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CP-DUALITY FOR C*- AND W*-ALGEBRAS

ICHIRO FUJIMOTO

INTRODUCTION

In this paper, we initiate a theory of operator convexity for completely positive
maps, and discuss the duality for C*- and W*-algebras in the context of this new
convexity theory.

The convexity arguments in the theory of operator algebras provide a significant
perspective for the subject and clarify the order or Jordan structure of the algebra
(e-g., [1], [4]). In this scheme, the self-adjoint part A,, of a unital C*-algebra A is
abstracted as an order unit space and is identified with the A(K)-space, as is well
known as Kadison’s function representation theorem (originally due to [9]), where
A(K) denotes the set of all real-valued w*-continuous affine functions on the state
space K = S(A). However, the essential stream of this approach is in the realm
of real functional analysis, and the attempt to find the extended expression for the
whole C*-algebra A would reveal the limitation of this formalism, i.e., the complex-
valued affine functions on the state space can no more preserve the G*-product and
C*-norm. Therefore, the refined algebraic arguments which depend essentially on the
C*-product would have eluded from this scheme.

For algebraic duality, we can go back to the duality theorems by M. Takesaki [14]
and K. Bichteler [5], where they proved that a C*-algebra A is *-isomorphic to the set
of all weakly continuous B(H)-valued functions which preserve direct sum and unitary
equivalence on the space Rep(A : H) of all representations of A on a Hilbert space H,
where the dimension of H is large enough so that every cyclic representation of A is
realized on H. (We call this Takesaki’s duality theorem; see Section 2 in details). From
these observations, one may naturally be led to wish for a duality theory which would
preserve algebraic structure as in Takesaki’s duality theorem, provide the geometric
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perspective as in the convexity scheme, and interpolate these two duality theorems.
The intention of this paper, therefore, is to propose and develop the basic theory
of a non-commutative B{H)-valued functional analysis for operator algebras, which
includes and interpolates both aspects of convexity theory and algebraic theory, by
letting the B{H)-valued completely bounded maps of the algebra play the role of the
dual space, instead of the usual complex valued bounded linear functionals.

To realize this idea, for a C*-algebra A and a Hilbert space H which was posited
in Takesaki’s duality theorem, we take as our dual object the CP-state space @y (A)
of A, which is defined to be the unit ball of the cone CP(A, B(H)) of all completely
positive maps from A to B(H). Note that Qx(A) includes both the quasi-state space
@Q(A) of A in the scalar convexity theory and the representation space Rep(4 : H) in
Takesaki’s duality theorem. We then propose the following convexity in Qg (A) : ¢ is
sald to be a CP-convex combination of () C Qu(A), if

$=) SitoSe with S, € B(H) suchthat » SiSa < In.
o o

The convergence of the above sum is secured from the condition ZS’;S& L Iy

(Proposition 1.2), and this convexity reduces to the scalar convexityawhen it is re-
stricted to the quasi-state space Q(A); it also describes the direct sum and unitary
equivalence on Rep(A4 : H) which are essential operations in Takesaki’s duality. {We
note that the idea of CP-convexity was also motivated from the theory of “operation”
in the C*-algebraic formulation of quantum physics. cf. Remark to Proposition 1.4.)

After discussing some basic properties of CP-convexity in Section 1, we will
show in Theorem 2.2 that the original algebra A is *-isomorphic to the set of all
weakly continuous B(H)-valued “CP-affine” functions on @g(A), which generalizes
Kadison’s function representation theorem with recovering the full C*-structure. This
CP-duality theorem is a natural extension of Takesaki’s duality theorem, and can also
be derived directly from it. Moreover, it will be shown in Theorem 3.2 that the CP-
convexity in CP-state space characterizes the C*-structure of the algebra, i.e., the
CP-state spaces Qg (A4) and Qu(B) of C*-algebras A and B are “CP-affine” BW-
homeomorphic if and only if A and B are *-isomorphic, which should be compared
to Kadison’s result [10] that Q(A) and Q(B) are affine w*-homeomorphic if and only
if A and B are Jordan isomorphic.

