C*-ALGEBRAS OF UNITARY RANK TWO

UFFE HAAGERUP and MIKAEL RØRDAM

1. INTRODUCTION

The Russo-Dye Theorem from 1966 [22] states that the convex hull of the unitary elements in a unital C^* -algebra A is norm-dense in its unit ball. For each $a \in A_1 = \{a \in A \mid ||a|| \le 1\}$ let u(a), the unitary rank of a, be the least number of unitary elements in a convex combination of unitaries representing a, and let $u(a) = \infty$ if no such representation exists. It is well known that if ||a|| < 1, then a is in the convex hull of U(A), the unitaries in A, and so $u(a) < \infty$ (cf. [13], [8], [20] and [4]). This was improved in [16] and [9] to give upper bounds for u(a) depending on ||a||; the closer ||a|| is to 1, the more unitaries are needed in general. In [12] and [23] the unitary rank u(a) is expressed as a function of the distance $\alpha(a)$, from a to A_{inv} , the invertible elements in A. More precisely, if $u(a) \le n$ and $n \ge 2$, then $\alpha(a) \le 1 - \frac{2}{n}$; and if $\alpha(a) < 1 - \frac{2}{n}$ and $a \in A_1$, then $u(a) \le n$. Hence, if A_{inv} is dense in A— a condition on A which frequently is written $\operatorname{sr}(A) = 1$ where 'sr' is M. Rieffel's stable rank [19]— then $u(a) \le 3$ for all $a \in A_1$. If A_{inv} is not dense in A, then there is $b \in A$ with $||b|| = \alpha(b) = 1$ and so $u(b) = \infty$, i.e. b is not in the convex hull of U(A) (see [23]). Moreover, u(tb) = n if $1 - \frac{2}{n-1} < t < 1 - \frac{2}{n}$.

Let u(A), the (maximum) unitary rank of A, be $\sup\{u(a) \mid a \in A_1\}$. Then, from the above (see also [23]), u(A) is two or three if $\operatorname{sr}(A) = 1$, and $u(A) = \infty$ is $\operatorname{sr}(A) \neq 1$. As noted in [9], if A is a finite von Neumann algebra, then u(A) = 2, and in [18] it is proved that u(A) = 3 if A is an infinite dimensional AF-algebra or an irrational rotation algebra (the latter also requires I. Putnam's result that have these stable rank one [17]).

This paper characterizes C^* -algebras of unitary rank two in most cases of interest.

In particular, the following will be established:

THEOREM 1.1.

- 1. Every separable unital C*-algebra of unitary rank two is finite dimensional.
- Every simple, infinite dimensional C*-algebra of unitary rank two is an AW*-factor of type II₁.

2. THE MAIN RESULT

DEFINITION 2.1. Let A be a C^* -algebra.

- a) Two elements $x, y \in A$ are orthogonal if $xy = yx = xy^* = x^*y = 0$.
- b) A is called σ -finite if any orthogonal family $(x_i)_{i \in I}$ of non-zero elements in A is countable.

DEFINITION 2.2. Following Kaplansky [10], A is said to be an AW*- algebra if

- (α) each maximal abelian subalgebra of A is generated by its projections, and
- (β) each orthogonal family of projections in A has at least upper bound. Moreover, A is called finite if
 - (γ) $v \in A$ and $v^*v = 1$ implies $vv^* = 1$.

THEOREM 2.3. Let A be a σ -finite unital C*-algebra. Then the following three conditions are equivalent.

