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THE PUNCTURED NEIGHBOURHOOD THEOREM
FOR INCOMPLETE SPACES

ROBIN HARTE and WOO YOUNG LEE

The “punctured neighbourhood theorem” of Fredholm theory says that if T €
€ BL(X, X) is bounded linear operator on a Banach space X and if A € C is both
an accumulation point and a boundary point of the spectrum of T then ([7] Theorem -
IV.5.31) T — AI is not semi-Fredholm. In this note we partially extend this result,
and also Banach’s “closed range” theorem, to incomplete normed spaces.

Recall [4] that if X and Y are normed spaces and if k > 0 and if ||z|| < k||Tz]|
for each z € X then we call T € BL(X, X) bounded below, if y € {T'z : ||z]| < k||yl|}
for each y € Y then we call T open and if y € cl{T'z : ||z|| < k||y||} almost open. For
example the kernel

(0.1) ker (T) : T71(0) » X
is always bounded below, while the cokernel
(0.2) cok(T) : Y = Y/ T(X)

is always open. The operator T'€ BL(X,Y) will be called relatively open, respectively
relatively almost open, if its truncation

(0.3) TV : X — T(X)

is open (respectively, almost open). Thus bounded below is just relatively open one-
-one, open is the same as relatively open onto, and almost open is relatively almost
open dense. In the canonical factorization ([5] Theorem 2.3.3)

(0.4) T = ker (cok (T')) o core (T) o cok (ker (T'))
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the uniquely determined middle term
(0.5) core (T} : X/T~}0) — el T(X)

is always one-one and dense; when it happens to be invertible the operator T is called
proper ([5] Definition 3.2.7), or strict [2]. Evidently

(0.6) proper =5 relatively open == relatively almost open;

conversely T is proper if and only if it is relatively open with closed range T(X) =
= el T(X); when X and Y are both complete then the open mapping theorem shows
that an operator with closed range must be relatively open and therefore also proper.
Indeed the easy half of the open mapping theorem shows ([5] Theorems 4.4.3, 4.4.4)
that if T € BL(X,Y) then

(0.7) X complete, T relatively almost open == T proper.

We can also see that T is relatively open if and only if core(T’) is bounded below,
and relatively almost open iff core(T') is almost open.

Banach’s “closed range theorem” ([3] Corollary IV.1.8.; [1]) says that, if the
spaces X and Y are both complete, then T € BL(X,Y) has closed range if and only -
if the same is true of the dual operator

t e BLyt, x1) 1 g o1

Towards an extension of Banach’s theorem to incomplete spaces, recall ({5] The-
orem 5.5.2) the duality

(0.8) T dense <= T1 one-one
and
(0.9) T almost open <==> Tt bounded below :

in each case forward implication is elementary, while the reverse uses the Hahn-Banach
theorem, in (0.9) in its strong “separation” form. We need another auxiliaty operator,
dual to the “truncation”: write

(0.10) TA . X/T~10) - Y

for the “one-one part” of 7. Our observation is very elementary; here and elsewhere
we write “” to indicate isometric isomorphism through the medium of a specific
map, obvious from the context:
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THEOREM 1. If T € BL(X,Y) is arbitrary then

(1.1) ker (T1) = cok ()
and
(1.2) (¥t = (Th.

Proof. Equality (1.1) is the easy part of the proof of (0.8); for the isomorphism
(1.2) use the Hahn-Banach theorem to identify the dual of the subspace T(X) CY
with the quotient of YT by the annibilator of T'(X). |

The first part of our next result was noticed by Lee (8] Theorem 1):

THEOREM 2.If T € BL(X,Y) there is implication
(2.1) T relatively almost open <= il relatively open.

If T is relatively open then

(2.2) 10y ¢ Ti(YT)
and

cok (T1) 2 ker (T)T,
and hence

core (TT) = core (T)T.

Proof. For (2.1) apply (0.9) to the truncation TV together with (1.2). Towards
(2.2) suppose f € X t is in the annihilator of T-1(0), and define go : T(X) — C by
setting

(2.5) go(Tx) = f(z) for each z € X.