The notion of CP-convexity was exploited further in [7] to discuss various applica-
tions in operator algebras, such as CP-facial structure of CP-state space and duality,
CP-duality for JC- and JW-algebras, CP-measure and integration, CP-decomposition
and CP-Choquet theorem, CP-orientability, CP-geometric realization of Tomita-Take-
saki theory, and Stone-Weierstrass theorem for separable C*-algebras (which will be
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submitted for publication elsewhere). The theory of CP-convexity is also expected
to find useful applications in mathematical physics. A preliminary report on main
results of this paper has already appeared in [8].

1. CP-CONVEXITY

We refer for the definition and basic properties of completely positive maps to
the references [3], [12], {13] and [15]. Recall in particular that, as first proven by
Stinespring [13], every 3 € CP(A, B(H)) can be represented as

Pla) = V*r(a)V forall a€ A,

where 7 is a representation of A on a Hilbert space K and V € B(H, K) is a bounded
linear operator from H to K such that ||| = ||V||*. We assume, without loss of
generality, the minimal condition K = [#(A)V H] (where [] represents the closed
linear span) under which the Stinespring representation is unique up to unitary in-
tertwining operators. A bounded net (o) C CP(A, B(H)) is defined to converge
to ¢ € CP(A, B(H)) in BW-topology [resp. BS-topology] if 4a(a) converges weakly
[resp. strongly] to ¥{a) in B(H) for all a € A. The BW-topology has been commonly
used in literatures, and it is shown in [3] that every bounded (norm closed) ball in
CP(A, B(H)) is BW-compact.

Now we introduce our new concept of convexity in the cone CP(A, B(H)) as
follows.

DEFINITION 1.1 Let (%a)aea be a bounded family in CP(A, B(H)). We define

a CP-convex combination of (o )aea by

S SivaSe with S, € B(H) suchthat »_ SiSa < In,

a€A agA
where the sum converges in the BS-topology (cf. Proposition 1.2). A subset K C
C CP(A,B(H)) is defined to be CP-convex if it is closed under the operation of
CP-convex combination. For a bounded subset B in CP(A, B(H)), the CP-convex
hull of B, denoted by CP-conv B, is defined to be the set of all CP-convex combina-
tions of bounded families in B, which is the smallest CP-convex set including B.

In the above definition, the convergence of the CP-convex combination antomati-
cally follows from the condition Z 8254 < Iy. For the completness of the definition,
o

we shall prove this fact.

PROPOSITION 1.2. For any bounded family (Ya)aeca in CP(A, B(H)) and for

any family (Sy)xea in B(H) such that Z 8% 8y < In, the CP-convex combination
aEA
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Z Se¥aSe converges in the BS-topology to an element ¢ € CP(A,B(H)) with
agA

141l < sup [[al| (:= r).
€A

Proof: Let a € At := {a € A;a > 0} and let J C A be any finite subset. Then,

$1(a) = ) Savba(a)Sa < Y Sallltall lallfu)Sa < rllall D S5Sa < rilal| L.
o€ a€d agJ
Thus, (¥7(a))sca (J: finite subsets of A) is 2 bounded increasing net in B(H); hence
it converges strongly to an element in B(H). Since every element a € A is decomposed

as a linear combination of positive elements, i.e.,
a=a;—dy+ifas—as) with o; € AT(1€ig4),

we have
4
llvs(a)]| € er[a,-“ forall ag A,
g=1
s0 (¥1)sca is a bounded Cauchy net in the BW-topology. Since a bounded ball
of CP(A, B(H)) is BW-compact, the net (¥7)jca converges to an element 3 €

€ CP(A, B(H)) in the BW-topology, i.e., ¢ = limgsy = Z Sa¥aSa. It is straight-
acA
forward to see that the net (1) then converges to ¥ in the BS-topology.

