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C"-ALGEBRAS OF UNITARY RANK TWO

UFFE HAAGERUP and MIKAEL RORDAM

1. INTRODUCTION

The Russo-Dye Theorem from 1966 [22] states that the convex hull of the unitary
elements in a unital C*-algebra A is norm-dense in its unit ball. For each a € 4; =
= {a € Al|le]] € 1} let u(a), the unitary rank of 4, be the least number of unitary
elements in a convex combination of unitaries representing a, and let u(a) = oo if no
such representation exists. It is well known that if ||a|} < 1, then a is in the convex
hull of U(A), the unitaries in A, and so u(a) < oo (cf. {13], [8], [20] and [4]). This was
improved in [16] and [9] to give upper bounds for u(a) depending on |a|l; the closer
llal} is to 1, the rhore unitaries are needed in general. In [12] and [23] the unitary rank
u(a) is expressed as a function of the distance a(a), from a to Ainy, the invertible
elements in A. More precisely, if u(a) € n and n 2 2, then afa) < 1~ %; and if

afa) <1~ 2 and a € A;, then u(a) < n. Hence, if A,y is dense in A — a condition
on A which frequently is written sr(A4) == 1 where ‘sz’ is M. Rieffel’s stable rank [19]
— then u(a) < 8 for all a € A;. If Ajp, 1s not dense in A, then there is b € A with
18]} = a(b) = 1 and so u(b) = oo, i.e. b is not in the convex hull of U(A4) (see [23D).
<t<1-2,

n

Moreover, u(th) =n if 1 — —

Let u(A), the (maximum) unitary rank of A, be sup{u(a)|a € A;}. Then, from
the above (see also [23]), u(A) is two or three if sr(A4) = 1, and u(A) = oo is sr(A4) # 1.
As noted in [9], if A is a finite von Neumann algebra, then u(4) = 2, and in [18] it
is proved that u(A4) = 3 if A is an infinite dimensional AF-algebra or an irrational
rotation algebra (the latter also requires I. Putnam’s result that have these stable
rank one [17]).

This paper characterizes C'*-algebras of unitary rank two in most cases of interest.
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In particular, the following will be established:

THEOREM 11

1. Every separable unital C*-algebra of unitary rank two is finite dimensional.

2. Every simple, infinite dimensional C”-algebra of unitary rank two is an AW*-
-factor of type Il;.

2. THE MAIN RESULT

DEFINITION 2.1. Let A be a C*-algebra.

a) Two elements z,y € A are orthogonal if zy = yz = 2¢* = 2*y = 0.

b) A is called o-finite if any orthogonal family (#;);¢; of non-zero elements in A
is countable.

DEFINITION 2.2. Following Kaplansky [10], A is said to be an AW*- algebra if

() each maximal abelian subalgebra of A is generated by its projections, and

(B) each orthogonal family of projections in A has at least upper bound.
Moreover, A is called finite if

(7) v € A and v*v = 1 implies vv* = 1.

THEOREM 2.3. Let A be a c-finite unital C*-algebra. Then the following three
conditions are equivalent.
(i) A has unitary rank two, i.e. every z € A, can be written as z = %(ui +vy) where
v1,02 € U (A)‘
(ii) Every z € A has a polar decomposition z = u|z| where u € U(A).
(iii) A is a finite AW*-algebra.

2.4. We prove here that Theorem 1.1 follows from Theorem 2.3.

1. Assume A is separable and that (z:);y is an orthogonal family in A with
[lzi]l = 1 for all i. Then ||z; — z;|| = 1 if i # j, and so I must be countable. It
follows from (i) = (iii) in Theorem 2.3 that if also A is of unitary rank two, then A
is an AW"- algebra. The conclusion of (1) now follows, because all separable AW*-
-algebras are finite dimensional.

2. Assume now that A is simple and of unitary rank two. Then, as mentioned
in the introduction, sr(A) = 1, which again implies that A is stably finite (see [19]).
Hence A admits a (faithful) Cuntz dimension function D (see [3]). Let (z:);c; be a

family of non-zero orthogonal elements in A. Then ED(z;) < 1,and D(z;) > 0 for
i€l

all € I. Hence I is countable, and A is o-finite. Again, (i) = (iii) in Theorem 2.3

implies that A is a finite AW*- algebra, which must be a type II;-factor because A4 is
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simple and infinite dimensional.

COROLLARY 2.5. Let A be a unital o-finite C*-algebra and let n € N. Then A
and M, (A) have the same unitary rank.

