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ON GENERALIZED CUNTZ C*-ALGEBRAS

HUNG T. DINH

1. INTRODUCTION

For each positive integer N > 2, the Cuntz C*-algebra Oy is defined as the
C*-algebra generated by N isometries, on a Hilbert space #, whose ranges are mu-
tually orthogonal and whose range projections sum to the identity operator 1. For
N = 00, O is defined as the C*-algebra generated by a sequence of isometries with
mutually orthogonal ranges. (It is not required that the sum of their range projec-
tion is 1.) The Toeplitz C*-algebra, i.e. the C*-algebra generated by a non-unitary
isometry [4,5], may be regarded as a degenerate case of the Cuntz C*-algebras. It was
shown by Cuntz that @y is canonically unique in the sense that it is independent of
the choice of the N isometries that generate On [6].

In this paper we generalize Cuntz C*-algebras as follows. Let G be a countable
dense subgroup of the real line, and G* be the semigroup of positive elements of G.
Let Vi,...,Vy be N orthogonal semigroups of isometries, i.e.

G) Vi@)"Vi(®) = 1 and Vi(s +t) = Vi(s)Vi () for every 1 i € N and s, € G¥,

(i) V;(@)*Vi(t) = 0 (equivalently, Vi(t)H L Vj(t)H) for every 1 < i, < N,
i#j teGt.

Here N = 2,3,...,00 and by abusing notations, when N = co we mean a sequence
of semigroups. Note that we do not require the sum of their range projections be 1,
even when N is finite. We consider C*(V4,.. ., V), the C*-algebra generated by the
isometries V;(t),1 < i < N,t € G*. The C*-algebra generated by one semigroup of
isometries is either a quotient of C (@) or the generalized Toeplitz C*-algebra studied
by Douglas [9]. 'If we remove the condition that G is dense, we end up with either
the Cuntz C*-algebras or their extensions by the compact operators [6]. If we let
G = R instead, we basically have nothing since Arveson has shown that there are
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no strongly continuous semigroups of isometries that are mutually orthogonal in the
above sense [2]. (Nevertheless, Averson has been able to construct C*-algebras which
can be regarded as “continuous time” analogues of Cuntz C*-algebras [2]).

Throughout this paper, we will always assume that G is countable and dense. For
such G, there always exist semigroups of isometries which have the desired properties.
Let D be a Hilbert space of dimension 1,2,... or Ro. Fort1,...,1, € Gtidy,...,in €
€{1,...,N} and i, # imq1 for every m, let

D‘l.---.‘u(tla fae :tn) =D

and o
H=D& z pil,...,in(tla ey tn)

where the Hilbert space direct sum ranges over all such multi-indices i3,...,4, and
time parameters #1,...,%,. Define ¥;(t) on the summands of H as follows.

£€D € eDilD),

EEDiy, . in(t1, ., ta) = EEDis,, . in(tt1,. . 1a) ford #i,
EE€D,,. i.(t1,. .., tn) = E €Dy, it +11,ts,.. ., ta) fordy =4

It is straightforward to check that V4,..., Vx are N orthogonal semigroups of isome-
tries.

The C*-algebras C*(V4, ..., Vn) are special cases of a family of C*-algebras con-
sidered by us in [7]. This family of C*-algebras arises naturally from the Arveson-
Powers-Robinson index theory of semigroups of endomorphisms of type I factors
[1,7,8]. We briefly recall some definitions in [7].

A discrete product system E is a family of infinite dimensional separable Hilbert
spaces {E(t) : £ € G1}, on which there is defined a tensoring operation satisfying;

(i) For each s,t € G, there is a bilinear map (u,v) € E(s) x E(t) > uv €
€ E(s +t). Moreover, [E(s)E(t)] = E(s +1).
(ii) (Associativity) (uv)w = u(vw) for every u,v,w € E.

(iii) (uv, u'v’) = (u, uw'){v,v’) for every u,u’ € E(s) and v,v' € E(2).
note that (i) and (iii) imply that the map u® v € E(s) @ E(t) — uv € E(s +1)
extends to a unitary operator from E(s) ® E(t) onto E(s +1).