It is left to show [[3]| < r. Note that
40" = sup {lw(@)I* = sup [l¥(a)*¥(a)|| < [I¥]] sup |[(a*a)])
lfall€1 [fall<1 llalig1

where we used the inequality 9(a)*(a) < ||¥|[¥(a*a) for a € 4 (e.g., [15; Chapter
1V, Corollary 3.8]). From the first part of the proof, we have

¥(a) = Ii;ngb,y(a) < rlla|lIg for a€ AT.

Hence, sup ||3(a*a)]| < sup rlja*a|| < #, from which ||9|| < r follows. -
llafi<1 flafi<

af[s

In what follows, throughout this paper, we are mainly concerned with the unit
ball of the cone CP(A, B(H)) for a large Hilbert space H; note that this is C P-convez
by Proposition 1.2. We shall use notations Rep(A) [resp. Rep,(4), Irr(4)] for the
set of all [resp. cyclic, irreducible] representations of A. To specify the Hilbert space
H on which the representations are confined, we will write Rep(4 : H) etc. The
notation Hy for m € Rep(A) is reserved to denote the essential subspace of 7. (Hence,
Rep(4 : H) = {r € Rep(A); Hx C H}.) The notations for W*-algebras are defined
similarly, e.g., Rep.(M : H), denotes the set of all normal cyclic representations of
M on H, where the suffix n represents the normal part.
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DEFINITION 1.3. A CP-map ¢ € CP(A, B(H)) is called a CP-state if it is a
contraction, i.e., [|]| < 1. We denote by Qu(A) the set of all CP-states from A to
B(H), ie.,

Qu(A)={¢y € CP(A, B(H)); |l¥ll < 1},
and call Qg (A) the CP-state space of A for H. We define the cyclic dimension a.(A)
by

a.(A) := sup{dimH,; T € Rep.(4)}.
Similarly, for a W*-algebra M, we define the normal CP-state space of M for H by
Qu(M)n = {4 € CP(M, B(H))n; li¥ll < 1},

and the normal cyclic dimension a.(M), by

(M), = sup{dimHy; 7 € Rep.(M)a}.

Note that Qz(A) [resp. Qg (M),] generalizes the quasi-state space Q(A) [resp.
the normal quasi-state space Q(M),,] of the scalar theory (where H = C).

PROPOSITION 1.4.A. Let A be a C*-algebra and H be a Hilbert space with
dimH > a.(A). Then,

Qu(A) = CP-convRep (4 : H).

Proof: Let ¥ € Qu(A), and let ¢ = V"7V be the Stinespring representation
of ¢ where m € Rep(A) and V € B(H, H.). Since w is non-degenerate from the
minimal condition, 7 can be decomposed into a direct sum of cyclic representations
(Ta)aen, 16, T = Baeama([6;2.2.7]). Let us denote by p, the projection of Hy onto
the representation space H,_ of 7,. Then,

—_ V* V — V* L3 - * W
4 i (aGEBApa) (a:GEBA Wa)(a?/\pa)v (;\V pawapaV-

From the assumption dimH > «.(A), there exists a partial isometry Wy : H — Hr, C
C H, from H onto H,_ for each o € A. In this case W, W2 = p,, so we have

b= VW Wa) ma(WaWS)V = 3 (WaV)* (WinaWa)(WaV).
a€A a€A
Note here that Wim,W, € Rep (A : H), and that W3V € B(H) satisfies

D WV (WaV) =Y V(WaWo)V =Y VipeV =
a€A a€A €A
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== V*( @& pa)V =V*'V £ ||VH2IH LIy
agA

Thus we proved that ¢ is a CP-convex combination of cyclic representations of A on
H,ie., Qu(A) C CP-convRep, (A4 : H). Since the inverse inclusion is obvious, the
proposition is proved. n

By similar arguments, we can show

PROPOSITION 1.4.B. Let M be a W*-algebra, and H be a Hilbert space with
dimH > a.(M),:- Then,

Qu(M)n = CP-convRep (M : H)y.