- (i) A has unitary rank two, i.e. every $x \in A_1$ can be written as $x = \frac{1}{2}(v_1 + v_2)$ where $v_1, v_2 \in U(A)$.
- (ii) Every $x \in A$ has a polar decomposition x = u|x| where $u \in U(A)$.
- (iii) A is a finite AW*-algebra.
 - 2.4. We prove here that Theorem 1.1 follows from Theorem 2.3.
- 1. Assume A is separable and that $(x_i)_{i\in I}$ is an orthogonal family in A with $||x_i|| = 1$ for all i. Then $||x_i x_j|| = 1$ if $i \neq j$, and so I must be countable. It follows from (i) \Rightarrow (iii) in Theorem 2.3 that if also A is of unitary rank two, then A is an AW*- algebra. The conclusion of (1) now follows, because all separable AW*-algebras are finite dimensional.
- 2. Assume now that A is simple and of unitary rank two. Then, as mentioned in the introduction, $\operatorname{sr}(A)=1$, which again implies that A is stably finite (see [19]). Hence A admits a (faithful) Cuntz dimension function D (see [3]). Let $(x_i)_{i\in I}$ be a family of non-zero orthogonal elements in A. Then $\sum_{i\in I} D(x_i) \leq 1$, and $D(x_i) > 0$ for all $i\in I$. Hence I is countable, and A is σ -finite. Again, (i) \Rightarrow (iii) in Theorem 2.3

all $i \in I$. Hence I is countable, and A is σ -finite. Again, (i) \Rightarrow (iii) in Theorem 2.3 implies that A is a finite AW*- algebra, which must be a type II₁-factor because A is

simple and infinite dimensional.

COROLLARY 2.5. Let A be a unital σ -finite C^* -algebra and let $n \in \mathbb{N}$. Then A and $M_n(A)$ have the same unitary rank.

Proof: Combining Theorem 2.3 with results from [23] mentioned in the introduction, $u(A) = \infty$ if $sr(A) \neq 1$, u(A) = 3 if sr(A) = 1 and A is not a (finite) AW*-algebra, and u(A) = 2 if A is a finite AW*-algebra. The latter properties are known to be stable.

- 2.6. The proof of Theorem 2.3 involves the following fourth property:
- (ii) Every $x \in A$ is of the form x = va with $v \in U(A)$ and $a = a^* \in A$.

It will be proved that (i), (ii), (ii)' and (iii) are equivalent for σ -finite C^* -algebras. The critical part lies in proving (ii)' \Rightarrow (ii), and this is done in Section 5. That (i) implies (ii)' is proved in [15]. For completeness the brief proof is included in Section 3 together with the remaining implications of Theorem 2.3.

The assumption that A is σ -finite is used in the proofs of (ii)' \Rightarrow (ii) and of (ii) \Rightarrow \Rightarrow (iii). For the latter implication, σ -finiteness is necessary as illustrated in Example 3.5. The σ -finiteness is crucial in the present proof of (ii)' \Rightarrow (ii). It is not clear to the authors if the implication remains valid without this assumption.

3. PROOF OF THEOREM 2.2, PART I

The implications (ii) \Rightarrow (iii) \Rightarrow (ii) \Rightarrow (ii) \Rightarrow (ii)' of Theorem 2.3 (cf. 2.6) are proved. It should be stressed that none of these implications are new, and we have included this section only as a service to the reader.

3.1. (ii) \Rightarrow (iii). This implication is almost contained in Proposition 2.3 of D. Handelman's paper [7], where it is proved that A is an AW^* -algebra if A is σ -finite and is \aleph_0 -injective (a polar decomposition property). The \aleph_0 -injectivity can, without changing the proof in [7], be replaced with the following (SAW^* -algebra [14]) condition: For every pair or orthogonal elements x and y in A there is an element p in A such that xp = x and yp = 0.

Assume that A satisfies (ii), and let x and y be orthogonal elements in A (which without loss of generality can be assumed to be positive). Then x - y has a polar decomposition $x - y = u(x + y) = (x + y)u^*$, and so (x + y)p = x when $p = \frac{1}{2}(u^* + 1)$.

Hence, by [7], (ii) and σ -finiteness implies that A is an AW^* - algebra. Also, A is finite because if $v^*v = 1$, then |v| = 1 and so v is unitary by (ii).