A representation of a discrete product system FE is amap ¢ : E — B(H) satisfying

(i) ¢(v)*e(u) = (u,v)1 for every u,v € E(t) and t € G* and

(i1) p(u)p(v) = ¢(uv) for u,v € E.

Let C*(p(E)) be the C*-algebra generated by the range of ¢. Theorem 2.2 in [7] states
that this C*-algebra does not depend on the particular representation of E. More
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precisely, if ¢, : E — B(H) and ¢ : E — B(H>) are two representations then the
map @1 (u) = p2(u) extends to a *-isomorphism from C* (i1 (E)) onto C*(p2(E)). We
denote the isomorphism class of C*(¢(E)) by Or(G). This is a separable simple C*-
-algebra whose non-degenerate representations correspond bijectively to representa-
tions of E' [7, Corollary 2.22 and the preceeding remarks].

By a word of length t, we mean a product of the form

Vi, (1) Viy (t2) - - - Vi (20)

where t; + o+ ---+ ¥, = t. A reduced word is one in which terms of the form
Vi(s)Vi(2) have been simplified to Vi(s +t). For t € G*, we define En(t) to be the
closed linear span of all words of length ¢. It is easy to show that Ep, with the usual
operator multiplication and with inner product defined by

(N, )1 =TT,

is a discrete product system. Moreover, the collection of all reduced words of length
t forms an orthonormal basis for Ex(t). In particular the reduced words satisfy

Vi () - Vis (6)" Vi (1) - Vi (t) = {

1 ifm=n;iy=ji,...; ts=1t,...
0 otherwise.

The corresponding C*-algebra Og,(G), i.e. the C*-algebra generated by the
range of the identity representation of Ey, is the same as the C*-algebra generated
by the semigroups Vi,..., Vn. It follows that C*(V4,..., V) has all the properties
that Op, (G) has. In particular, it is simple [7, Corollary 2.22]. It is clear that Ey
depends only on N, not on the particular semigroups Vi,..., Viw. More precisely,
let V{,..., V4 be another set of orthogonal semigroups of isometries and form the
corresponding discrete product system E);. Recall from [7] that an isomorphism
between Ex and EY is a bijection which preserves the tensoring operation and which
restricts to a unitary operator from the “fiber” En(t) onto the “fiber” Ej(t). It is
easy to show that the map V;(t) — V/(f) extends to an isomorphism between Ex and
E}. Consequently, this map extends to a *-isomorphism between the corresponding
C*-algebras [7, Theorem 2.2].

We sumrnarize the above discussion in

THEOREM 1.1. Let Vi,..., Vv and V/, ..., V} be two sets of orthogonal semi-
groups of isometries. Then there is a unique *-isomorphism from C*(Wy, ..., Vy) onto
C*(V{,..., V%) that takes each isometry V;(t) to the corresponding isometry V{(t).
Consequently, C*(Vi,..., V) is simple.
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In a related direction, Price [12] studied the C*-algebra generated by two semi-
groups of isometries satisfying the “commutation relation” V;(2)*Va(t) = e~ 1. It
follows from a construction similar to the one above that Price’s C”-algebra belongs
to the family of C*-algebras Og(G). Hence many of our results also hold for Price’s
C*-algebra.

Some results of this paper are taken from the author’s Ph. D. Thesis written
under the direction of Professor William Arveson at the University of California at
Berkeley. We thank him for his guidance, and for sending us a preprint of [2]. We
also want to thank Professor Geoffrey Price for some helpful correspondences.

2. QUASI-FREE AUTOMORPHISMS

In [10], Evans considered quasi-free automorphisms of the Cuntz C*-algebras.
These automorphisms are defined similarly to those of the CAR algebra. In [7], the au-
thor defined quasi-free automorphisms of O(G) as follows. For every automorphism
p of E, there is a unique *-automorphism &, of Og(G) satisfying o, (p(u)} = p(u(v)).
It is shown in [7, Theorem 5.1] that, except for the identity automorphism, every oy
is an outer automorphism. The group {a, : 4 € Aut(E)} is called the group of quasi-
free automorphisms. It is isomorphic to the group Aut(E) of all automorphisms of
E. We will compute this group for C*(V4,..., Vn).

Recall from [7] that a unit of a discrete product system E is a cross section
u = {u(t)},cq+ satisfying

(i) u(t) € E(t) for every t € G,
(ii) u(t) # 0 for some, hence for every ¢t € G*, and

(iii) u(s)u(t) = u(s +¢) for every s,t € G+.