The status of f ensures that go is well-defined, necessarily linear, and bounded pro-
vided T is relatively open: if 2’ € X satisfies

(2.6) Tz’ = Tz and ||2|| € k||Tz||,
so that also f(z') = f(z), then

l90(T)l = |f(=z")] < kIl fIl IT=|| for each 2 € X.
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By the Hahn-Banach theorem there is g € Yt for which
llall = ligoll < E{lf1] and ¢T = goT = f.

This proves (2.2), which then gifres (2.3); finally (2.4) follows from the uniqueness of
the core. u

Alternatively, (2.2) can be obtained by applying the dual of (0.9) ([5] Theorem
5.5.3) to the truncatien TV . Since dual spaces are always complete, Theorem 2 gives
the extension of Banach’s theorem to incomplete spaces:

(2.7) T relatively almost open <= Tt has closed range.

For an example in which T € BL(X,Y) is relatively almost open but not relatively
open take Y to be complete and f : Y — C a discontinuous linear functional, and
then take T = I : X — Y where X is obtained by renorming Y with the aid of f:

(28) llllx = lvlly + [£(3)] for each y € Y.

It is clear that T is one-one and onto, and therefore by the hard part of the open
mapping theorem ([5] Theorem 4.6.2) almost open, but not open and not bounded
below; the functional f is in X t but not YT. This is an easief realisation of the
situation of Theorem 4.7.4 of (5] than (5.5.6.2) of [5]. Relatively almost open is not
sufficient for (2.2): in (2.8) the functional f lies in 7-*(0)° but not in 7T(¥'T). When
T is relatively open but possibly not proper then the canonical factorization of Tt is
the dual of the canonical factorization of T'; this was incorrectly claimed in Theorem
5.5.5 of [5] for arbitrary 7. Without completeness this is of course not enough, as
incorrectly claimed in [5), to ensure implication T'1 proper ==> T proper.

Relative openness, and hence also relative almost openness, can be tested with
the (reduced) minimum modulus

(2:9) Y(T) = inf{||Tz|| : dist (=, 7~%(0)) > 1} if 0 # T € BL(X,Y);
if T =0 we may take y(T) = co. Evidently

(2.10) T relatively open <= y(T) > 0;

also ([3] Theorem I1V.1.8)

(211) Y(T) > 0 = (TT) = 4(T).

Of course it is possible ([3] Example I1.1.10) to have ¥(T) = 0 < 7(T1); this happens
for example in the situation of (2.8). We recall ([4]; [5] Theorems 3.3.3, 3.4.3) that,
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between incomplete spaces, the bounded below and the almost open operators form
open sets:

ToEOREM 3. If S and T are in BL(X,Y') there is implication

(3.1) T bounded below, ||S|| < ¥(T) => T — S bounded below
and
(3.2) T almost open, ||S|| < 'y(TT) = T — S almost open.

There is also implication

(3.3) 1Sl < %(T) = dim (T — $)~1(0) < dimT~(0)
and
(3.4) 181l < «TH) = dim Y/l (T - §)(X) < dimY/dimT(X).

Proof. For (3.1) follow the proof of Theorem 3.3.3 of [5], and for (3.2) apply
(3.1) to the duals of S and T". (8.3) is quoted by Goldberg ([3] Theorem V.1.2)
for unbounded operators, and also by Lindenstrauss/Tzafriri ([10] Proposition 2.¢.9);
then (3.4) is (3.3) applied to St and 7. u

Both Goldberg [3] and Lindenstrauss/Tzafriri [10] rely on Borsuk’s antipodal lem-
ma, and the statement in Lindenstrauss/Tzafrirl is restricted to complete spaces,
although not the proof. The argument in Harte ([5], 6.10, 2.9) avoids Borsuk’s lemma,
but misses the numerical precision above. Of course (3.3) and (3.4) are vacuously true
if the operator T fails to be relatively open, or relatively almost open.