- 3.2. (iii) \Rightarrow (ii). Assume A is a finite AW^* algebra and let $x \in A$. From [1, Proposition 21.1], x has a polar decomposition x = v|x|, where $v \in A$ is a partial isometry. Because A is finite, v extends to a unitary u in A ([1], Proposition 17.4). that is $uv^*v = v$, and it follows that x = v|x|.
- 3.3. (ii) \Rightarrow (i). This is an elementary and classical fact: Let $x \in A$ with $||x|| \le 1$ be given. Write x = u|x| for some unitary $u \in A$. Then

$$x = \frac{1}{2}u\left(|x| + i(1 - |x|^2)^{\frac{1}{2}}\right) + \frac{1}{2}u\left(|x| - i(1 - |x|^2)^{\frac{1}{2}}\right)$$

is the mean of two unitaries.

3.4. (i) \Rightarrow (ii)'. It suffices to write all $x \in A$ with ||x|| < 1 as x = ua with $u \in U(A)$ and $a = a^* \in A$. By assumption there are unitaries v_1 and v_2 in A such that $x = \frac{1}{2}(v_1 + v_2)$. Set

$$c = \frac{1}{2i}(v_1 - v_2),$$

and check that $|c|^2 = 1 - |x|^2$ and $|c^*|^2 = 1 - |x^*|^2$. Conclude that c is invertible and $u = c|c|^{-1}$ is unitary. From $c^*x = x^*c$ one obtains $u^*x = x^*u$, and so $a = u^*x$ is self-adjoint. This yields x = ua as required.

Note that in fact (i) and (ii)' are equivalent for all unital C^* -algebras.

Example 3.5. The implication (ii) \Rightarrow (iii) without the assumption that A is σ -finite is not true in general as this example shows:

Consider the extension

$$0 \to c_0(\mathsf{N}) \to \ell^{\infty}_{\varsigma}(\mathsf{N}) \to \frac{\ell^{\infty}(\mathsf{N})}{c_0(\mathsf{N})} \to 0.$$

Property (ii) holds for $\ell^{\infty}(\mathbb{N})$ because $\ell^{\infty}(\mathbb{N})$ is a finite von Neumann algebra. It follows that (ii) also holds in the quotient $\frac{\ell^{\infty}(\mathbb{N})}{c_0(\mathbb{N})}$. But $\frac{\ell^{\infty}(\mathbb{N})}{c_0(\mathbb{N})}$ is not an AW^* -algebra. This follows by the same argument as in the proof that the Calkin Algebra $\frac{B(H)}{K(H)}$ is not an AW^* -algebra given in [11] p.222.

G. Robertson proves in [21] that if A is abelian, then conditions (i) and (ii) are equivalent for A, and they are again equivalent to the spectrum \hat{A} of A being an F-space of dimension at most 1 (by definition, \hat{A} is an F-space if disjoint cozero sets of \hat{A} have disjoint closures).

4. THE RELATIVE POINT SPECTRUM

A key step in proving (ii)' \Rightarrow (ii) lies in the observation that if A is σ -finite and $a \in A$ is normal, then there are at most countably many $\lambda \in \mathbb{C}$ such that $ax = \lambda x$ for some non-zero $x \in A$.

DEFINITION 4.1. Let A be a C^* -algebra, and let $a \in A$.

a) For $\lambda \in \mathbb{C}$ set

$$E(a,\lambda) = \{x \in A \mid ax = \lambda x\}.$$

b) The set

$$\Lambda(a) = \{ \lambda \in \mathbb{C} \mid E(a, \lambda) \neq \{0\} \}$$

will be called the point spectrum of a relative to A.

c) Say that a has pure point spectrum relative to A if $x \in A$ and xy = 0 for all $y \in \bigcup_{\lambda \in \mathbb{C}} E(a, \lambda)$ implies x = 0.

Note that $E(a, \lambda)$ is a closed right-ideal in A, and that $\Lambda(a)$ is contained in the spectrum of a. In B(H), the algebra of all bounded operators on a Hilbert space H, $\Lambda(a)$ is the (usual) point spectrum of $a \in B(H)$.

PROPOSITION 4.2. Assume A is a σ -finite C^* -algebra and $a \in A$ is normal. Then $\Lambda(A)$ is countable.