REMARK. In the above proposition, we can replace Rep.(A : H) [resp.
Rep.(M : H),] by Irt(A : H) [resp. Irr(M : H),] if and only if A [resp. M] is
scattered C*-algebra [resp. atomic W*-algebra} (cf. [7]). K. Kraus [11] considered
the particular case of M = B(H) and obtained this pure decomposition, where a
CP-state acquires the physical meaning of “operation” which describes the change of
observables caused by an interaction of a physical system with exterior. In the theory
of operation, the coefficient “V*()V,” is called “effect”, which represents the weight
of the pure operation, and in this sense CP-convexity can be considered as a “quan-
tization” of scalar convexity. The idea of this generalization of probability measure
was developed into the theory of CP-measure and integration and generalization of
Choquet’s theorem in [7].

To conclude this section, we shall briefly note the situation of the quasi-state
space Q(A) being embedded in the CP-state space Qm(A). Let us denote by Qs,1(4)
the set of all one-dimensional CP-states, i.c.,

Qua(A) :={¢ = V*1V € Qu(A);dimVH = 1}.
If ¢ = V*7V € Qn,1(A), then, since dimVH = 1, V must have the form
V=(Qh=(,h)¢ for £€H, and heH,
where H denotes the complex conjugate of H. Then, we can easily check that
¥(a) = (£ @ h)* 7(a)(€ @ k) = (w(a)¢,£)(h @ k) = w(a)P, forall a€ A,

where w := (7()€,€) € Q(A) and Py := h ® h is the projection of H onto [h].
‘Conversely, each w € Q(A) defines a one dimensional CP-state by the above equality.
Hence, we have shown that there exists a one to one correspondence

w€QA) e Po=w(-)PEQRn1(4) (modP)
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where (mod P) rcpresents the unitary equivalence class of the one dimensional
CP — stotes. This also implies that Q(A) = Qc(A). The similar argument for
the normal quasi-states of & W*-algebra is straighforward.

2. OP-DUALITY FOR C*- AND W*-ALGEBRAS

We shall establish a duality for C*- and W*.algebras in the context of
CP-convexity, where we take as our dual object the CP-statc space Q(A) [tesp.
the normal CP-state space Qu(M)a] of a C*-algebra A [resp. a W*-algebra M]. We
first generalize the notion of affine functions in the classical scalar convexity theory
for our CP-convexity context.

DEFINITION 2.1. Let A be a C*-algebra. A function v : Qg(A) — B(H) is
defined to be CP-affine, if

Y=Y ShthaSe with o € Qu(A) and Sa € B(IT) such that 535 < Inr
o 4

implies that

1) = 3 Ser(e)Sa.

% is defined to be bounded if ||y|| = sup{||v(¥)|;¥ € Qu(A)} < co. We denote by
AC(Qp(A), B(HY)), or precisely by AC,(Qn(A), B(H)) or AC,(Qu(A), B(H)), the
set of all BW-w or BS-s continuous CP-affine functions from Q(A4) to B(H). For a
W*-algebra M, we denote by AB(Qp (M), B(II)) the sct of all bounded CP-affine
functions from Qg (M), to B{(H).

Obviously AC(Q(A), B(H)) is a linear space with pointwise addition and scalar
multiplication. Assuming now that H is a Hilbert space with dimH 2 a.(4), we shall
try to define a product in AC(Q(A), B(H)) as follows: for v;,7s € A(‘(QH(A)
B(H)) and ¢ = V*7xV € Qu(A) with CP-decomposition

Y= E VamaVa where wo € Rep (A : H) with wx@®x,
o &

and Vo € B(H) such that ZVJ Vo € Iy (cf. Proposition 1.4.4), we define the

product of v; and v» by
(71 72)(¥) == Z Vari(7a) - v2(7a) V-
o

We can define a *-operation by y*(30) := y(3)*.
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It will be shown in the subsequent theorems that the product defined above
is well-defined, with which AC(Qg(A), B(H)) [resp. AB(Qu{(M)n, B(H))] has the
natural structure as a C*-algebra [resp. W*-algebra]. The following duality theo-
rems generalize Kadison’s function representation theorem [9] and have the advantage
that they recover the full C*-structure of the original algebra, i.e., C*-product and
C*-norm; this structure would have escaped our grasp had we considered only the set
of affine functions on the quasi-state space as is customarily done in the scalar theory.

