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SOME COMPARABILITY RESULTS IN INDUCTIVE
LIMIT C*-ALGEBRAS

MIRCEA MARTIN and CORNEL PASNICU

1. INTRODUCTION

An important problem concerning simple C*-algebras is to state and to study
the counterpart of the classical Murray-von Neumann comparison theory for factors.
Hopeful candidates for this seem to be the following comparability questions: given a
simple C*-algebra A and two projections p and ¢ in 4, ¢ # 0, such that 7(p) < (g)
(resp. 7(p) < 7(g)) for any trace 7 on A, is p subordinate (resp. strictly subordinate)
to ¢ in the sense of Murray and von Neumann? Both these problems and some other
related ones are posed and deeply studied by B. Blackadar in [4]. Note however that
the second comparability question appears to be more reasonable.

Answers for such questions have been obtained for unital (simple) AF-algebras
by B. Blackadar [2], for the irrational rotation algebras by M. Rieffel [14], [15], and
partial results for the Choi algebras by J. Anderson, B. Blackadar and U. Haagerup
[1]. Recently, M.Dadarlat and A. Némethi [10] have got results on such problems for
certain simple C*-inductive limits of finite direct sums of matrix algebras over finite
CW-complexes.

A more general comparison theory for positive elements in a C*-algebra was de-
veloped by J. Cuntz (7], J. Cuntz and G. Pedersen [8], B. Blackadar and D. Handelman
(6], M. Rgrdam [16].

In this paper we consider mainly C*-algebras A, not necessarily simple, that are
inductive limits of finite direct sums of C*-algebras of the form C(X, M,), where X
is a compact space, and the connecting homomorphisms are injective and unital. Our
main result (Theorem 3.7) asserts in particular that if the algebra A is simple and has
slow dimension growth in the sense of B. Blackadar, M. Didarlat and M. Rgrdam [5],
then A satisfies the second comparability question and has cancellation. We introduce
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a notation of slow dimension growth for not necessarily simple C*-algebras which
coincides with that given in [5] for simple C*-algebras. In fact we prove in Theorem
3.7 that both the second comparability question and the cancellation are satisfied by
a langer class of C*-algebras called with relatively large entries (see Definition 3.6).
Theorem 3.7 gives a particular affirmative answer to a conjecture of B. Blackadar in
[4] (see also 3.1).

We also give a procedure to yield C*-inductive limits which satisfy the above
comparability questions (Proposition 3.13). This result shows in particular that the
comparability questions are sﬁape invariant.

It should be emphasized that an important tool in this paper is the use of what
we call commutative up to an equivalence on projections diagrams.

2. PRELIMINARIES

In this article we will use only unital C*-algebras. Following [4] we recall first
two definitions.

DEFINITION 2.1. Let p and ¢ projections in a C*-algebra A. Then:
(i) p is equivalent to ¢, written p ~ ¢, if there is u in A such that u*u =
=p, =g
(ii) pis subordinate to g, written p < g, if p is equivalent to a subprojection of ¢;
(iii) p is strictly subordinate to g, written p < g, if p is equivalent to a proper
subprojection of g.

DEFINITION 2.2. A C*-algebra A satisfies FCQ1 (resp. FCQ2) if whenever p
and ¢ are projections in A with ¢ # 0 and 7(p) < 7(g) (resp. 7(p) < 7(q)) for any
trace T on A, then p < ¢ (resp. p < ¢).

We have to mention that by a trace on A we mean a tracial state on 4. If 4
has no traces then FCQ1 (resp. FCQQ) simply says that p < ¢ (resp. p < ¢) for
any projections p and ¢, ¢ # 0. Note that any unital AF-algebras satisfies FCQ2 but
there is a simple AF-algebra which does not satisfy FCQL1 [2], [3, 7.6.2].

For both the fundamental comparability questions FCQ1 and FCQ2 the next
notion is convenient.