Proof: An easy computation shows that if $a \in A$ is normal and $ax = \lambda x$ for some $x \in A$ and $\lambda \in \mathbb{C}$, then $a^*x = \bar{\lambda}x$. For each $\lambda \in \Lambda(a)$ choose a non-zero $x_{\lambda} \in E(a, \lambda)$ and set $z_{\lambda} = x_{\lambda}x_{\lambda}^*$. If $\lambda, \mu \in \Lambda(a)$, then

$$\mu z_{\lambda} z_{\mu} = z_{\lambda} a z_{\mu} = (a^* z_{\lambda})^* z_{\mu} = (\bar{\lambda} z_{\lambda})^* z_{\mu} = \lambda z_{\lambda} z_{\mu}.$$

Hence $(z_{\lambda})_{\lambda \in \Lambda(a)}$ is an orthogonal family, and therefore $\Lambda(a)$ is countable.

LEMMA 4.3. Let a_+ and a_- be orthogonal positive elements in a C^* -algebra A. Then

$$\Lambda(a_+ - a_-) \cup \{0\} = \Lambda(a_+) \cup -\Lambda(a_-).$$

Proof: Assume first that $(a_+ - a_-)x = \lambda x$ for some non-zero scalar λ and some non-zero $x \in A$. Then either a_+x or a_-x is non-zero. Multiplying $(a_+ - a_-)x = \lambda x$ from the left with a_+ and a_- yields

$$a_+(a_+x) = \lambda a_+x$$
 and $a_-(a_-x) = -\lambda a_-x$.

Hence either $\lambda \in \Lambda(a_+)$ or $-\lambda \in \Lambda(a_-)$.

Suppose $a_+x = \lambda x$ and $a_-y = \mu y$ for some non-zero scalars λ and μ , and some non-zero $x, y \in A$. Then $a_-x = 0 = a_+y$. So

$$(a_+ - a_-)x = \lambda x$$
 and $(a_+ - a_-)y = -\mu y$,

which implies that λ and $-\mu$ are in $\Lambda(a_+ - a_-)$.

5. PROOF OF THEOREM 2.2, PART II

This section contains the proof of (ii)' \Rightarrow (ii). The proof uses the concept of relative spectrum discussed above. Throughout this section A will be assumed to be a unital σ -finite C*-algebra satisfying property (ii)'.

LEMMA 5.1. Assume that $a = a^* \in A$ has a pure point spectrum relative to A, and that $\Lambda(a) \cap \Lambda(-a) \subseteq \{0\}$. Then a = u|a| for some unitary u in A.

Proof: Since (ii)' holds in A, there is a unitary v in A such that

$$a_{\perp}^{\frac{1}{2}} + ia_{\perp}^{\frac{1}{2}} = vb,$$

where $b = b^* \in A$. Note that $b^2 = |a|$, and because vb is normal, v commutes with $b^2 = |a|$ and with $a^2 = |a|^2$.

Let $\lambda \in \Lambda(a)$ and let $x \in E(a, \lambda)$ so that $ax = \lambda x$. Then

$$(a+\lambda 1)(a-\lambda 1)vx=(a^2-\lambda^2\cdot 1)vx=v(a^2-\lambda^2\cdot 1)x=v(a+\lambda 1)(a-\lambda 1)x=0.$$

If $\lambda \neq 0$, then $-\lambda \notin \Lambda(a)$, and so $(a - \lambda 1)vx = 0$. This proves

$$avx = \lambda vx = vax.$$

and hence (av - va)x = 0 for all $x \in \bigcup_{\lambda \in \mathbb{C}} E(a, \lambda)$. This entails av = va by the assumption that a has pure point spectrum relative to A.

Since $vb = a_+^{\frac{1}{2}} + ia_-^{\frac{1}{2}}$ is a function of a, v also commutes with b. Thus

$$a = \left(a_+^{\frac{1}{2}} + ia_-^{\frac{1}{2}}\right)^2 = vbvb = v^2b^2 = v^2|a|,$$

and we may take $u = v^2$.

LEMMA 5.2. Let $a = a^* \in A$, and let $f : \mathbb{R} \to \mathbb{R}$ be a continuous function such that f(t) > 0 for all t > 0, f(0) = 0, and f(t) < 0 for all t < 0. Assume f(a) = u|f(a)| for some unitary u in A. Then a = u|a|.

