpI(f,n) = (I - |al*)/*®(f, n)
forn#0and f€Drifn<0, f € Drs 1fn > 0. Note that U, is unitary and satisfies
Uo(£(2),9(e™)) = (1 = [a*)/3(1 ~ @) (f o, g 0 ),

for (f,g) € M*.
We compute, for n > 0 and f € Dyp»,

U,TI(f,n) = U, T(z*"1 f,—C*(I = CC*) "2 (n=1i ) =
= «p(zn.f, —C‘(I _ Cc*‘)—lfzeintf) —
= Upl(f,n+1) = (1= [a20(f,n +1).
Ifn> 1andf€"l)g-,
U,TI(f, ~n) = UpT(0, 67 f) = U, (0, (*~tf) =
= UpI(f,=n+1) = (1~ [a)/*8(f, n + 1)
and, if f € Dy,
UpTI(f,-1) = U,T(0,e " f) = U,(~CAf,C*Cf) =
= U, I(~(I ~ CC*)/*Cf,1) =
=(1- laf?)Y2e(~(I — CC*Y2CF,1).
To complete the proof of (4.1), we apply the relation (4.2), to get, for n > 0,
o(T)9(f,n) = &(f,n+1),

forn>1,
(T)P(f, —n) = &(f,—n +1)
and, for n = —1,
P(T)(f,—1) = Prua(l —3e")7H0, ) =
= (1 — @)~ (—CAf,C"Cf) =
= &(—(I — CC*)*/3Cf,1).

(The next to last equality is verified by checking that the right side lies in M+ and
the difference of the left and right sides lies in M.)
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Thus, for all n > 0,
UpTI(f,n) = (1= [a’) 3p(T)B(f, n) = p(TIV, I(f,n)

so that (4.2) holds.
To prove ¢ — U, is continuous from the uniform topology to the strong topology,
suppose @i (z) converges uniformly to ¢(z) (in |2| € 1). We need to show

(4.5) Ugy f = U, for f € ML,
Write
F=Y I(fan),
n#Ed
where

-1 )
D NI = CCY 1l + Y (I fall? < oo
- 1

Given ¢ > 0, choose N so that

S 1 (fa m)? < £2/8.

Ng|n|

For each n, it is clear that
(1~ lak ) 2@k (fa, n) = (1 = [a*)*B( £, n)

in M*, where a; is the zero of wr and a is the zero of . Therefore, there is a positive
integer K such that

(1 = lax?) /@i (fa, n) = (1 = |a*)/?8(fa, m)l| < €/(2N)

for 0 < |n| < N and k > K. Therefore, if k£ > K,

”U'Pkf - U‘Pf” =
=11 = lax )2 3 Se(fa,n) = (1 = 10272 8(fn, )| <
n#o n#o
< Y = lae[?)2@e(fn, n) — (1 — a2 fm, m)[|+

0<in|<N~

1/2
+2 [ > III(fmn)NZJ <e,
Ng|n|

which proves (4.5).
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To prove th‘e last assertion of the theorem, let
p(2) = 2 (z — a)(1 - @)1, 9(z) = e7(z = )1 = B2)?,
where, |al, || < 1, 8,7 € [0, 7). Then
@ 0 9(2) = eHOTN(L 4 bae™?)(1 + bae?) ™ (z — d)(1 - dz)~ .
where d = (e7b + a)(e?" + ba)~!, We have
1-|d? = (1— lal?)(1 = [b[*)[e*" + ba|~?

and so
UpUp(F(2)9(e*)) =
= (1- [a)2(1 - B)M2(1 - a)~ (1 - B*) " (Fopod,gopoy) =
= (1 — |a)/3(1 — |p]>)/2(1 + Gbe®") "1 (1 — de*) " .(fopot,gopop) =
= |e? + Bal(1 + @be®) " U0y
This completes the proof of the theorem. [ |

For the Mobius transformation ¢ = ¢2¢ 4 of the theorem, let

floy =€°.
Then we have
UgUyUpoy = () F($)/f(9 0 %)
Indeed, if we write 1¥(2) = ¥aq.5(2) = €37(z — b)(1 — bz)~! and if ¢ is as above, then
@ o P(2) = eBETN(1 4 Bae~2")(1 + bae?")~1(z — d)(1 - dz)~ !,
and so f(p o ) = ei®+D[(1 + Bae~27)(1 + (bae?")~1]}/2, and
F@F ()] f(p 0 ) = e’ee™ V(1 + bae”)(1 + Bae™7)71]H? =
= [(1 + b@e?)?|1 + bae??|~2]1/2 = (1 + ba@e®")|1 + bae?” [~ = UpUyUpoy

by the last step in the proof of the theorem. The function f is not continuous on
the group M3b(D) and we cannot infer that the map ¢ — f(¢)~'U, is a linear
representation.

However, the map V:5U(1,1) — U(H) defined by

V(g) = V(e,a) = ¢°U o g(e'*, a) = U,
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where ¢ = 24 5 and ¢ is the quotient map (see (1.1)); is a linear (anti)representation
of SU(1,1). Note that

V(g) = i(g, )Ry, where (Rof)(z)=fo (ps(2))s

see (1.2).

How does the representation V decompose in terms of the known irreducible
representations of SU(1,1)? When both the defect indices of the operator T are 1,
we can show that the associated representation V is unitarily equivalent to the direct
sum of two copies of the discrete series representation of SU(1,1) corresponding to
the Hardy space.
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