DEFINITION 2.3. Two homomorphisms &, & : A — B of C*-algebras will be
called equivalent on projections, if #(p) ~ &'(p) for any projection p in A. A diagram
of C*-algebras and homomorphisms is called commutative up to an equivalence on
projections, in short EP-commutative, if any paths in the diagram starting and ending
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at the same places provide equivalent on projections homomorphisms.

The connection with FCQ1 or FCQ2 can be explained by a simple remark. Given
an EP-commutative diagram

A —_— A
aN\, /B
B

where A, B are unital C*-algebras and «, # are unital and injective homomorphisms
we have that if B satisfies FCQ1 (resp. FCQ2) then A satisfies FCQ1 (resp. FCQ2).
Note also that any diagram commutative within homotopy is commutative up to
an equivalence on projections.
Next we shall deseribe an important, and relevant for our purposes, example of an
EP-commutative diagram (see [10]). Let us fix two C*-algebras A = é}l C(Xj, M,,),
j=
B= él C(Y;, Mp,,) with all the base spaces X; and Y; compact and connected, and a
homc::;mrphism @ : A — B. Let &% be the component of @ from A into C(Y;, Mm,).
Since any finite dimensional #-representation of A is a direct sum of some irreducible
#-representions and of a zero *-representation and since each Y; is connected, there
are uniquely determined nonnegative integers kij(1 < i € 8, 1 £ j < r) with the
following properties: '

(2.4) i =my — Ek.jn, > 1 i < 8);

forany 1 < ¢<s and any point y in Y; there exist the points :c() in X;

(1 €7 << r 1<1< ki) and a unitary u; in Mm,, which depend on ¥,
such that:
(2.5) ,
@ (@ fJ) (¥) = (@ (@f}(z"))) @oh.-) u
j=1

for every fi in C(X;, Mp)(1 <5 < 7).

Consider the finite dimensional C*-algebras F(4) = @ M,;, F(B)= @ M,,.
i=1

The homomorphism & induces a homomorphism F (&) : F(A) — F(B) given by:

(2.6) F(&) (é)aj) =P (@k,,a,@o,,,) a; € My,
j=1 =1 =1
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where, if k € Z, and a € M,, we put simply ka=a®a®---® a € M. In short we
say that F(&) is induced by the matrix of nonnegative integers [k;;]; ;. Note that if
& is injective (resp. unital) then F(&) is injective (resp. unital).

Finally, choose arbitrary elements z; € X; (1<j<r), % €Y (1 i< 5) and
let &1 : A — F(A), €3 : B — F(B) be the corresponding evaluation maps given by:

& (@f,-) =@ f), f€0Xi M),
ji=1 j=1

€2 (é}gi); @gé(ye), 9i € C(Y;, M)

i=1 i=1

Using the above description of & and F(&) it follows easily that the diagram:

@7) l l _
FA) ——— F(B)

is commutative up to an equivalence on projections. Indeed, for any projection p in
a C"-algebra of the form C(X, M,;) with X compact and connected, let us define:

dimp = dimp(z), ze€X.

.
More generally, for p = € p; a projection in A we denote
j=1

dimp = (dimp,;,dimp;, ..., dimp,) € Z.

By extending these definitions we have dimp = dime;(p) and the EP-commutativity
of diagram (2.7) just means that:

(2.8) dim &(p) = dim F(®)z1(p)
for any projection p in A. In an explicit form, relation (2.8) means:
(2.9) ~dim &) (p;) = kijdimp;, 1<i<s, 1<jg<r,

for all projections @ pj in A,

Note that F( QPW) F(®)F(P).
We end this section with a convention of notation. Whenever (A, @, 5 ) is an in-
ductive system of C*-algebras with connecting homomorphisms @m n : Ap — Am (1 <
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< n < m) we denote &, = P41, (n 2 1). Throughout this paper we shall use only
inductive systems with unital injective connecting homomorphisms.

3. RESULTS

In [4] B. Blackadar states the following conjecture (see [4, Conjecture 5.2.2]):

CONJECTURE 3.1. If A is a simple C*-algebra which is an inductive limit
limC(Xy, F.) where the X,, are compact and F, finite dimensional, then A satis-
fies FCQ2 and has cancellation.