We recall ([5] Definition 6.10.1) that the operator T € BL(X,Y) is called al-
most upper semi-Fredholm if it is relatively open with finite dimensional null space,
and almost lower semi-Fredholm if it is relatively almost open with the closure of
its range of finite co-dimension. If T is either almost upper or almost lower semi-
Fredholm we shall call it almost semi-Fredholm, and almost Fredholm if it is both; if
it is almost Fredholm and proper we shall call it Fredholm. The index of an almost
(semi-)Fredholm operator is given by

(3.5) index (T) = dimT~1(0) — dimY/cl T(X).
These concepts are also ([5] (6.12.1.19)) dual to one another:

(3.6) T almost lower semi-Fredholm <= Tt almost upper semi-Fredholm. .
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For incomplete spaces (contradicting [5] Theorem 6.10.2) the almost upper semi-
Fredholm operators need not form an open set. For example if X =Y = ¢po C oo
is the space “terminating” sequences (sup norm) and T = V : (z1,22,23,...) >
(22,23, 24,...) the backward shift then 7'— AT is almost right invertible ([5] Definition
3.7.1.) whenever |Al| < 1, but if 0 < [A] < 1 then T'— I is one-to-one but not bounded
below: the index of T — 21 is not a continuous function at z = Q.

When T € BL(Y, X) for which

(3.7‘) T=TTT.

In an algebraic sense the Fredholm operators form an open set on which the index
is continuous: if T'= TT'T is Fredholm and if K € BL(X,Y) satisfies

(3.8) I+ T'K invertible in BL(X,Y)
then ([5] Theorem 6.4.5, 6.5.5)
(3.9) T + K is Fredholm with index(T + K) = index(T);

we have as well dim(7T'+ K)~*(0) < dim7-1(0) and hence also dim Y/cl(T+ K)(X) €
dimY/cT(X).

The restriction of an almost upper semi-Fredholm operator to a closed subspace
is again almost upper semi-Fredholm:

THEOREM 4. If T € BL(X,Y) is almost upper semi-Fredhom and M C X a
linear subspace then

(4.1) Tm € BL(M,Y) is relatively almost open
and there is implication

(4.2) M closed => Tar relatively open.

Proof. Beginning with the closed case (4.2), suppose W is a (closed) complement
for MNT-1(0) in M and claim

T relatively open => Tw bounded below:

for if Tw is not bounded below there in (zn) in W for which ||z,|| = 1 with [Tzl — 0,
gwmg if also T is relatively open dist(z,, T71(0)) — 0. If (¢j)jes is a basis for the
finite dimensional space 7-1(0) there must be scalars (jn) for which

- E Xjntj Z&jnej

jed jed

—0
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It follows (cf. [5] Theorem 6.2.2) that there is ¢ € J for which liminfyjasn| > 0,
and hence, passing to subsequences (8jn) = (@ju(n)) of (@jn),

- 0,

J#i

e — ,'_ﬂl (xn - Zﬂjnej)

giving (cf. [5] Theorem 6.2.1)
e €cl W-l—ZCej) =W+ Ce,
i i

a contradiction, which establishes (4.2).

To derive (4.1) apply (4.2) to the closure of M together with one of the “Riesz
lemmas” of Harte ([5] Theorem 1.5.1), which says that z € cl(M) can be approximated
by (zn) in M with {|z,|| < [lz{|- |

When X and Y are the same space then we can introduce ([5] Definition 7.8.1)
the hyperrange of T € BL(X,Y) = BL(X, X):

T%(X) = [ T*(X)-

If S comutes with T, so that also ST (X) C T(X), we shall write
(4.3) S 1 T®(X) — T®(X)

for the operator introduced by S. If in particular S is invertible and comutes with T
then ([5] Theorem 7.8.3)

(4.4) (T - 8)710) c T™(X),

so that the null space of T'— S is the same as the null space of (T'— S) . We recall
also ([5] Theorem 7.8.3) the familiar implication

(4.5) T-1(0) finite dimensional == 7' onto.

THEOREM 5. If T' € BL(X, X) there is implication

(5.1) T almost upper semi-Fredholm == T almost open.

If T is Fredholm then T is open.
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Proof. The argument for (4.5) is familar: if y € T°°(X) then there is (z,) € X
for which y = T"z, (n € N), and by finite dimensionality of T-(y) there is N ¢ N
(depending on y) for which

(5.2) ey € T lyNTVX = T-lynT®(X).

To convert this to (5.1) apply (4.1) with M = T°°(X). When also T(X) is closed
(in particular, when T is Fredholm) then (4.2) says that T' is open ]

It is sufficient, for (4.5) and hence also for (5.1), that the finite dimensionality of
the null space of T' be weakened ([9] Lemma 1) to

(5.2) dimT~{0) N T™(X) < oo for some n € N.