Proof: Let B_+ and B_- be the norm-closed hereditary subalgebras of A generated by $f(a)_+$, respectively $f(a)_-$. If f(a) = u|f(a)|, then ub = b for all $b \in B_+$, and ub = -b for all $b \in B_-$. The assumptions on f imply that $a_+ \in B_+$ and $a_- \in B_-$. Hence a = u|a|.

LEMMA 5.3. Assume that $a = a^* \in A$ has pure point spectrum relative to A. Then a = u|a| for some unitary u in A.

Proof: By Proposition 4.2 the sets $\Lambda(a_+)$ and $\Lambda(a_-)$ are countable. Hence

$$\Lambda(a_+)\cap t\Lambda(a_-)\subseteq\{0\}$$

for some $t \in (0,1)$. For this t, use Lemma 4.3 to see that

$$\Lambda(a_+ - ta_-) \cap -\Lambda(a_+ - ta_-) \subseteq \{0\}.$$

Lemma 5.1 now produces a unitary u in A such that $a_+ - ta_- = u|a_+ - ta_-|$, and by Lemma 5.2, a = u|a|.

5.4. CANTOR SETS AND CANTOR FUNCTIONS. Let $S_0 \subseteq \left[0, \frac{1}{3}\right]$ be the (non-standard) Cantor set

$$S_0 = \left\{ \sum_{j=1}^{\infty} b_j 4^{-j} \mid b_j = 0 \text{ or } b_j = 1 \right\},\,$$

and recall that S_0 is compact with no interior points. Let $f_0: \left[0, \frac{1}{3}\right] \to [0, 1]$ be the corresponding Cantor function which is the unique increasing continuous extension of the function that on S_0 is

$$f_0\left(\sum_{j=1}^{\infty}b_j4^{-j}\right)=\sum_{j=1}^{\infty}b_j2^{-j}, \quad b_j\in\{0,1\}.$$

Note that $S_0 - S_0 \subseteq \left[-\frac{1}{3}, \frac{1}{3} \right]$ is homeomorphic to $\{0, 1, 2\}^{\mathbb{N}}$ and therefore also compact without interior points (cf. [6], proof of Lemma 2.2). Let $S = S_0 + \mathbb{Z}$. Then S and S - S are closed and have no interior points. Extend f_0 to a continuous increasing function $f: \mathbb{R} \to \mathbb{R}$ by

$$f(t) = n, \quad t \in [n + \frac{1}{3}, n + 1], \quad n \in \mathbb{Z},$$
 $f(t+n) = f_0(t) + n, \quad t \in [0, 1], \quad n \in \mathbb{Z},$

and note that f(n) = n for all $n \in \mathbb{Z}$. Moreover, f is constant on each connected component of the complement of S.

LEMMA 5.5. With the notation of 5.4, there is an uncountable set $\Gamma \subseteq \mathbb{R}$ such that for all distinct γ_1 and γ_2 in Γ ,

$$(S+\gamma_1)\cap (S+\gamma_2)=\emptyset.$$

Proof: Let $\Gamma \subseteq \mathbb{R}$ be maximal with respect to

$$(\Gamma - \Gamma) \cap (S - S) = \{0\}.$$

Then, clearly, $(S + \gamma_1) \cap (S + \gamma_2) = \emptyset$ for distinct $\gamma_1, \gamma_2 \in \Gamma$. Suppose Γ is countable. Then by Baire's theorem

$$\cup_{\gamma\in\Gamma}(S-S)+\gamma\neq\mathbf{R}.$$

Choose $\gamma_0 \notin \bigcup_{\gamma \in \Gamma} (S - S) + \gamma$, and set $\Gamma_1 = \Gamma \cup \{\gamma_0\}$. Note that $\gamma_0 \notin \Gamma$, because $0 \in S - S$. By the choice of γ_0 ,

$$(\gamma_0 - \Gamma) \cap (S - S) = \emptyset$$
 and $(\Gamma - \gamma_0) \cap (S - S) = \emptyset$.

