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ON INVARIANT SUBSPACES IN THE BITORUS

DUMITRU GASPAR and NICOLAE SUCTU

1. INTRODUCTION

The classical Theorem of Beurling ([2]) says that every invariant subspace of
the Hardy space H? on the unit disc is of the form fH? with f an inner function.
A characterization of all the invariant subspaces of Lebesgue space L? on the one
dimensional torus T was obtained by Helson in [§8]. Namely, he proved that the
doubly invariant subspaces are of the form x,L?(T), where X, is the characteristic
function of a Borel subset 7 in T, while the simply invariant subspaces are fH?, with
f a unimodular function in L*(T).

As it is well known, the problem of invariant subspaces of L2 on the n-dimensional
torus or even in the corresponding H? is much more complicated. The invariant
subspaces in H? are no longer of the form fH?, with f an inner function. Moreover
Rudin gave in [14] an example of an invariant subspace in H? in two variables which
can’t be of the form fiyH2+ foH? + .- -+ f, H?, with f; inner functions. Considerable
progress in the study of invariant subspaces in this setting was made in the last few
years through the papers [1], [10] and [15]. More recently in [7}, [13] and [12] invariant
subspaces on which the coordinate multiplication operators are double commuting,
have been studied. Here are used techniques of operator theory. Especially {7] and
[12] are based on the Wold decomposition of a pair of doubly commuting isometries
on a complex Hilbert space, which was obtained in [17] and [11].

In this paper we attempt to describe the structure of invariant subspaces of L?
in two variables, by using the Wold type decomposition from [5] for a pair of (not
necessarily doubly) commuting isometries. In such a framework four types of invariant
subspaces appear. The first one is the well known doubly invariant type, whereas
the other three we propose are special types of simply invariant subspaces. For the
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second and the third types we have corplete characterizations. The last one seems
to have a more complicated structure, which can be elucidated in some particular
cases only. The invariant subspaces in H? are separately discussed in connection with
the so-called Szego property. Let us finally point out that because of the general
decomposition of [6] our results remain true also in several variables.

This research was complete during the first author’s staying at the University
Regensburg as an Alexander von Humboldt Research Fellow; he would also like to
thank Professor W. Hackenbroch and his colleagues for hospitality and for many
helpful discussions.

2. NOTATION AND PRELIMINARIES

Let T? := T x T be the two dimensional torus (the bitorus) and L?(T?) the usual
Lebesgue space with respect to the Haar measure m; on T2, We denocte by 2, Z,
the multiplication operators with the coordinate functions on L2(T2), i.e. for j = 1,2

(Z; )ty =t;£(t) (f € LX(T?), t=(t1,t2) € T?).

A closed subspace M of L2(T?) is invariant (respectively »-invariant), if Z; M C
C M (respectively ZiM C M) for j = 1,2. An invariant subspace which is also
*-invariant is called doubly invariant. We shall call a subspace simply invariant if it is
invariant and not *-invariant. It is well known that the doubly invariant subspaces of
L?(T?) are of the form x,L2(T?), where & € Bor(T2?)—the Borel sets in T2 (Theorem
7.14 from [18]) or Lemma 3 from [7]). But the simply invariant subspaces of L*(T?)
are not fully known, their structure being more complicated. Among them the most
important one is the subspace H2(T?) consisting of all f € L2(T?) for which the
Fourier coefficients satisfy f(k,1) = 0 for k < 0 or I < 0. Another invariant subspace
which together with H2(T?) will play an important role in our approach, is M2(T2),
the space of all f € L?(T?) so that f(k,I) = 0 for k,1 < 0. We also observe that the
restrictions of operators Z; on H2(T?2) are doubly commuting isometries, whereas the
restrictions of these operators to M?(T?) are not doubly commuting.

Let M be an invariant subspace and 9 the minimal doubly invariant subspace
in L#(T?) containing M. Then M; := Z;|M are commuting isometries on M and
(91, (Z1|9M, Z,|9M)] is the minimal unitary extension of [M, (M}, M,)] (for details see
(18], [18]).