THEOREM 2.2.A. Let A be a C*-algebra and H be a Hilbert space with dimH 2>
Z @.(A). Then, AC(Qu(A), B(H)) is a C*-algebra with the operations defined above,
and we have .
A= AC(Qu(A), B(H)) (*-isomorphism).

THEOREM 2.2.B. Let M be a W*-algebra and H be a Hilbert space with dimH >
2 a(M),. Then, AB(Qy(M),, B(H)) is a W*-algebra with the operations defined
above, and we have

M = AB(Qu(M)n, B(H)) (*-isomorphism).

Proof: The proofs of the above theorems proceed in parallel, and Theorem 2.9B is
obtained in the same manner using the normal part of the CP-state space, so that it
will suffice to prove Theorem 2.2.A. We also note that the proofs of the isomorphisms
for ACw(Q u#(4), B(H)) and AC,(Qu(A), B(H)) will be discussed uniformly.

We consider the following diagram:

4 ACQ,(A),BH)
J
AO(Q(A)!C)
where Ao(Q(A), C) denotes the set of all w*-continuous complex valued affine func-

tions on Q(A) vanishing at 0; ¢ assigns the evaluation map at each element of A,
ie.,

i(a) :p~—tp(a) for a€A and o€ Qu(A);
7 is defined for v € AC(Qu(A), B(H)) by
IM(@) = (A(yu)h,b) for weQu(A) with hePH,|hl=1

where 1, := w(-)P is the corresponding CP-state of w and P Is a one dimensional
projection on H; and k is the Kadison’s isomorphism. We note that the above diagram
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commutes, i.e., j o i = k. Indeed, let a € A and w € Q(A), then
§(i(a))(w) = (i(a)($u)h, h) = ($u(a)h, h) = (w(a) Ph, k) = w(a) := k(a)(w).

It is immediate to see that 7 is injective, since, if i(a) = 0 on Qg (A), then i(a) = 0
on Qu 1(A), hence on @(A), which implies a = 0. We will show that j is injective,
from which, combined with the commutativity of the diagram, we can conclude that
i is surjective.

Let v € AC(Qu(A4), B(H)) be arbitrary such that v # 0. Then, there exist
¢ € Qu(A) and ho € H such that (v(¢)ho, ko) # 0. Define

w(p; ko) == (¢(-)ho, ko) € Q(4),
and observe that, for h € H with ||h|| =1,
Yu(pine) = w(; ho)Pa = (9(-)ho, ko) Pr = (ho @ R)* o(ho @ ).
Then,
JN(@(@; 70)) = (H(Yu(osho))Ps B) = ((ho @ BY*¥(2)(ho @ R)R, h) =

= ((7(¢)ho, ho)Prh, h) = (v(©)ho, ko) # 0,

i.e., j(v) # 0. Hence, j is injective, so that 7 is bijective.
Now let 71,72 € AC(Qu(A), B(H)), then there exist ai, a2 € A such that v, =
= i(a;) and 72 = i(az). Assume that ¢ € Qu(A) has a CP-decomposition

%= ZV;ana where my € Rep (A4 : H) andV, € B(H) with ZV;VQ < Iy
23

a

Then, by definition,

(11 - 12)(®) = Y Van(ma)ya(Ta)Va = Y Varalar)Talaz)Va =

=3 Vama(a1az)Va = ¥(ara2).

It follows from this that v1 - y2 = (aias) € AC(Qu(A), B(H)) and that the def-
inition of the product is well defined, i.e., it does not depend on any particular
CP-decomposition of 1. It also implies i(a,) - #(a2) = #(a1a2), so that, since i(a)* =
= i(a*)(a € A) and the linearity is obvious, 7 is a *-isomorphism as *-algebras.