Hence $(\Gamma_1 - \Gamma_1) \cap (S - S) = \{0\}$ which contradicts the maximality of Γ .

5.6. With the notation of 5.4, set

$$F_0(t) = \exp(f(\log(t))), \quad t \in \mathbb{R}^+,$$

and extend F_0 to an increasing continuous function $F: \mathbb{R} \to \mathbb{R}$ by setting F(0) = 0 and $F(-t) = F_0(t)$ for $t \in \mathbb{R}^+$. Notice that F(t) > 0 for all t > 0, and F(t) < 0 for all t < 0. Put

$$L = \exp(S) \stackrel{\circ}{\cup} \{0\} \cup -\exp(S).$$

Then, by construction, L is closed, and F is constant on each connected component of the complement of L. Set $T = \exp(\Gamma) \subseteq \mathbb{R}^+$.

LEMMA 5.7. If $t_1, t_2 \in T$ are distinct, then

$$t_1L \cap t_2L = \{0\}.$$

Proof: Set $\gamma_j = \log(t_j)$ so γ_1 and γ_2 are distinct elements of Γ . The intersection of $t_1L \cap t_2L$ with \mathbb{R}^+ , respectively \mathbb{R}^- , are

$$\exp((S+\gamma_1)\cap(S+\gamma_2))$$
 and $-\exp((S+\gamma_1)\cap(S+\gamma_2))$.

14

By Lemma 5.5 these two sets are empty.

5.8. The next lemma only assumes the σ -finiteness of A.

LEMMA. Let a be a self-adjoint element in A. Then there is an s > 0 such that F(sa) has pure point spectrum relative to A.

Proof: We may assume $A \subseteq B(H)$ for some Hilbert space H. Set

$$p_t = \chi_{tL}(a)$$
 for $t \in T$, and $q = \chi_{\{0\}}(a)$,

 p_t and q are projections on H. From Lemma 5.7, $p_{t_1}p_{t_2}=q$ for all pairs of distinct $t_1, t_2 \in T$. Set also

$$I_t = \{x \in A \mid xp_t = x\}, \quad t \in T.$$

We claim that $I_t \subseteq E(a,0)^*$ for at least one $t \in T$. Suppose otherwise, and choose $x_t \in I_t \setminus E(a,0)^*$ for each $t \in T$. Then $b_t = ax_t^*x_ta$ is non-zero, $p_tb_t = b_tp_t = b_t$ and $qb_t = b_tq = 0$. Hence $(b_t)_{t \in T}$ is an orthogonal family in A, in contradiction with T being uncountable and A being σ -finite.

Now, choose $t \in T$ such that $I_t \subseteq E(a,0)^*$, and set $s = t^{-1}$. Suppose $x \in A$ is such that

$$xy = 0$$
 for all $y \in \bigcup_{\lambda \in \mathbb{R}} E(F(sa), \lambda)$.

Let U be a connected component of the open set L^c , and let g be a continuous function supported on U. Then $Fg = \lambda g$ where λ is the constant value F attains on U, and so $g(sa) \in E(F(sa), \lambda)$. Because each $g \in C_c(L^c)$ is a finite sum of functions supported on connected components of L^c , we have

$$xg(sa) = 0$$
 for all $g \in C_c(L^c)$.

Because $1 - p_t = \chi_{L^c}(sa)$, this implies $x(1 - p_t) = 0$, and so

$$x^* \in E(a, 0) = E(F(sa), 0).$$

Thus $xx^* = 0$, so x = 0, and F(sa) has pure point spectrum.