In what follows we prove in particular that the conjecture is true under some
additional assumptions.

Before stating the results in detail we need a few preliminaries and notation.
Throughout the first part of this section let A = lim(A,, # ) be the C*-algebra
inductive limit of C*-algebras A, of the form: -

a
An = P C(Xn,5, Mpn )

i=1
with X,, ; compact spacés, [n, 5] positive integers, and with a system of connecting
unital injective homomorphisms &, , : Ap = A (1 <R m). Forany 1 i< ry
let %) denote the component of B from A, to C(Xm i, Mim,q). Since all Dnn
are injective we identity each A, with a C*-algebra of A4.

The following lemma essentially uses an argument of B. Blackadar (cf. [2, Proof

of Proposition 4.1]).

LEMMA 3.2. Let p and g be projections in some A,, with r(p) < r(q) for any
trace v on A. Then there is m 2 n such that:

dim 8, (p)(z) < dim éf;;?n(q)(m), 2 € Xmi, 1€i< rm.

Proof. As in [2] we have that under our assumptions there is m > n such that
0(Pm,n(p)) < 0(Pran(g)) for any trace o on Apm. The conclusion follows easily if one
takes o = troe:gn) where eg,,) is the component of &, in My, ;) and tr is the usual trace
on Mipm q- [ |

As a first simple consequence of this lemma we have:

ProOPOSITION 3.3. If a C*-algebra A is an inductive limit as mentioned above
such that all vector bundles over any base space X, ; are trivial, then A satisfies
FCQ2 and has cancellation.
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We omit the obvious proof. Note however that the conclusion remains true even
in the case when the connecting homomorphisms are not injective. In particular, any
C*-inductive limit of finite direct sums of interval and circle algebras satisfies FCQ2
and has cancellation.

The next lemma follows from well known results for complex vector bundles over
compact spaces (see [13]).

LEMMA 3.4. Let X be a compact space of dimension d and let p,q,r be projec-
tions in C(X, My,).

(i) If dim¢(z) — dimp(z) > ma.x{%d,l}, forallz € X, then p < ¢;

(i) fpr=0=gr, p+r ~ g+ r and dimp(z) > -;—d, for allz € X, then p ~ q.
Combining Lemma 3.2 and Lemma 3.4 we obtain the next result.

PRrOPOSITION 3.5. Let A be an inductive limit as mentioned in the introduction
of this section, where each space X,, ; has finite dimension. If p and ¢ are projections
in A with 1(p) < 7(q) for all traces 7 on A then there is a positive integer ko such
that kp <kqin A®A®---® A (k times) for any integer k 2 ko.

Proof. Because each projection in A is unitarily equivalent to a projection in
some A,, We may suppose, and we shall, that p, ¢ € 4;. By Lemma 3.2 thereisn > 1
such that:

dim 89} (p)(2) < dim 8§)(g)(2), 2 € Xnj» 1< 5 < .

Let kg = ng_anx{dim Xn,;}, denote by X; the disjoint union of k copies of X, ; and let

pi = ké,(;’; Jp), ¢ = k(b,(,’; )(q) where k > ko is some arbitrary fixed integer. By Lemma
3.4 we get that p; < ¢; in C(X;, M{s j)) for any 1 < j £ 7, hence k®, 1(p) < kPn,1(9)
in A, ® A, D - @ A, (k times). The proof is complete. n

Note that if in the above proposition A is in addition strictly unperforated [4],
then A satisfies FCQ2. The conclusion of Proposition 3.5 holds even in the case when
@ are not injective.

In order to state the main result of the paper we need some notation and a
definition.

Fix an inductive system (An, m,n) a8 mentioned in the introduction of this sec-
tion, with the additional assumption that all spaces X, ; (1 € j € rn) are connected.
For any 1 £ n £ m let us denote by {kg"’“)], 1€ i< rm, 1 €5 < rp, the matrix
which induces the homomorphism F(®p, ») : F(An) — F(Am) as in (2.6). Since &m
is unital, each row of the matrix [kg"’")] contains at least one nonzero entry.
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t Tn Tn
The unit of A, = J@ C(Xhn,j; Min ;) has the decomposition Jg eg").