In addition, if |ju(t)]| = 1 for every ¢ € G* then u is said to be normalized. For
example, the semigroups V4, ..., Vy are normalized units of Ex. Conversely, we have

PROPOSITION 2.1. Every unit of En is of the form fV;, where f is a homomor-
phism from G* into the multiplicative group of non-zero complex numbers.

Proof. Let W be a unit. We claim that W cannot be perpendicular to all the
Vi’s (definition: W L V; if W(t) L Vi(¢) for every t € G*). Otherwise, by taking
inner product with an arbitrary reduced word of lengh ¢, we have
(W), Vi, (01) -+ - Ve (tn)) = (W (1), Viy (1)) - - (W (1), Vi, (£0)) = 0,

which implies that W(t) = 0, a contradiction.
Without loss of generality, assume that W is not perpendicular to V3, i.e. {(W(to),
Vi(to)) # O for some to € G*. This implies that (W(t),Vi(t)) # O for all t €
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€ G7. Indeed, if t < to then
(W i), Vo)) = (W(t), ()W (to — ), Vilto — 1),

which implies (W(t),V1(t)} # 0. If t > #p then there is a positive integer n such
that t < ntg. Since {W(nty), Vi(nto)) =(W(ta), Vi(to))™ # 0, the previous argument
implies that (W(t), Vi()) # 0.

Let W(t) = . Then W is a unit satisfying (W(t),V;(t)) =1 for

(W), V()

e

every t € Gt. We claim that W is perpendicular to V;, 2 £ i £ N. We use the fact
that in a Hilbert space, if {e,}3, is an orthonormal sequence and (e, e,) does not
depend on n then (e, e,) = 0 for every n. Fix t € G*. Since G is dense, the collection
of all reduced words of the form Vi (s)V;(s)Vi(t — 8)V;i(t — s), where 0 < s < £, form
an orthonormal sequence in En(2t). We have

(W(2t), i(s)Vi(s)Va(t — s)Vi(t — 8)) =
= (W(s), Vi(s){(W (), Vi(s)/(W (¢ — 8), Va(t — )W (& — ), Vi(t — 5)) =
= (W), Vilt))

which is independent of 5. Hence (W (), Vi(t)) =0 for 2< i < N-and ¢ € G+.

Using an argument similar to the one at the beginning of the proof, we conclude
that W (t) is perpendicular to all the words of lengh ¢ which contains at least one letter
of the form ¥}, 2 < i < N. It follows that W(¢) must be a scalar multiple of V;(t),
say W(t) = g(t)Vi(t). Since (W(¢), Vi(t)) = 1, we have g(t) = 1 for every t € G+.
Then W(t) = f(t)Vi(t) where f(t) = (W(t), V1(?)) is the promised homomorphism. .M

We let Sy be the group of permutations of N objects. Define a group operation
on@x‘ux@xSbe

(fl:' --:fN:U)(f{a . -':fII\T:a) = (fd"(l)f],.:‘ LR 0’(N)f1'\f:a'a’,)'

THEOREM 2.2. Aut(Ex) is isomorphic to the group G x - - x G x Sn.

Proof. The isomorphism is defined as follows. For (fi,...,fn,0) € Gx--x
G x Sn, define py, . 7y,0) € Aut(En) on reduced words by

Vii (1) -+ Vi (@) = fir (81) - - fia (@) V(i) (B1) - - - Vigin) (En)-

To show onto, we use the previous proposition. Let u be an automorphism of
Ex. Then p(V;) must be normalized unit. So u(V;) = fiV,( for some f; € G. We
claim that o is one-one and onto, hence a permutation. Assume (i) = ¢(j). Then

(Vi) = Vawy (@) = Vo) () = p(F@)V;(2)).
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Since u is one-one, mV,(t) = m% (). This implies ¢ = j by the orthogonality
property of the semigroups Vi,..., Vn. 'So o is one-one. Let j€{l,...,N}. Since
p~! is also an automorphism, we have p~1(V}) = g; Vi(j) for some g; € G. This
implies
Vi (8) = u(9i (Ve ®)) = 95 (8 ) () Ver (i) (),

and hence o7(j) = j. So o is onto.