We shall next show that ¢ is an isometry with the norm of CP-affine functions
which was defined in Definition 2.1. In fact, let v € AC(Qu{(A), B(H)) correspond to
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ay € A. Then, it is easily observed that ||lay|| = l|7llc < |[7l] € lle4l], where [jy]|c =
sup{||7(7)|l; * € Rep,(A : H)} and the first equality follows from [6; Theorem 2.7.3].

Hence we have [}i(a)l| = lI7ll = llay}}, i.e., ¢ is an isometry. This completes the proof.
[ |

REMARK 1. We note that Kadison’s isomorphism & : A = Ao(Q(A),C) for a
C*-algebra A in scalar convexity theory is order and norm preserving for the self-
adjoint part A,q, but it is not isometry for the whole C*-algebra A. (Onc can easily
check counter examples and inequality :i-”a” < |[k(@)}} € |la}|.) Theorem 2.2. shows
that our CP-duality recovers the full C*-structure, i.e., C*-product and C*-norm.

REMARK 2. The CP-duality theorems (Theorem 2.2.A and B) can be considered
as natural extensions of Takesaki’s and Bichteler’s duality thorems for C*-algebras
and their enveloping W*-algebras ([5], [14]), i.e.,

A= A (Rep(4 : H), B(H)) (*-isomorphism)

A* = AF(Rep(A : H),B(H)) (*-isomorphism)

where AT(Rep(A : H), B(H)) denotes the set of all functions 7y : Rep(A : H) —
— B(H) which satisfy the following conditions
(1) y(v*mu) = u*y(w)u for all partial isometry u on H such that uu* 2 pr,

(i) ¥(71 ® m2) = v(m1) @ ¥(m2) if 71 @ 72 € Rep(4 : H),

(iii) sup{[[y(m)il; * € Rep(4 : H)} < o0,
and AF(Rep(A : H), B(H)) denotes the set of all weakly (c=w) or strongly (c=s)
continuous elements, where note that the BW- and BS-topologies coincide on
Rep(A : H) (cf. [5], [14]). The condition (i) includes, as particular cases, (i)
(™) = pry(7)px and (i)2 y(u*7u) = w*y(7)u for all unitary v on H, which were the
original definitions by M. Takesaki in {14] for the duality of separable C*-algebras.
(1) was introduced by K. Bichteler in [5] for the non-separable generalization.

We note that Theorem 2.2.A can be proved directly from the above Takesaki’s
duality theorem for C*-algebras by considering the following diagram

A —— s ACQ B

b

AFRep(A  H)BUE)

where ¢ denotes the Takesaki’s duality, and # is the restriction map. Indeed, it is
enough to check that r is injective as in the proof of Theorem 2.2, which follows im-
mediately. Our method of CP-convexity, however, simplifies the arguments and allows
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us to state the duality for general W*-algebras. The CP-duality, which interpolates
Kadison’s duality and Takesaki’s duality (cf. the preceding diagrams), subsumes both
the convexity theoretical aspect and the algebraic aspect of C*-algebras.

3. CP-AFFINE ISOMORPHISMS BETWEEN CP-STATE SPACES

We next discuss the dual maps between CP-state spaces induced by *-isomor-
phisms. We begin with the following definition.

DEFINITION 3.1 Let A and B be C*-algebras and let H be a Hilbert space. A
map ® : Qg(A) — Qu(B) is defined to be CP-affine, if

¥ =Y SitaSa withta € Qu(4) and Sy € B(H) such that y  SaSa < In,
[+ o

then we have

oY) = Y Sa®(%a)Sa.

For the simplicity of our arguments, we shall assume that every CP-affine map
preserves minimal condition without loss of generality, i.e., if ¥ is expresed in minimal,
then so is ®(1).

In scalar convexity theory, every affine w*-homeomorphism between quasi-state
spaces induces a Jordan isomorphism of the algebras [10]. In our setting of
CP-convexity, we can show the following improvement.