By the doubly invariance of 9%, there is an ms-essentially uniquely determined
E € Bor(T?) so that 9 = xpLz(Tz) We also note that the subspace M := M6 M
is #-invariant and MJ = Z [M, j = 1,2 are commuting isometries on M. One



ON INVARIANT SUBSPACES IN THE BITORUS 229

observes that all functions from M (as from M) vanish on each o € Bor(T?) with
ma(e) > 0 and ma(E N o) = 0. We shall say that a Borel set E C T? is the support
of a given set M C L%(T?), if each function from M vanishes on all Borel sets o
with ma(c) > 0, ma(ENo) = 0 and E does not contain any = € Bor(T?) with
my(7) > 0 on which all members of M vanish. It is easy to see that the above
conditions determine the support of M (which we shall denote by s(M)) in an ms-
essentially uniquely way. Moreover, it can be easily proved that the support of M

is just the Borel set E for which M = xpL?(T?), where M := V ZFZIM.
‘ (k,De2?
Let us remark, as W. Hackenbroch pointed out (private communication), that the

characteristic function x,(am) is the support in the sense of Sakai ([16] Definition
1.21.14 p.54) of the W*-representation

L®(T?) 2 h > My € B(M), where Mg = hg, g € M;

of the W*-algebra L*(T?) on the Hilbert space 9, which is naturaly associated to
M.

It is clear that, when M is an invariant subspace and E = s(M) then xgL?(T?)
is just the space of minimal unitary extension of [M, (M1, Ma)]. Moreover s(ﬂ) -
(M), the equality being true iff M does not contain any non-trivial doubly invariant
subspace. Now we associate to the invariant subspace M with s(M) = E the subspace

N ={feL¥ T :xpf € M}.

1t is easy to observe that A is also (closed) invariant, M C N and M = xgN.
Evidently s(A) = T2. So it can be said that by this procedure M is “enlarged” to
a subspace A, which is supported on the whole T2. We shall say that such an A is
maximally supported.

Now if M is again a given invariant subspace, by applying to the pair (My, Ms)
the Wold decomposition ([5], Theorem 5) we obtain the uniquely determined orthog-
onal decomposition

(1) AA’=-A4uGBA4tGBA4n169AAw

where the subspaces My; @ = u,t,m, e reduce M; and Mz, M;(j = 1,2) are both
unitary on My; (M, M2) is a shift pair on Mj, is a modified shift pair on My, and it
is ultraevanescent on M,. The subspaces M; and M,, have the following structure

(2) M= P MIM;R  and Mn =@ 2t 2ic,
k,iz0 k>0
or
>0
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E<O
of
150 _ <0
right defect respectively the left defect spaces for (M1, Ma). Evidently M = M,
iff M is doubly invariant. We shall say that the invariant subspace M is of H2-
-type, of M?-type, or of ultraevanescent type, if M = My, M = My or M = M,
respectively. So we have a classification of invariant subspaces in L?(T2) with respect
to the Wold-type decomposition (1).
It is obvious that H2(T?) is an invariant subspace of H2-type, M?(T2) is of M2-
-type and, as it was implicitely observed in [5] Example 2, the space Hy = H(T?)
consisting of all members of H?(T?) whose mean value vanishes, is an ultraevanescest

where R := MO P | V Z0ZiM | and £ = Mo Py | V 2:23M | are the
k>0
or

type invariant subspace.
The first main theorem is a Helson type result. Its statement is the following

THEOREM 1. Every invariant subspace M of L?>(T?) has one of the following
forms

(3) M = fH*(T?) or,
(4) M = gM*(T?) or,
(5) M= x, L(T?) @ xul,

where o,w € Bor(T?), cNw=@, fecMandg € M are unimodular functions (i.e.
Ifl = lgl = 1 mg-a.e.), and N'is a maximally supported invariant ultraevanescent
type subspace of L2(T?).

The second main theorem is a Beurling type result.

THEOREM 2. Each invariant subspace M of H?*(T?) is either of H*-type and
in this case M = fH?(T2) with f an inner function, or is of ultraevanescent type
(maximally) supported on T? and then M;, M, are non-doubly commuting shifts on
M.

The proofs will be given in Section 5.

3. INVARIANT SUBSPACES OF H2- AND M2-TYPES

Two invariant subspaces M and N of H?(T2) will be called unitarily equivalent,
if there exists a unitary operator U from M to N so that UM; = N;U, where
N; = Z;|N; j = 1,2. It results from [5] (Theorem 10) that the unitary equivalence
preserves the decomposition (1) of an invariant subspace. Consequently the type of
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an invariant subspace (doubly invariant, H2-type, M*-type, ultraevanescent) is an
“invariant” with respect to the unitary equivalence.

For the given invariant subspace M we use one of the following notation above
mentioned: M; = Z;|M; 9 the minimal unitary extension space, M =Moo M and
R, L the corresponding (wandering) defect spaces.