To show one-one, assume p(ys, . 1y,0) = B(11,....15,0")+ These automorphisms take
Vi(t) onto fi(t)Va(i)(t) and f](t)Vo(s)(t), respectively. Hence we must have o(s) =
a'(i) and f;(t) = fi(t) for every i,1. ]

3. THE CROSSED PRODUCT CONSTRUCTION

In this section, we show that if £ has a unit then Og(G) is a full, hereditary
subalgebra of a crossed product of G by an AF-algebra. In particular, this property
holds for C*(V4, ..., V) since Ex has a unit. For simplicity of notations, we now
write By and u; instead of E(t) and u(t).

Recall [7, Definition 2.6] that for a representation ¢ : E — B(%), the even algebra
FE(G) is defined by

Fe(G) = spant | {(B)p(Ev)* : t € GT U{0}}

where we define ¢(Ep) = C1 for convenience. This algebra plays an important role
in the proof of simplicity of the algebra Og(G) [7].

An alternative way to describe the even algebra is as follows. Let G+ U {0} be
directed by the usual ordering of the real line. For 5,¢ € G* U {0},5 < t, define o, :
B(E,) — B(E;)(Eqy = C) as follows. If s = 0, @;,()) = Al;, where 1; is the identity
operator on Ey. If s =1, a,, is the identity map. If 0 < 5 < ¢, a4, (X) = X ®1;_, for
X € B(E,), where we have identified E; = E,®F;_, so that B(E,) = B(E,)®B(E:-,).
It follows from the associativity of the operation on E that og.e,y = a4, for r € s < .
Thus we can define By, to be the C*-algebra inductive limit im B(E,). Define F£(G)
to be the C*-subalgebra of By, generated by the collection of compact operators
{K(&:) : t € G* U{0}}. Proposition 2.10 of [7] states that Fg(G) is canonically
isomorphic to the even algebra. The isomorphism takes the rank-one operator (-, v)u
in K(E¢) to the operator o(u)p(v)* in o(E:)p(Eq)*.

Now let E be a discrete product system with normalized unit v. Define e; =
= (-,vt)v, a rank one projection in B(E:). Note that e, ® e; = €,4¢. Indeed let
u€ E,, we€ E;. Then

(es ® er)(u ® w) = (u, vy )vs ® {w, v)vy = {uw, VsV YUY =
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= (UW, Vst ) Vst = €ppr(UW).

For each z € G, let B, = F5(G). If 2 € y, we define the embedding Sy : By — B
by

Bry(K) = ey ® K € K(By-z41)
for K € K(E:), t € G U {0}. Then f;, is a non-unital isometric *_homomorphism.

We claim that the maps Byy’s are coherent, ie. ifz Ly <2 then By By: = Pr-.
Let K € K(E:). Then

(ﬁzyﬂyz)(K) =ty Qe y@K =€, QK= ﬂwz(K)

Thus we can define B to be the C*-algebra inductive limit limg— o Bz. Note that
B is non-unital and is an AF-algebra since each B, is an AF-algebra [7, Proposition
2.12].

It is convenient to write the elements of B;, when embedded in B, formally as
€(~00,5] ® K ® 1(s41,00) Where K € K(E), t € G*. The identity of B, is formally
written as Pz = €(—c0,2] ® 1(2,00). And ¢; is formally written as e(z 744 for any z € G.

For y € G, define ay € Aut(B) by

y(e(=c0,5] ® K ® 1(z41,00)) = €(=co,2+y] ® K & Liz4y+t,00)

for K € K(E:), t € Gt U {0}, = € G. That is, G acts on B by translation.

Recall that the C*-subalgebra A; is full in A, if the closed two-sided ideal gener-
ated by A; is equal to As. It is hereditary if 0 € s < yand y € Ay imply z € A;. If
p is a projection in Aj, then pAsp is hereditary. In fact, it is the smallest hereditary
subalgebra of A3 containing p.

THEOREM 3.1. Let E be a discrete product system with a normalized unit v.
Then there exists a C*-dynamical system (B, G, ), with B an AF-algebra, such that
Og(G) is a full, hereditary subalgebra of G x B.