THEOREM 3.2.A. Let A and B be C*-algebras, and H be a Hilbert space with
dimH > sup{e.(4),a.(B)}. Then, Qu(A) and Qu(B) are CP-affine BW- (or BS-)
homeomorphic if and only if A and B are *-isomorphic.

THEOREM 3.2.B. Let M and N be W™-algebras, and H be a Hilbert space
with dimH > sup{a.(M)s,®(N)n}. Then, Qu(M), and Qu(N), are CP-affine
isomorphic if and only if M and N are *-isomorphic.

Schematically, Kadison’s theorem and the above theorems establish the following
correspondences:

Jordan structure of the algebra «——— scalar convexity in the state space

C*-structure of the algebra —— CP-convexity in the CP-state space.
In order to prove the above theorems, we need the following propositions.

ProrosiTioN 3.3.A. Let A and B be C*-algebras, and H be a Hilbert space
with dimH 2 sup{a.(A), @(B)}. Then every CP-afline isomorphism © : Qg (A) —
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Qu(B) maps Rep(A4 : H) [resp. Rep. (4 : H), Irr(A : H)) onto Rep(B : H) [resp.
Rep (B : H), Irr(B : H)] bijectively.

ProrosiTION 3.3.B. Let M and N be W*-algebras, and H be a Hilbert space
with dimH 2 sup{a.(M),,a.(N),}.  Then every CP-affine isomorphism
©: Qu(M)n — Qu(N)s maps Rep(M : H)y [resp. Rep (M : H)y, ker(M @ H),l
onto Rep(N : H), [resp. Rep (N : H),, Irr(N : H),] bijectively.

Proof. We prove Part A, and Part B will be proven similarly.

We first show that if # € Rep, (A : H), then ©(7) € Rep (B : H) with He(x) =
= H,. We note that it suffices to prove this for some & € Rep (4 : H) which is
unitarily equivalent to 7; in fact, if # = u*7u where u is a partial isometry from Hz
onto Hy, and suppose that ©(%) € Rep,(B : H) with Hgez) = Hj, then we have
O(7) = O(ufu*) = uB(#)u* € Rep (B : H) and Ho(r) = Hy. Hence, if H is infinite
dimensional, then by considering some unitary equivalent representation of m, we can
assume dimH © H, = dimHi without loss of generality.

Let £ € H be a cyclic vector for 7, and let ©(7) = V*pV € Qu(B) where
p € Rep(B) and V € B(H, H,). Then,

O(PewPe) = PeO(m)Fe = PV pV P,

where P¢ is the projection of H onto [¢]. By our assumption on minimal condition,
we have H, = [p(B)V P:H] = [p(B)V¢], which shows that p is a cyclic representation
with the cyclic vector V€. Let V = v|V| be the polar decomposition of V. Then, since
P € Rep.(B) and dimH > a.(B), or dimH © H, = dimH » a,(B) if H is infinite
dimensional, there exists a partial isometry & : # — H, from H onto H, which
extends v (i.e., 3|y = v), where we can assume that dimH © #* H, = dimH if H is
infinite dimensional. Then,

O(m) = V*pV = [VIv"po|V| = V5" p3|V| = [VIAV],

where 5 := §*p% € Rep,(B : H). Hence, we can assume without loss of generality
that

O(m) = VpV where p&Rep,(B: H) and Ve B(H), |V,

where we can assume that dimH © H, = dimH if H is infinite dimensional.
Now note that 7 = p,7p, and that © is a CP-affine map, then

VpV = 0(m) = pxO(7)pr = p«VpVpx.
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Using an approximate unit (e)) of A, we have
V? = sup Vp(ex)V = sup ©(r)(er) = sup pxVp(er)Vpr = eV 2pr < pr,
A X P

so that V < py. We note that, since p € Rep, (B : H),0~* is CP-affine, and
dimH > o,(A), or diimH © H, = dimH > a.(A4) if H is infinite dimensional, we can
conclude ©~1(p) = WOW & Qu(A) where 7 € Rep (4 : H) and W € B(H)* with
[[W]l € 1 by the proceding arguments. Then,

7 =0"1(0(1)) = 0-H(VpV) = VO (p)V = VWTWYV,

8o that
pr = sup (ex) = sup VWr(eA) WV = VW2V £ V? < pr,
A A

which implies V' = p,. Hence, we have O(r) = prppx.
Similarly, we have W = p, and ©~1(p) = WrW = p,7p,, so that

7= VWrWV = prppTpoPr = PrTPx.