For a “punctured neighbourhood theorem” in the spirit of Harte ({5] Theéorem
7.8.4) we might look for implication

(654)  max(||S]], 15"]]) < HT) < dim (T ~ 8)~*(0) = dim (T — 5')(0),

assuming 7 is almost upper semi-Fredholm and S and S’ are invertible and commute
with T, arguing

(5.5) dim (T = 5)~1(0) = dim (T — S) ~(0) = index(T — §) = indexT .

If T is almost upper semi-Fredholm then by (5.1) the operator T' is almost open.
By (3.2) if ||S]| < %(T) then (T — S) is almost open and in particular dense. This
gives the second equality in (5.5); the first equality is (4.4), and the third would be
by the continuity of the index. Unfortunately, as we saw before, this fails for the
backward shift on cgg.

It is important to remember that (T — S) is the restriction of 7'~ § to the
hyperrange of T rather than of T — S.. In the corresponding assertion (7.8.4.4) of
Harte [5] the operator T' € BL(X, X) is assumed to be Fredholm, and therefore to
have a bounded generalised inverse T' € BL(X,X) for which T = TT'T, and the
operators S and S’ supposed to be such that I + 7S and I+ TS’ are invertible: no
actual smallness of norm is assumed. Whether or not Theorem 7.8.4 of [5] is true as
stated remains an open problem. One hope is to find a generalised inverse T' for T'
which leaves invariant the hyperrange T°°(X):

THEOREM 6. If T € BL(X, X) is Fredholm then it has a generalised inverse
T' € BL(X, X) for which

(6.1) T'T®(X) C T (X).
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Proof. By the finite dimensionality of the null space there is N € N for which
TN(X)YNT-1(0) = T(X)NT~*(0) as in (5.2), and also Wy, C X for each n €N
with

(6.2) TMX) = Wo @ (T*(X)OT~2(0)) and Wn41 C Wh.

Since T™ is also Fredholm its range, and hence the sum T™(X) +T~(0), is finite
codimensional and hence complemented: thus there are finite dimensional Z, C X
for which

(6.3) T'0) e Wa® Zn = X.
Now choose (cf. [5] Theorem 3.8.2) T" € BL(X, X)) for which

(6.4) T=TT'T and T'T(X) = Wn + Zn.

oo
With W = ﬂ W, we claim

n=N
(6.5) W C Wy € T'T(X) and W € T®(X);
(6.6) T'T*(X) € T®(X) + T=10) C W + T-}(0);
(6.7) TTX)N(W+T10) C W.

(6.5) is clear; towards (6.6) argue that if y = T"T"+1 2,4, for each n then Ty =
T 2,1 givingy € T" X +T~1(0) and hence in the intersection of the T X +T-1(0):
but since (Theorem 5) T' is onto this is 7°°(X) + T~1(0). For the second version of
(6.6) we argue

(6.8) T(X)CW+T(0):

if y*€ T*°(X) and n > N then there are w, € W, and 2z, € TVX ﬂT"l(O) =
T(X) N T-1(0) with Y = wy + 2. By finite dimensionality there is a convergent
subsequence (z,) = (2y(n)) Of (2,), with limit z}, say, so that also W) = wy(m)
converges to wh, = y — zL,, giving

Y= Why + 2 € ﬂ Womn)+ T (X)NT™H0) € W + T(X) n T~1(0).
n=N
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For (6.7) we argue that if y = w4z € T'T(X) with w € W and z € T-1(0) then
y—w=z€(T'TX +W)NnT"(0) = {0}, giving y = w € W. From (6.6) and (6.7)
it follows

T'Te(X) € W € T*(X),
giving (6.1). [ |

With such a choice of generalized inverse, we have a nearness criterion giving a
punctured neighbourhood theorem for Fredholm operators:

THEOREM 7. Suppose T € BL(X,X) is Fredholm, with generalized inverse
T' € BL(X,X) for which T'T®(X) C T®(X): then if S and §' in BL(X,X) are
invertible and commute with T, and if
(7.1) (I4+7T'S) and (I+T'S’") are invertible
then there is equality
(7.2) dim (T' - $)~1(0) = dim (T - $)~1(0)
and hence also
(1.3) dim X/(T - $)X = dim X/(T - S")X.

Proof. We claim that equality (5.5) really does hold in the case: the first two
equalities follow from (4.4) and (5.1), while the third is (3.9). n
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