Proof, Represent G X, B faithfully on H so that
(i) there is a group of unitaries {U;}zec on H satisfying a.(B) = U, BU; for
every x € G, B€ B, and
(ii) the finite sums of the form 2 B U,, where B, € B, form a dense
x

x-gubalgebra of G X, B.
Define ¢ : E — B(PyH) by

p(u) = (e(«-oo,o] (,mu® 1(:,00))(P0Utp0)

for u € E;.
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Claim 1. p(v)*¢(u) = {u, v} P, for u,v € Ex.
0(0) 9(1) = (PoU; Po){(e(=00, )@ 1)0e®@1 (2 00))(€( =00, O 12} u® Lt 00)) (PoUe Po) =

= PoUs (€(~00,0 ® {4, V){" ve)vs ® 1t,00)) Ui Po =
= (1, v} Poor-1(€(~c0,0] ® €(0,1) ® 1(t,00))F0 =
= (u, v) Poa—s(€(~o0,1] ® L(1,00)) P =
= (1, 9) Po(€(~c0,0] ® 1(0,00)) Po = {1, v) Po.
Claim 2. p(uv) = ¢(u)p(v) for u € E,,v € Ey.

P(1)e(v) = (e(— 00,0 @ {* s )u® 1(s,00))(PaUs Po)(€(00,0) @ {*; 1 }v® L (1,00 )( Pl Po) =

= (€(=00,0] ® {* V)8 ® 1(5,c0))s(€(=00,0] ® (-, ¥£}v @ 1(t,00))Us+tPo =
= (€(=00,0] ® (" V)% ® 1(5,00))(€(=00,5) ® {3 Ue}¥ ® L(s41,00))Us+tPo =
= (€(=00,0] ® {*) V)2 ® 1(4,00)) (6(=00,0] ® (€(0,6] ® {* ¥1)¥) ® L(s1,00))Us 41 Po =
= (€(~00,00 ® ({-, 25)u @ (-, v1)v) ® 1(t+t,oo))Ua+tP0u=
= (€(=00,0] ® {* Vs4) 80 ® 1(s41,00))(Pols4: Po) = p(uv).

We conclude that ¢ is a representation of E on Py. Thus we can form Op(G),
the C*-algebra generated by the range of .
Claim 3. Fg(G) = By. Let u,v € E;. Then

P(8)P(v)" = (e(=00,0)R("; Ve)u® L(1,00)(Pols Po ) (PoUs Po)(€(~00,01® {5 ¥)1:®@1(¢,00)) =

= Urare(e(=c0,0] ® (- Vs)u @ 1(2,00) ) Poct~1(€(=00,0] ® (", ¥)vt ® L(r,00))U; =
= Us(e(=c0,—1] ® {*, V1) ® 1(0,00))
(€(=00,-1] ® {*, ¥1)0: ® 1(0,00))(E(=00,~1] ® {, V)2t ® 1(0,00))U; =
= Uie(co0,—1) ® (- v}u ® 1(0,00))Us =
= t(€(00,—1] ® {, V)4 ® 1(0,00)) = €(=00,0] ® (", V)u ® 1(t,00)-

The claim follows from the fact that Fg(G) is generated by the identity Py and
elements of the form @(u)p(v)*, while By is generated by Py and elements of the form
€(=00,0] ® (-, W)U ® L(,c0)-

Claim 4. Bo = PoBPo.
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Since By = PyBy Py, we need only to prove By 2 PoBP,. But B is generated
by the B,’s, which are increasing as z decreases to —oo. Hence it is enough to show
Bo D PoB. P, for every z < 0. Let K € K(E;), t € GT U {0}.

If0 <t —z then

PO(C(—oo,.z] ®K® 1(x’+‘l,oo))P0 =

= (€(-o00,2) ® €(z,0] @ 1(0,00))(€(=00,2] ® K ® L(z4t,00))(E(=c0,2] ® €(z,0] ® L(0,00)) =
= €(—oc0,2] @ (€(z,0)(K @ 1oz—t)e(z,0) ® L(o,00) =
= (K ®1loget)Voz, Vs }(E(m00,2] ® (2,0 @ L(0,00) =
= {(K ® 1-z~t)v-z,v-2)Po € Bo.
Ift > —z, we may assume K = K; ® K, where K; € K(E_;), K2 € K(Ei42)
(since elements of the form K; ® K2 generate X(E;)). Then

Po(e(-c0,2) ® K ® Lz 4t,00))Po =

= €(—00,7] ® (6(z,01K1€(2,0) ® K2) ® L(z41,00) =
= (K192, V=2)(€(=c0,2) ® (€(z,0] ® K)) ® 1(x+*,°°)) =
= (K;v-x, ‘U-z)(e(-oc,o] ®@K2® 1(c+t,co)) € Bo.