DEFINITION 3.6. Let (An, ®m n) be an inductive system as above.
(i) The inductive system has slow dimension growth if for any n > 1 we have:

. dim Xms‘
lim inf max SWRD) (s) (n)
n&m i | min{dim & n(e;") : 1< j < rn and dim Prin(e; ") # 0}

(ii) The inductive system has relatively large entries if for any n > 1 there exists
m 2 n such that:

min{k{™™ : 1< j < rn and £ £ 0} > -;-dimxm,.-

foralll €£ig rm.

A C*-algebra A is said to be with slow dimension growth (resp. relatively large
entries) if there exists an inductive system (An, ®mn) which has slow dimension
growth (resp. relatively large entries) such that A = 1_i_rg(A,,, Bnn).

Obviously, slow dimension grouth implies relatively large entries.

Note that when the C*-algebra A is simple, the above notion of slow dimension
growth agrees with that introduced in {5].

In [5] it is proved that if a simple unital C*-algebra A has slow dimension growth
then the stable rank of A is one, ;;hat is, the invertible elements in A are norm dense
in A. The first instance of this result was obtained in [11], [12] under the nonessential
assumption that the dimensions of the base spaces X, ; are bounded.

THEGREM 3.7. If a C*-algebra A has relatively large entries, then A satisfies
FCQ2 and has cancellation.

Proof. Fix an inductive system (A, $m n) with relatively large entries such that
A =lm(4n, Pm,n)-

Let us consider two fixed projections p and ¢ in A with 7(p) < 7(g) for any
trace 7 on A. We may suppose that p,¢ € Al By Lemma 3.2 there is n 2> 1
such that dim di(’i(p) < dim @("%(q) for all 1 € j € r». We fix n and denote §; =
= dim 45Oi(q) dim ¢n 1(p), € J € rn. Since 6, 2 1, the relation (2.9) yields:

(3.8) dim 8%, (¢) — dim %, (p) = }: kK™ > E k("‘ ”)

=1

forallm>znand 1 i< ry.
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But A has relatively large entries, hence there is m 2> n such that min{kg."'") :
1€ i< rpand K™ £ 0} > dlmxm i forall 1< . It follows that:
(3.9) Zk(""“) > - dlme ;
j=1
for all 1 < i < rm.

Combmmg (3.8) and (3.9) we obtain
dim & o () L.
im &,’1(g) — dim &,,’; (p) > max 3 dimXpm 4,17 .

Lemma 3.4 now implies @(')l(p) < dim 45(‘)1 (¢) in C(Xpm i, Mim,qp) for any 1 < 3 € rm,
hence p < ¢ in Ap,. In conclusion, A satisfies FCQ2.

Now we want to prove that A has cancellation. It is enough to consider three
projections p, ¢, r in A; such that pr = 0 = gr and p+r ~ ¢+ r in A; and to show
that p ~ ¢ in some A,,. Moreover, we may assume, and we shall, that p, ¢, r belong
to the first term C(X1,1, My 1)) of the direct sum 4; = @ C(Xy,5, Mp 57)-

Clearly dimp = dimg so that p = 0 or ¢ = 0 unply p ~ gq. Assume in what
follows that p # 0 # ¢ and fix m > 1 satisfying forany 1 € j < r, 1 i€ rmt

(3.10) either K™ =0 or £V > %dime,s.