Proof: Combining Theorem 2.3 with results from [23] mentioned in the intro-
duction, u(4) = oo if sr(A) # 1, u(A) = 3 if st(A) = 1 and A is not a (finite)
AW*-algebra, and u(A) = 2 if A is a finite AW"-algebra. The latter properties are
known to be stable. o

2.6. The proof of Theorem 2.3 involves the following fourth property:
(i)’ Every z € A is of the form z = va with v € U(4) and a = a* € A.

It will be proved that (i), (ii), (ii)’ and (iii) are equivalent for o-finite C*-algebras.
The critical part lies in proving (ii)’ => (i), and this is done in Section 5. That (i)
implies (ii)’ is proved in [15]. For completeness the brief proof is included in Section 3
together with the remaining implications of Theorem 2.3.

The assumption that A is o-finite is used in the proofs of (ii)’ = (ii) and of (ii) =
= (iii). For the latter implication, o-finiteness is necessary as illustrated in Example
3.5. The o-finiteness is crucial in the present proof of (ii)’ = (ii). It is not clear to
the authors if the implication remains valid without this assumption.

3. PROOF OF THEOREM 2.2, PART I

The implications (ii) = (iil) = (ii) = (i) = (i)’ of Theorem 2.3 (cf. 2.6) are
proved. It should be stressed that none of these implications are new, and we have
included this section only as a service to the reader.

3.1. (ii) = (iii). This implication is almost contained in Proposition 2.3 of
D. Handelman’s'paper [7], where it is proved that A is an AW*-algebra if A is o-finite
and is Rp-injective (a polar decomposition property). The Ro-injectivity can, without
changing the proof in [7], be replaced with the following (SAW*-algebra [14]) condi-
tion: For every pair or orthogonal elements # and y in A there is an element p in A
such that zp = 2 and yp = 0.

Assume that A satisfies (ii), and let z and y be orthogonal elements in A (which
without loss of generality can be assumed to be positive). Then z — y has a polar
decomposition 2 —y = u(z +y) = (zx+y)u*, and so (¢+y)p =z when p= -;—(u‘ +1).

Hence, by [7], (ii) and o-finiteness implies that A is an AW*- algebra. Also, 4
is finite because if v*v = 1, then |v| = 1 and so v is unitary by (ii).
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3.2. (iii) = (ii). Assume A is a finite AW*- algebra and let z € A. From [,
Proposition 21.1], z has a polar decomposition z = v|z|, where v € A is a partial
isometry. Because A is finite, v extends to a unitary u in A ([1], Proposition 17.4).
that is uv*v = v, and it follows that z = v|z|.

3.3. (ii) = (i). This is an elementary and classical fact: Let z € A with J|z|| < 1
be given. Write 2 = u|z| for some unitary u € A. Then

2= zu (|z| +i(1 - mﬁ*) +3u (el = i1 - |2[))

is the mean of two unitaries.

3.4. (i) = (ii)’. It suffices to write all z € A with ||z]| < 1 as z = ua with
u € U(A) and a = a* € A. By assumption there are unitaries v, and vs in A such
that z = %(vl + v2). Set

1
c= 5(01 - vz),

and check that [¢|> = 1 - |z|? and |¢*|® = 1 — [2*|°. Conclude that ¢ is invertible and
u = c|e|™! is unitary. From ¢*z = z*c one obtains u*z = z*u, and so ¢ = u*z is
self-adjoint. This yields z = ua as required.

Note that in fact (i) and (ii)’ are equivalent for all unital C*-algebras.

ExaMPLE 3.5. The implication (ii) = (iii) without the assumption that A is
o-finite is not true in general as this example shows:

Consider the extension

£2(N)
o(N)

Property (ii) holds for £°(N) because £°(N) is a finite von Neumann algebra. It

follows that (ii) also holds in the quotient ((N)) But —-%-)-)— is not an AW*-

algebra. This follows by the same argument as in the proof that the Calkin Algebra

Fe H; is not an AW™-algebra given in [11] p.222.

G. Robertson proves in [21] that if A is abelian, then conditions (i) and (ii) are
equivalent for A, and they are again equivalent to the spectrum A of A being an
F-gpace of dimension at most 1 (by definition, A is an F-space if disjoint cozero sets

of A have disjoint closures).

0= colN) = £2(N) » = 0.
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4, THE RELATIVE POINT SPECTRUM

A key step in proving (ii)’ = (ii) lies in the observation that if 4 is o-finite and
a € A is normal, then there are at most countably many A € C such that az = Az for

some non-zero r € A.

DEFINITION 4.1. Let A be a C*-algebra, and let a € A.
a) For A € C set
E(a,)) = {z € A|az = Jz}.

b) The set
A(a) = {» € C| E(a, A} # {0}}
will be called the point spectrum of a relative to A.