The H2-type invariant subspaces in L*(T?) will be characterized in the follow-
ing theorem. For completness we include in the statement some known equivalent
conditions from [7] (or [12]).

THEOREM 3. Let M be a non-trivial invariant subspace of L*(T?). The following
are equivalent:
(i) M = fH*(T?), with f € M and |f| =1 ma-a.e. on T%;
(i) M is unitarily equivalent with H2(T?);
(iii) M is of H2-type;
(iv) the shift part of M is non-trivial;
(v) the right defect space for (Mi, M3) is one dimensional
(vi) Ma(M O MIM)GM © MM
Under these conditions the space of minimal unitary extension of (My, M>) is the
whole L*(T?).

Proof. If M = fH?(T?) with f unimodular, then the multiplication with f is a
unitary equivalence between M and H2(T?). Thus (i) = (ii). Now if U is a unitary
equivalence between H%(T?) and M, then

M=U (@ zfz;c) = P MEMHUO),
B30 k30

therefore M is of H2-type. Thus (ii) = (iii), while (iii) = (iv) is trivial. Suppose

now that (iv) holds, i.e. M; # {0} in the decomposition (1) of M. It is not difficult

to check (see also Theorem 1 from [17]) that the restrictions of M; to M, are doubly

commuting shifts. Consequently by Corollary 4 from [7] there is a unimodular function

F € M so that

(6) My = fH(T?).

It now follows clearly that R = fC and therefore dimR = 1. This proves (iv) = (v).
We assume now that R is one dimensional. Then by choosing f € R of norm one,
from the orthogonality between Zf ZiR and R for (k,1) # (0,0), it follows that f is
a unimodular function on T2. Thus we obtain () and since R is the left defect space
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for [M,(M;, M>)] (see also the relation (6) from [3]) we deduce that

(M = D 28 2(FC) = FMA(T?).

k<0

ot

1<0
Thus the space of minimal unitary extension 9 contains the subspace M; e(ﬂ)m =
= fL*(T?) = L3(T?), whence M = L?*(T?) and consequently M = M; =
= fH?*(T?). Thus (v) = (i) is proven. The equivalence (i) < (vi) is contained
in the Corollaries 4 and 7 from [7] and in Theorem 5 from [12]. The proof is finished.
]

Similar characterizations hold for the M2-type invariant subspaces.

THEOREM 4. Let M be a non-trivial invariant subspace of L*(T2). The following
are equivalent
(i) M = gM2(T?), with gy € M and |g| = 1 mp-a.e. on T?;
(i) M is unitarily equivalent with M2(T?);
(i) M is of M2-type;
(iv) the modified shift part of M is non-trivial;
(v) the left defect space for (My, M>) is one dimensional;
(vi) M6 MiMGMy(M 6 M M).
Under these conditions the space of minimal unitary extension of (M1, M3) is the
whole L3(T?).

Proof. If M = gM?(T?) with g a unimodular function, then the multiplication
with g is a unitary equivalence between M and M2(T?). Thus (i) = (ii). Now if U
is a unitary equivalence between M?(T2) and M, then

M=U| P zizic| =Pzt ZWco),
E>0 k>0
or or
150 >0
i.e. M is of M2-type and (ii) = (iii) is proven. (iii) = (iv) being trivial let suppose
that (iv) holds. This means M,, # {0} and consequently the left defect space £ of the
pair (M1, M3) is non-null. By Lemma 4 from [3] we have that (ﬂ), = P ZEZL s
k120

a reducing subspace for M;, Ma. We check that dim £ = 1. For this aim let ks, ke € £.
From the wandering property of L it results that for all (k,1) € 22\ {(0,0)}

/ hyhot¥thdms = (ZF ZLhy, ho) = 0.
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Therefore the Fourier coefficients (excepting the (0,0) one) of the function hq hs vanish.
It results that hihge is ma-a.e. constant. This constant is zero whenever hy and hs
are orthogonal. Then it follows 0 = |hyha|? = |hy[?|h2|* and, since hyh; and hohy are
also constant, we finally have that cither ky or hy is my-a.e. null. This means that
dim£ = 1, i.e. (v) holds. Assume now (v). Then £ = gC with a unimodular function
g from M and the subspaces My, (M)t become:

My, = gM>*(T?), (M) = gH*(T?),

which leads to My, @ (M): = L2(T2). But M, @ (M): € M@ M = L?(T?), which
obviously implies M= (Mu)t, and consequently E/le,JT/fz are doubly commuting shifts.
By denoting £; := M & M;M (j = 1,2), from [17] or [5] we have Myfy C Ly 1
ﬁgﬁl = L1 then

E2=H®ﬁ2MCMH9M2£1=M9£1

from which £; and Lo are orthogonal. On the other hand by comparing Slocinski’s

Wold type decomposition with ours (Theorem 8 from [5]) we have M= @ zFz}-
k120

-(L£1 N L2), which contradicts the orthogonality of £1 and £2. Thus ﬁgﬁlgﬁl, i.e.
(vi) holds. If (vi) holds then M, is not unitary on £, therefore M, has a non-trivial
shift part in £;. At the same time it is easy to see that the defect space of 172|El is
L3N Ls, and consequently it is non-trivial. But again by Theorem 8 from [5] £, N L
is the right defect space of the pair (A?l,ﬁz) and then it is obvious just £. This
implies that M,, is non-trivial, which by the above proof of the implication (v) =
(vi) leads to M = gM?2(T?), with ¢ a unimodular function in M. Thus (i) holds. We
also note that (as in the preceding theorem) the minimal unitary extension space for

M is the whole L?(T?). The proof is finished. "

Now by connecting the Wold decomposition of an invariant subspace M with
those of its “dual” M we obtain

COROLLARY 1. An invariant subspace M of L?(T?) is of H2-type (respectively
of M2-type) iff the *-invariant subspace M is of M?-type (respectively of H2-type).

COROLLARY 2. An invariant subspace M of L?(T?) is neither of H-type nor of
M?2-type iff the x-invariant subspace M is neither of H2-type nor of M2-type.

The following proposition characterizes the invariant subspaces M satisfying the
condition of Corollary 2 and for which M; and M, doubly commute. For completness

we also include here soine known characterizations from [7] and [12].

PROPOSITION 1. Let M be an invariant subspace in L*(T?) such that R; :=
=M S MjM # {0} j being either 1 or 2. The following are equivalent:



234 DUMITRU GASPAR and NICOLAE SUCIU

(i) M is not of H2-type and M;, M, are doubly commuting;
(ii) M is not of M2-type and My, M, are doubly commuting;
(iif) MiR; =R; (k #7);
(iv) My is a unitary operator (k # j);
V) Myisa unitary operator (k # j);
(Vi) M= My, @M, if j =1, and M = My, & My, If j =2,
where the summands My, My, My, are those from Slocinski’s Wold type decom-
position ([17]).

Proof. The equivalences (i) < (iii) < (iv) <> (vi) are contained in Corollary 7
from [7] and Theorem 5 from [12]. By inspecting the structure of the minimal unitary
extension space it is easy to see the equivalence between (iv) and (v). For the rest
of the proof we choose § = 1 and k¥ = 2. If (v) holds, it is clear that M, and M,
are doubly commuting and, since M is non-unitary, 1‘7’1 is non-unitary too. Now we
apply (iv) = (i) for the isometric pair (M;, My) instead of (My, M2). It results that
(K/fl, 172) is not a shift pair, which is equivalent to the fact that (M, Ma) is not of
modified shift pair (see [5]). This means that M is not of M2-type. Thus we obtain
(ii). Supposing (ii) we have that (E, Efg) is not a shift pair but a doubly commuting
one. Using now (i) = (iv) for the pair (M, Ma) again, we have just (v). The proof
is complete. "

REMARK 1. As was observed in Theorem 8 of [5] the space M,y ® My, is the
ultraevanescent part of M. With its structure given in [7] the description of invari-
ant subspaces of ultraevanescent type in the “doubly commuting” case is complete.
The preceding proposition says even more; an ultraevanescent type invariant “doubly
commuting” subspace is either of the form M,, or of the form M,,.

Let us recall that in the structure of M, and M,, the essential role is played
by the following two standard invariant subspaces

H = {f e IX(T): f(k,))=0, k <0}
H? = {f e LX(T): f(k,) =0, 1 < 0}

respectively. It is easy to see that both H* and H? are ultraevanescent type invariant
subspaces.,

4. SUBSPACES WITH SZEGO PROPERTY

A closed subspace M of L2(T) has the Szegé property or is a Szego-subspace if
the following condition holds
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(Sz)  Every function vanishing on a set of ma-positive measure, vanishes ma-almost

everywhere on T2.