Claim 5. Og(G) = Po(G xa B)Py, hence is hereditary.

The inclusion C follows immediately from the definition of ¢. To prove the other
inclusion, it suffices to show Or((3) ah'PoBUzPo for every B € B, £ € G. Since
PoBUy Py = (Po(U—g B*UpYU_2 Po)* = (Pooeg(B* YU~ Po)*, we may assume z 2> 0.
Then

U,Po = UxPnU;Uz = OI(PQ)Uz = P;,,-U,,- = PoP,;U,, =

= PyU U Pl = PoUpa—p(Py) = PoUsPo.

So PoBU; Py = (PyBPo) (U, Po) € Fe(G)Uy Py, and we only need to show Uy Py €
€ Og(G). Indeed if £ = 0 then U, Py = Py = the identity of Og(G). Whileif z > 0
then

‘P(vﬂ:) = (3(-06,0] ® (': ”z)‘vz ® 1(1:,00))(P0U1;P0) =
= (€(~00,0] ® €(0,21 ® 1(z,00) /(U FPo) =

= x(UzPO) = Uzaax(Px)PO = Uy PoPo = Uy Po.
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Claim 6. Og(G) is full, i.e. the closed 2-sided ideal Z generated by Og(G) is
equal to all of G x, B. Since {P,.E};,_._,>° is an approximate identity of G x, B, it
suffices to show Z 3 P, or every z € G. Indeed,

P = 0z(Po) = (Us Po)Po(PoUZ) ET

because Py € Op(G) and Up Py, PoU2 € G x4 B. ]

Recall that a C*-algebra A, is nuclear if for every C*-algebra Aj, there is exactly
one C*-norm on the algebric tensor product .4; ® Az. The class of nuclear C*-
algebras includes AF-algebras and is closed under stable isomorphism and taking
crossed product by amenable groups. A C*-subalgebra A; of a nuclear C*-algebra
A2 is not necessarily nuclear. However, if in addition, .A; and A3 have strictly positive
elements and A, is a full hereditary subalgebra of Az, then A; is stably isomorphic
to Az [3], hence is also nuclear. Thus we have

COROLLARY 3.2. If E has a unit then Og(G) is nuclear.

In particular, C*(V4, ..., Vy) is nuclear.

4. K-THEORY

In this section, we compute the K-groups of C*(13,..., Vy). More generally, we
compute the K-groups of Og(G) when E has a unit.

PROPOSITION 4.1. K1(FE(G)) = 0 and Ko(F&(G)) = Ze Z[e:)o.
teG+u{o}

Proof. We use [7,Lemma 2.9]. Let ¢; < --- < t,. By induction and a straight
forward application of the six-term exact sequence to the split exact sequence

0= K(E:,) = Cl+ K(Ey,) + -+ K(Br.) — CL+ K(Ey,) + -+ + K(Ey,,) = 0,
we have K1(C1+K(Ey,)+ - -+K(E1,)) = 0 and Ko(Cl+K(Es) +- - -+ K(E:,)) =
=2[1jo ® Z[er,Jo ® - - - ® Z[ey, Jo. The assertion follows by taking inductive limits. W

CoOROLLARY 4.2. K;(B) =0 and K(B) = EeZ[Pz]o.
z€G

THEOREM 4.3. K,(Or(G)) =0 and Ko(Or(G)) = Z[1)s.

Proof. First, suppose G is finitely generated so that G = $,Z + --- + 6,,Z
where 81, ...,8, > 0 are rationally independent. Apply the Pimsner-Voiculescu exact
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sequence to 6,2 X o B, we have

1- 8yn J* e
Ko(B) —(:——L KO(B) ———t Ko(emz XQB)

I |

K1(6mZ X o B) Ki(B) ————  Ki(B).