Tm
Let @, 1(p) = @ pi and P 1(g) = @ ¢; be the decomposition of p and ¢ in Ay =
i=1

i=1

= @ C(Xum 5, Mim 7). By (2.9) one has:
=1

(3.11) dimp; = kflm’l) dimp, dimg; = Icg"’l) dimg

forany 1 <i< .
If k‘"‘ b2 = 0 then p; = 0 = g; hence p; ~ ;. When E{™ 0 we obtain:

dimp; = dimg; > k™Y > %dime,,-.
By Lemma 3.4 one gets p; ~ ¢; in C(Xm i, M q1)- Thus p ~ q in Ap. The proof

is complete. [ ]

REMARKS 3.12.
i) From Theorem 3.7 we can obtain a result of M. Didarlat and A. Némethi in
the case of unital connecting homomorphisms (cf. [10, Proposition 2.2.1., Corollary
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2.2.4.)). In [10] the conclusions of Theorem 3.7 were obtained under the assumptions
that X, ; are finite connected CW-complexes with {dim X, ;} bounded and A is
simple and unital, but the connecting homomorphisms are not necessarily unital. In
contrast with [10] our proof avoids any K-theoretical argument.

i) Theorem 3.7 together with a result in [9] imply that any C*-crossed product
C(T")»G, where G is a dense torsion subgroup of the n-torus T® (n > 1), which
acts on T® by rotations, satisfies FCQ2 and has cancellation. In particular, any finite
tensor product of Bunce-Deddens algebras satisfies FCQ2 and has cancellation.

We end this section with a rather general result which is related to a remark
in Section 2 and, in particular, shows that the comparability questions are shape
invariant in an appropriate sense (see [10]).

PropPoSITION 3.13. Let A = lim(An, $mn) and B = lim(By, ¥,n »), where Ay,
B, are arbitrary unital C‘—a]gebra: and the connecting boﬂ;;morpbisms By Ymn
are injective and unital.

Suppose that there exists an EP-commutative diagram with unital and injective
homomorphisms ay,, and B, (n 2 1):
(3.14)

4 & Ag 2 As L4 Aq ...

a\, 6/ @\, B/ az\ Bs g\,
B B B, 2. B %

Then, A satisfies FCQL (resp. FCQ2) if and only if B satisfies FCQ1 (resp. FCQ2).

Proof. It suffices to prove only the “if” part. We identify first each A, (resp.
B,) with a C*-subalgebra of A (resp. B). Let us note then the following fact:

(3.15)  given a trace o on B, there is a trace 7 on A such that o{a,(p)) = r(p) for
any n 2 1 and all projections p in A,.

Indeed, let us consider for each n > 1 a state €, : A — C which extends
the state o o &, : A — C. Since the sequence (||Onf|)n31 is bounded, there is
a weak*-convergent subsequence (O, )i>1 having the weak® limit r. Since r(a) =

= klix{.lo oay,(a) for any a € |J A, we clearly have that 7 is a trace on A. Take now a
- nzl
projection p in some Ay,. The diagram (3.14) is EP-commutative, hence, for any n; >

2 n, we have o(an(p)) = o(¥ny,nan(p)) = o(an, Parn(p)) = Ons(Pnin(p))
O, (p). Therefore a(an(p)) = klirgxo 6. (p) = (p), so (3.15) follows.

Of course, a similar result holds when A (resp. B) is replaced with B (resp. A).
Consequently, A has traces if and only if B has traces.

As a second step in the proof let us show that:
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(3.16)  if B satisfies FCQ1 (resp. FCQ2) then A satisfies FCQ1 (resp. FCQ2).

CaAsE 1. Assume that A and B have traces. Let p and ¢ be two projections
in 4, ¢ # 0, with ¥(p) < ¥(g) (resp. $(p) < $(a)) for all traces ¥ on A. We
may suppose that p and ¢ are in A;. Since frai(g) ~ ¢ in A, we get that a;(qg)
is a nonzero projection in B;y. By (3.15) it follows that o(e1(p)) € e{a1(g)) (resp.
o(a1(p)) < o(ai(g)) for any trace o on B, hence a;(p) < @1(g) (resp. e1(p) < a1(q))
in B. By a standard argument we may suppose that ¥ia1(p) <X Wiai(g) (resp.
Pra1(p) < Pie1(q)) in By. Applying B2 we obtain 82 ¥ion(p) 2 f2 ¥iai(g) in As, so
that, by our assumption concerning the diagram (3.14), we find p < ¢ in Ag, hence
p =% g in A. Thus FCQL1 is clear. For FCQ?2 it is enough to remark that p < ¢ and
(p) < ¥(q) for all traces ¢ lead to p < ¢. The proof of Case 1 is complete. n

CASE 2. A and B have no traces. Start with p and g projections in 4, g # 0.
As above we may assume that p,q € A;. Then a;(¢) is a nonzero projection in By
and since B satisfies FCQ1 (resp. FCQ2) we may suppose that ¥ia;(p) < ¥roi(g)
(resp. Vrai(p) < ¥11(g)) in Bs.