Evidently, each Szegd subspace M has the support s(M) = T2 in other words it
is maximally supported.

First we prove

THEOREM 5. For a given non-trivial closed subspace M of L*(T?) the Szegd-
-property is equivalent to each of the following two conditions:

(i) if & € Bor(T?) and x,L2(T?) N.M # {0}, then ma(0) = 1;

(i) if € Bor(T2) and N is some subspace of L2(T2) so that M D xoN # {0},
then ma(o) = 1.

Proof. Let o € Bor(T2) so that x,L3(T?) N M # {0} and 0 < ma(0) < L.
If h € x,L3(T2)N M, h # 0, then h = xoh. Therefore b = 0 on o’ := T?\ @
and my(¢’) > 0. This contradicts (Sz). Thus (Sz) = (i). Now it is clear that
if ¢ € Bor(T?) and A is a subspace of L?(T?) so that M D x,N # {0}, then
xoL2(TH) A M # {0}. So (i) = (ii). Finally,let h€ M, h #0and s € Bor(T2)
with my(c) > 0 such that 2 = 0 on ¢. Then by denoting oo := {t € T? : h(t) = 0},
we have my(09) > 0 and h = x,1h. Thus M D xo1(hC) # {0} and ma(sg) < 1.
Consequently (ii) = (Sz). [

From Theorem 5 we deduce the following

CoroLLARY 3. Every non-trivial (closed) subspace of a Szegé subspace is a
Szegd subspace too.

COROLLARY 4. A Szegd subspace does not contain any non-trivial doubly in-
variant subspace.

COROLLARY 5. The space of the minimal unitary extension of an invariant or
*-invariant Szegd subspace is the whole L%(T?).

THEOREM 6. The Szegd-property of invariant subspaces is invariant with respect
to the unitary equivalences.

Proof. Let M and N be two unitarily equivalent invariant subspaces of L?(T?)
and assume that M is a Szeg6-subspace. If U is a unitary equivalence between M and
N, then by Corollary 5 and by the lifting commutants theorem (see for example [18]
Theorem 10.9 p.260) U can be extended to a unitary operator U from L?(T?) onto
the space xrL?(T?) of the minimal unitary extension corresponding to A, so that
UZ; = 2;U, j =1,2. Since TxpL?(T?) = xrL?(T2), it follows that I is unitary on
xrL?(T?), which implies U (1 — xr)L%(T?) = U(L*(T?) © xrL*(T?)) = {0}. Hence
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xF = 1 ma-a.e. on T2, Thus U is a unitary operator on L*(T?) and consequently it
is given by the multiplication with a unimodular function, say f. Therefore N' = fAM
and so A is a Szegd subspace too. [ ]

Now we characterize the reducing subspaces with respect to a given invariant
subspace.

PROPOSITION 2. Let M be an invariant subspace of L%(T?). Every non-trivial
reducing subspace N for the pair (M1, M) has the form N = x,L*(T2) N M, where
@ is the support of .

Proof. Let 9 be the space of the minimal unitary extension for [N, (N, N2)].
Then N= \ Z}ZIN = \ ZFZIN and M = x,L%(T?), where ¢ = s(N). Now

kJlez k<0

Oor

1£0
we go to calculate PyJ. To this aim it suffices to calculate Py ZE Zin; n € N with
I < 0 (the case & < 0 being similarly). Since Z; and Z, are doubly commuting we
bave PmZEZin = Pp(Z3) " 1Zkn = Pam(Z5) " NFn = (M) *MFn, which by the
doubly invariance property of A lies in . It follows Py C N. But, obviously,
N CNNM C PayM, from which the equality N = PuM = NMNM = x,LA(T2)NM
holds. ]

Before applying this result to the Szego invariant subspaces let us also prove

PrROPOSITION 3. If M is a non-trivial invariant subspace of L*(T?) without
proper reducing subspaces, so that x,M C M, for some o € Bor(T2), then either
mz{o) = 0 or mp(o) = 1.

Proof. It is simply first to see that, since M is closed and x,M C M, xo M
is closed too. Next we show that A := x,M is reducing for the pair (M, Ma).
Obviously it suffices to verify M{N C N (j = 1,2). For this aim let n € A and
decompose Zin = n} + af with n} € A and n} € x,L*(T?) © N. Now since
/mn}'dmg = /(xc,m)n;-’dmz = 0 for each m € M, we have n} L M. Thus
Min = PmZin = Pu(n} + nf) = Pun} = n; € N. But then by hypothesis
either N' = M or & = {0} which leads to the conclusion of the proposition. n

By applying these results to the Szegd invariant subspaces we obtain

COROLLARY 6. Each invariant Szegé subspace does not contain any non-trivial
reducing subspace.