Since ag,.(P:) = Ps—s,., the map 1 — (a-g,,)s : Ko(B) — Ko(B) is given by

1-— (a_am)a in = (ﬂs[ r.]o)zeG Land ((nz - "m+0m)[Px]0)t€G~

This implies Ker(1 — (@, )s«) = 0. Exactness at the two left corners and the fact
K;1(B) = 0 then implies K1(6mZ X« B) = 0. Hence we have the exact sequence

0 — Ko(B) e ‘"‘): Ko(B) & — Ko(HmZ Xa B) — 0,

We claim that the range of 1 — (a_g,, )« consists of all elements I = (Iz[Pz]o)zec
such that

(4.1) S lgar=0

kEX

for every # € G. Indeed if I is in the range, then there exists n = (ns[Pzlo)zeq
such that I = ny, — ny4g,, for every z € G. Thus le..gmg = Zﬂx_gmk -
k k

—an_gm(k_l) = 0. Conversely suppose (4.1) holds. Define ny = Iy + lzys,, +

P
+lzy20,, + - for every ¢ € G. Then n, — nzy4g,, = I for every ¢ € G, and so

&
it remains to be shown that n € Z Z[P;]o, i.e. that ny = 0 for all but finitely
z€G
many z’s. Let T = {s; < --- < s,} be the support of I. Then clearly (from the

definition of ») n; = 0 when z > 8,. When z < 5, condition (4.1) implies n, = 0.
For 81 < # € 8,,, we have '

TN{z,2+0pm,z+20p,...} =0

(in which case n; = 0) for all except finitely many #’s.
Now we claim that Ko(fmZ X, B) is isomorphic to the free abelian group

2, where each Z,, = Z. Indeed the map
1Y £ UL X Ny 4

U= (Iz[Pclo)zes 2+ +8mz (Z Iy-a,..k)
keZ YEN T+ +omur T
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@ .
is a homomorphism from Ko(B) = ze Z{P.]; onto Z Z, with
2€0, L4 +8mI v B4 b2
kernel equal to the range of 1 — (@.g, ). Hence Ko(fmZ Xo B) = Ko(B)/Ran(l —

5]
—a"gm)*) = Z Zy'
yeQ T+ - $lmarl
Next we claim that the set {{P;]p : ¢ € 61Z+- - -+0,n—12} is a basis for Ko(fmZ X a

B). Since {[P:]o : ¢ € 6,Z + --- + 8,7} generates Ky(B), and since i, is onto,
{[P:)o: 2 € 6,Z+---+08,Z} also generates Ko(0mZ X o B). It is clear from (4.1) that
ifz,y € 61Z+---+ 6mZ, then [P;]o and [Py]o are equal in Ko(fm X B) if and only
if £ —y € 0,2 Thus {[P.)o:2z € ,Z+ -+ Om-1Z} generates Ko(fmZ X B). To
show that it is a basis, assume

ni[Pr,Jo+ -+ ne[PeJo=0

in Ko(6mZ x o B), where ny,...,n; € Z and 2, ..., 23 are distinct elements of ;7 +
+++ 6p—1Z. Then n1[P;,]o + - - -+ ng[FPr,]o is in the kernel of 4,, so in the range of
1— (@_g, )« Again (4.1) easily impliesn; = ---=n; = 0.

We conclude that Ko(6mZ xo B) = S Z[P:)o. Repeat the above
20, T4 +bma X

@ . ‘
argument to get Ko(Om—1Z Xo (0 xo B)) = E Z[P:]o. Since 61 and
) €N A+ +8m—al
8 are rationally independent, we have 8y,—1Z Xo (0mZ X o B) = (0m—1Z + 6L %o B.
Hence Ko((0m-1Z + 6mZ) x4 B) = Ee Z[P;)o. Thus, after repeating the
zeﬁxl+---+0m—zl .

argument m times, we get K1(G xo B) = 0 and Ko(G x4 B) = Z[P)o. By Theorem
3.1 and [11, Theorem 1.2], we get K1(Og(G)) = 0 and Ko(Og(G)) = Z[1)o.

Finally, for arbitrary G, write G as the union of an increasing sequence of finitely

generated subgroups. The assertion of the theorem then follows by taking inductive

limits of the K-groups. n
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