- 5.9. Proof of (ii)' \Rightarrow (ii): It suffices to show that each self-adjoint $a \in A$ is of the form a = u|a| for some unitary u in A. By Lemma 5.8 there is $s \in \mathbb{R}^+$ such that F(sa) has pure point spectrum relative to A. From Lemma 5.3 there is a unitary u in A such that F(sa) = u|F(sa)|, and by Lemma 5.2, a = u|a| as wanted.
- 5.10. It should in conclusion be noted that if x = ub in some C^* -algebra A, where x is normal, u is unitary and b is self-adjoint, then it does not follow that u and b must commute. As a counterexample take $A = C([0, 1], M_2)$,

$$x(t) = \begin{pmatrix} t & 0 \\ 0 & \mathrm{i} t \end{pmatrix}, \quad u(t) = \begin{pmatrix} 0 & 1 \\ \mathrm{i} & 0 \end{pmatrix}, \quad \mathrm{and} \quad b(t) = \begin{pmatrix} 0 & t \\ t & 0 \end{pmatrix}.$$

Moreover, in the C^* -algebra generated by x, u and b there is no unitary v such that x = v|x|.

REFERENCES

- 1. Berberian, S.K., Baer *-Rings, Springer-Verlag, Berlin-Heidelberg-New York, 1972.
- BROWN, L.G.; PEDERSEN, G.K., C*-algebras of real rank zero, J. Funct. Anal., 99(1991), 131-149.
- CUNTZ, J., Dimension functions on simple C*-algebras, Math. Ann., 223(1978), 145-153.
- GARDNER, L.T., An elementary proof of the Russo-Dye theorem, Proc. Amer. Math. Soc., 90(1984), 171.
- HAAGERUP, U., On convex combinations of unitary operators in C*-algebras, in Mappings of Operator Algebras, Proceedings of the Japan-U.S. Joint Seminar, Univ. of Pennsylvania, 1988, 1-13.
- HAAGERUP, U.; STØRMER, E., Pointwise inner automorphisms of injective factors, to appear in J. Funct. Anal.
- HANDELMAN, D., Homomorphism of C*-algebras to finite AW*-algebras, Michigan Math. J., 28(1981), 229-240.
- HARRIS, L.A., Banach algebras with involution and Möbius transformations, J. Funct. Anal., 11(1972), 1-16.
- KADISON, R.V.; PEDERSEN, G.K., Means and convex combinations of unitary operators, Math. Scand., 57(1985), 249-266.
- KAPLANSKY, I., Projections in Banach algebras, Ann. of Math., 53(1951), 235-249.
- KAPLANSKY, I., Representations of separable algebras, Duke Math. J., 19(1952), 219– 222.
- OLSEN, C.L.; PEDERSEN, G.K., Convex combination of unitary operators in von Neumann algebras, J. Funct. Anal., 66(1986), 365-380.
- PALMER, T.W., Characterizations of C*-algebras II, Trans. Amer. Math. Soc., 148 (1970), 577-588.
- PEDERSEN, G.K., SAW*-algebras and corona C*-algebras, contributions to noncommutative topology, J. Operator Theory, 15(1986), 15-32.
- PEDERSEN, G.K., Three quavers on unitary elements in C*-algebras, Pacific J. Math., 137(1989), 169-180.
- 16. POPA, S., On the Russo-Dye theorem, Michigan Math. J., 28(1981), 311-315.
- I.F. PUTNAM, The invertibles are dense in the irrational rotation C*-algebras, J. Reine Angew. Math., 410(1990), 160-166.
- PUTNAM, I.F.; RØRDAM, M., The maximum unitary rank of some C*-algebras, Math. Scand., 63(1988), 297-304.
- RIEFFEL, M., Dimension and stable rank in the K-theory of C*-algebras, Proc. London Math. Soc., 6(1974), 301-333.
- ROBERTSON, A.G., A note on the unit ball in C*-algebras, Bull. London Math. Soc., 6(1974), 333-335.
- ROBERTSON, A.G., Averages of extreme points in complex function spaces, J. London Math. Soc., 19(1979), 345-347.

- 22. B. RUSSO and H.A. DYE, A note on unitary operators in C*-algebras, Duke Math. J., 33(1966), 413-416.
- 23. M. RØRDAM, Advances in the theory of unitary rank and regular approximation, Ann. Math., 128(1988), 153-172.

UFFE HAAGERUP
MIKAEL RØRDAM
Department of Mathematics,
Odense University,
DK 5230 Odense M,
Denmark.

Received September 9, 1991; revised January 14, 1992.