Arguing as above we may suppose that p < ¢ in Ag. If B satisfies FCQ2, then,
since B3 is injective, it follows that fs #1a1(p) < B2 Vra1(g), or, the diagram (3.14)
being EP-commutative, p < ¢ in As. The proof is complete. |

REFERENCES

1. ANDERSON, J.; BLACKADAR, B.; HAAGERUP, U., Minimal projections in the reduced
C*-algebra of Zn % Zy, J. Operator Theory, to appear.
2. BLACKADAR, B., Traces on simple AF C*-algebras, J. Functional Anal., 38(1980}, 156—
168.
3. BLACKADAR, B., K-Theory for operator algebras, MSRI Publication Series, Springer-
Verlag, New York-Heidelberg-Berlin-Tokyo, 1986.
4. BLACKADAR, B., Comparison theory for simple C®-algebras, Operator Algebras and
Applications, L.M.S. Lecture Notes Series, 135(1989), 21-54.
5. BLACKADAR, B.; DXDARLAT, M.; R@RDAM, M., The real rank of inductive limit €*-
algebras, preprint.
6. BLACKADAR, B.; HANDELMAN, D., Dimension functions and traces on C*-algebras, J.
Functional Anal., 45(1982), 207-340.
7. CunTZ, J., Dimension functions on simple C*-algebras, Math. Ann., 233(1978), 145~
153.
8. CuNTZ, 1.; PEDERSEN, G., Equivalence and traces on C*-algebras, J. Functional. Anal.,
38(1979), 135-164.
9. DADARLAT, M., Inductive limits of C*-algebras related to some coverings, Indizna Univ.
Math. J., 37(1988), 135-143.
10. DXDARLAT, M.; NEMETHI, A., Shape theory and connective K-Theory, J. Operator
Theory, 23{1990), 207-291.



SOME COMPARABILITY RESULTS IN INDUCTIVE LIMIT C*-ALGEBRAS 147

11

12

13
14

15

16

. DXDARLAT, M.; NaGy, G.; NEMETEI, A.; Pasnicu, C., Réduction du rang stable
topologique dans C*-algtbres limites inductives, C.R. Acad. Sci., Paris, t. 312
Série 1(1991), 107-108.

. DXDARLAT, M.; NAGY, G.; NEMETHI, A.; PasNicy, C., Reduction of stable rank in
inductive limits C*-algebras, Pacific J. Math., 153(1992), 267-276.

. HUSEMOLLER, D., Fibre bundles, Springer Verlag, 1966.

. RIEFFEL, M., Dimension and stable rank in the K-Theory of C™*-algebras, Proc. London
Math. Soc., 46(1983), 301-333.

. RIEFFEL, M., The cancellation theorem for projective modules over irrational rotation
algebras, Proc. London Math. Soc., 47(1983), 285-302.

. R@rRDAM, M., On the structure of simple C*-algebras tensored with a UHF-algebra, II,

preprint 1989,

MIRCEA MARTIN
Institute of Mathematics
of the Romanian Academy,
C.P. 1-764, Bucharest
RO-70700,
Romania.

current address:
Department of Mathematics,
University of Kansas,
405 Snow Hall,
Lawrence, KS 66045,
U.S.A.

Received June 10,

CORNEL PASNICU
Institute of Mathematics
of the Romanian Academy,
C.P. 1-764, Bucharest
RO-70700,
Romania.

current address:
Department of Mathematics,
University of Puerto Rico,
P.O. Box 23355,
Rio Piedras, PR 00931-3355,
U.5.A.

1991.