By the minimal condition and Hy C H, C H,, we conclude that r = 7 and H, = Hr.
Hence, @(7) = prppr = p € Rep(B : H) and He(r) = H, = Hy, which proves our
assertion.
We next assume that = € Rep(A : H) be arbitrary. We can then decompose
into a direct sum of cyclic representations w = ?wa = Zpaﬂ‘apa where pq is the
&

projection of H onto Hy_, which is a CP-convex combination with Z P2 =pr € In,
[2 4

so we can deduce
O(m) = @(Z PaTePa) = Zpaﬁ)(ﬂra)pa = %@(ﬂ'a) € Rep(B : H),

since ©(my) € Rep (B : H) with Ho(r,) = Hr,.

It is straightforward to see that © maps Irr(A : H) into Irr(B : H) since O
preserves direct sum of representations as seen above.

Since © is an isomorphism, we can conclude that © maps Rep(A : H) [resp.
Rep.(A : H),Irz(A : H)] onto Rep(B : H) [resp. Rep, (B : H),Ir(B : H)
bijectively. L

Proof of Theorem 3.2. We first prove Part A. It is straightforward to see that, if
A and B are *-isomorphic, then Qy(A) and Qs (B) are CP-affine isomorphic. In fact,
let 0: A — B be a *-isomorphism. We define 8! : Q(B) — Qu(A) by ¢ (3p) =08
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for ¢ € Qu(B). Then, 8" is a CP-affine BW- (or BS-) homeomorphism from Q(B)
to Qu(4).

Conversely, let © : Qu(A) — Qu(B) be a CP-affine BW- (or BS-) homeo-
morphism. By Theorem 2.2.A, we can identify A with AC(Qr(A), B(H)) and B
with AC(Qu(B), B(H)). We define 6% : AC(Qnu(B), B(H)) — AC(Qu(A), B(H))
by ©f(y) = y0 O for vy € AC(Qy(B), B(H)). We have to prove that ©" is a
*-isomorphism.

We only need to check that ©! preserves the C*-product. Indeed let ¢ € Qu(A)
and assume

¥ =Y VimaVe with 7, € Rep,(A : H) and Vi € B(H) such that Y V;Va < In.
23 &

Then, for v1,7, € AC(Qu(B), B(H)), we obtain upon using the fact that O(7,) €
€ Rep (B : H) by Proposition 3.3.A,

O (11 - 1) ®) = (11 - 12)O®)) = (11 - 12O VaO(ma)Va) =
= Z V;')’l(e(wa)) ‘72(6(770))“’& = EV;@“(’“)(TM) . 9“(72)(7(0)1/0, =

= (0%(11) - O (1))(D_ Vi maVa) = (O(m1) - O (2))(¥).

This completes the proof of Part A.
Part B is proved by the similar arguments using Proposition 3.3.B. H

REMARK. The point of Theorem 3.2, which distinguishes itself from the result in
the scalar theory, lies on the fact that every CP-affine isomorphism between CP-state
spaces is orientation preserving for the state spaces in the sense of Alfsen-Shultz
theory (cf. [2]). This mechanism was studied in [7] with respect to the orientability
condition in the context of CP-convexity.

Note added in proofs. Since this paper was submitted for publication, there
have been some progress on the theory and applications of CP-convexity based on
the results of this paper, which are partly included in the articles [16-19] added in
the end of References, and some others, including results in [7], will soon follow. It
seems that these results would be enough to support the usefulness of the theory
of CP-convezity, and also to expect further useful applications in non-commutative
analysis and mathematical physics in the future.
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