¢) Say that a has pure point spectrum relative to A if z € A and zy = 0 for all
¥ € Uxec E(a, ) implies z = 0.

Note that E(a,]) is a closed right-ideal in A, and that A(a) is contained in the
spectrum of a. In B(H), the algebra of all bounded operators on a Hilbert space H,
A(a) is the (usual) point spectrum of a € B(H).

PROPOSITION 4.2. Assume A is a o-finite C*-algebra and a € A is normal. Then
A(A) is countable.

Proof: An easy computation shows that if @ € A is normal and az = Az for some
z € A and A € C, then a*z = Az. For each ) € A(a) choose a non-zero z € E(a,A)
and set z) = zaz}. If A\, u € A(a), then

pzazy = 2naz, = (a*2)) 20 = (32x) 24 = Az,

Hence (2} 5¢a(q) i8 an orthogonal family, and therefore A(a) is countable. |

LEMMA 4.3. Let ay and a- be orthogonal positive elements in a C*-algebra A.
Then
Alag —a- YU {0} = A(ay) U—A(a-).

Proof: Assume first that (a4 —~ a_)z = Az for some non-zero scalar A and some
non-zero z € A. Then either a,z or a_z is non-zero. Multiplying (a4 — a-)z = Az
from the left with a; and a_ yields

ay(asz) = Aapz and a_(a-z) = —Aa_z.

Hence either A € A(a;) or —A € A(a-).
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Suppose ayz = Az and a_y = uy for some non-zero scalars A and g, and some
non-zero z,y € A. Then a_z = ( = ayy. So

(4 —a-)e =2z and (a4 —a-)y=—py,

which implies that A and —u are in A(ay —a-). n

5. PROOF OF THEOREM 2.2, PART II

This section contains the proof of (ii) => (ii). The proof uses the concept of
relative spectrum discussed above. Throughout this section A will be assumed to be
a unital o-finite C*-algebra satisfying property (ii)’.

LEMMA 5.1. Assume that a = a* € A has a pure point spectrum relative to A,
and that A(a) N A(—a) C {0}. Then a = u|a] for some unitary u in A.

Proof: Since (ii)' holds in A, thare is a unitary v in A such that
ai +ﬂiaf = vb,
where b = b* € A. Note that b2 = |a], and because vb is normal, v commutes with
b2 = |a| and with a2 = |a|2.
Let X € A(g) and let z € E(a, A} so that az = Az. Then
(a+ Al)(a — Al)vz = (0% — A% - Dz = v(a® — A% - 1)z = v(a + Al)(a — A1)z = 0.
If A # 0, then —X ¢ A(a), and so (a — Al)vz = 0. This proves

avz = vz = vaz,

and hence (av — va)z = 0 for all z € UpecE(a, A). This entails av = va by the
assumption that a has pure point spectrum relative to A.
Since vb = a;}, +ia? is a function of a,v also commutes with b. Thus

2
a= (af_ +iai) = vbvb = v?b? = v?|a,

and we may take u = v2. . [ |

LEMMA 5.2. Let a = a* € A, and let f : R — R be a continuous function such
that f(t) > 0 for allt > 0, f(0) = 0, and f(t) < 0 for allt < 0. Assume f(a) = u|f(a)|
for some unitary u in A. Then a = ula|.
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Proof: Let By and B_ be the norm-closed hereditary subalgebras of A generated
by f(a),, respectively f(a)_. If f(a) = u|f(a)], then ub = b for all b € By, and
ub = —b for all b € B_. The assumptions on f imply that ¢4 € By and a_ € B_.

Hence a = ulal. a

LEMMA 5.3. Assume that a = a* € A has pure point spectrum relative to A.
Then a = ula| for some unitary u in A.

Proof: By Proposition 4.2 the sets A{ay) and A{a_) are countable. Hence
Aas) NtA(e-) € {0}
for some ¢ € (0, 1). For this ¢, use Lemma 4.3 to see that
A(ay —ta) N =Afas — ta_) € {0}.
Lemma 5.1 now produces a unitary « in A such that ay ~ta- = ufa; —ta_|, and by
Lemma 5.2, a = ulal. [

5.4. CANTOR SETS AND CANTOR FUNCTIONS. Let Sg C [0, %] be the (non-

-standard) Cantor set

2]
So = {Zb,—fl"j | =0 or b = 1},

i=1

5 . . . 1
and recall that S; is compact with no interior points. Let fo : [0, 5] — [0, 1] be the
corresponding Cantor function which is the unique increasing continuous extension of
the function that on S; is

fo (2 bj4"'j) = ij2‘j, b; € {0,1}.
j=1

i=

Note that So—Sg C {—%, % is homeomc;rphic to {0, 1,2} and therefore also compact

without interior points (¢f. [6], proof of Lemma 2.2). Let § = Sg+ Z. Then S and
S — S are closed and have no interior points. Extend fy to a continuous increasing
function f : R — R by

1
f‘(t)=n: tE[n+§,n+1], nGZ,

fE+n)=fo@®)+n, t€(0,1], nel,
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and note that f(n) = n for all n € Z. Moreover, f is constant on each connected

component of the complement of S.
LeMmMa 5.5. With the notation of 5.4, there is an uncountable set T' C R such
that for all distinct v, and 43 in T,

B+1)NE+y)=0.

Proof: Let I' C R be maximal with respect to
(T -T)N(S - S) = {0}.

Then, clearly, (S + 1) N (S +42) = @ for distinet 41, ¥2 € I'. Suppose I' is countable.
Then by Baire’s theorem
UvEF(S - S) +7 '-lé R.
Choose 70 & Uyer(S — S) + v, and set Ty = I'U {yp}. Note that v ¢ I', because
0 € S — 5. By the choice of 7y,
(-TIN(ES-S)=8 and T-1)N(S-S5)=0.

Hence (I'; — I'1),N(S — §) = {0} which contradicts the maximality of T. |
5.6. With the notation of 5.4, set

Fo(t) = exp(f(log(2))), te€RY,

and extend Fp to an increasing continuous function F : R — R by setting F(0) = 0
and F(—t) = Fy(t) for t € R*. Notice that F(t) > 0 for all # > 0, and F(t) < 0 for
allt < 0. Put

L = exp(S) U{0} U —exp(5).

Then, by construction, L is closed, and F is constant on each connected component
of the complement of L. Set T = exp(T') C R*.

LEMMA 5.7. Ifty,ts € T are distinct, then

tHhhLNiL = {‘0}

Proof: Set v; = log(t;) so 71 and 72 are distinct elements of I'. The intersection
of tyLNtaL with R, respectively R~, are

exp((S+m)N(S+712)) and —exp((S+n)N(S+7)).
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By Lemma 5.5 these two sets are empty. [..]
5.8. The next lemma only assumes the o-finiteness of A.

LEMMA. Let a be a self-adjoint element in A. Then there is an s > 0 such that
F(sa) has pure point spectrum relative to A. '

Proof: We may assume A C B(H) for some Hilbert space H. Set
pr=xiz{a) for t€T, and g = x{o(a),

p: and q are projections on H. From Lemma 5.7, ps, p:, = ¢ for all pairs of distinct
11,12 € T. Set also
L={zeA|lzp:=2}, teT.

We claim that I,  E(a,0)" for at least one ¢ € T. Suppose otherwise, and choose
2 € L\E(a,0)" for each t € T. Then by = az}z.a is non-zero, peb: = bypy = by and
gbs = byg = 0. Hence (bt),cr is an orthogonal family in A, in contradiction with T
being uncountable and A being o-finite.
Now, choose t € T such that I; C E(a,0)*, and set s = t~. Suppose z € A is
such that
zy=0 forall yeUsrE(F(sa),]).

Let I be a connected component of the open set L¢, and let g be a continuous funetion
supported on UU. Then Fg = Ag where A is the constant value F' attains on U, and so
g(sa) € E(F(sa),)). Because each g € C.(L®) is a finite sum of fiinctions supported
on connected components of L¢, we have

zg(sa) =0 forall g€ Ce(Lf).
Because 1 — p; = xr-(sa), this implies (1 — p¢) = 0, and so
z* € E(a,0) = E(F(2a),0).

Thus zz* = 0, so £ = 0, and F(sa) has pure point spectrum. n

5.9. Proof of (i)’ = (ii): It suffices to show that each self-adjoint a € A is of
the form a = ula| for some unitary u in A. By Lemma 5.8 there is s € R* such that
F(sa) has pure point spectrum relative to A. From Lemma 5.3 there is a unitary u
in A such that F(sa) = u|F(sa)|, and by Lemma 5.2, a = ula| as wanted.

5.10. It should in conclusion be noted that if z = ub in some C*-algebra A4,
where z is normal, u is unitary and b is self-adjoint, then it does not follow that u
and b must commute. As a counterexample take A = C([0, 1], M2),
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z(t):(; 3) u(t):(? ;) and b(t):(g ;)

Moreover, in the C*-algebra generated by z,u and b there is no unitary v such that

= v|:c|.
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