We examine now the Szegd property for the standard subspaces appearing in the
structure of invariant subspaces from Theorems 1,2 and 4 (see Remark 1).
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EXAMPLE 1. H?(T?) is a Szegd subspace and consequently H2(T?) is a Szegd
subspace too.

This was indirectly observed by Helson and Lowdenslager in [9]. We shall verify
that the condition (ii) from Theorem 5 is satisfied for H2(T?). For, let A" be a subspace
of L2(T?) and ¢ & Bor(T?) so that H?(T?) D xoN # {0}. Then h € x, N, h #0
implies x2h € H?(T?) for n € N. By applying Corollary 1 from [10] it results that
Xe itself is in H2(T?) and thus x, is a constant function. Since ma(o) > 0, we surely
have my(o) = 1.

ExaMPLE 2. H* and H2 do not have the Szegd property.

A little modification of the example given by Helson and Lowdenslager in [9] p.
176 will be sufficient to our aim. For, let & be an open ar¢ in the one dimensional
torus T and g € L?(T) vanishing on . Then the series

SOS /R

k=11lcZ

converges in L%(T?), and thus it defines a function f in L2(T?) having the norm

oo 1/2
(Zl/kz) llgllzacy- It is clear that f(k,7) = (1/k)§(l) for k > 1, and f(k,1)=0
k=1

if & € 0. This means that f € Z;%'. On the other hand f vanishes on o x T, and

my(a x T) = m(a) > 0. Thus H' does not have the Szegd property. Similarly H? is
not a Szegd subspace.

EXAMPLE 3. M?(T?) does not have the Szegd property.

It suffices to observe that Z;H! or/and ZyH? are contained in M?(T?).

Since all H2-type invariant subspaces and all M2-type invariant subspaces are
unitarily equivalent with H2(T?) and M2(T?) respectively, we have the following

COROLLARY 7. Each H2-type invariant subspace is a Szegd subspace, while all
the M2-type invariant subspaces do not have the Szegé property.

CoRroLLARY 8. An invariant Szegé subspace can be either of H2-type or of
ultraevanescent (maximally supported) type.

By the above Examples 1 and 2 it also follows

CoroLLARY 9. There are ultraevanescent type invariant Szegd subspaces and
there also are ultraevanescent type subspaces without the Szegd property.
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5. PROOF OF THE MAIN RESULTS

Proof of Theorem 1. Let us consider the decomposition (1) of M. Since M,
reduces Z; and Z,, we have M, = x,L?*(T?) with ¢ € Bor(T?), ¢ C E, where E is
the support of M. If M, # {0} or M, # {0} then by Theorem 2 (respectively by
Theorem 3) M = fH?*(T?), M = gM?(T?) with f, g unimodular functions from M
and M respectively. So we have for M the form (3) respectively (4). Assume now
that M; = My, = {0}. Then M becomes x,L?(T?) & M.. Suppose M, # {0}. It
is clear that the support of M,, say w, satisfies w = E'\ ¢ and M, can be written as
M, = x N, where

N = {h e L¥(T%): xuh € M.},

is a maximally supported invariant subspace. We now apply to A the decomposition
(1). Since xuMNy is doubly invariant and contained in M., we have x, Ny = {0}.
This means xu N = xu (N ©N,). We may therefore suppose N, = {0}. I A} # {0},
then by Theorem 2 we have N = N; = fH*(T?), with f an unimodular function in
N. But N D M., ie. fH?(T?)D x,FfH2(T?) which contradicts the Szegd property
of H(T?). Hence N; = {0}. If N} # {0}, then by Theorem 3 we have N = Nj, =
= gM?*(T?) with g unimodular in A7. But since the left defect space is one dimen-
sional we may apply Proposition 4 from [4]. Thus gM?(T?) has not proper reducing
subspaces and by using Proposition 3 we deduce that M, = Xngz(Tz) is either
{0} or gM2(T?), which contradicts the fact that M. # {0} and the ultraevanescence
property of M., respectively. We then have A, = {0}. It remains that A coincides
with A, and is maximally supported, therefore we have the form (5). The proof is
finished. |

Proof of Theorem 2. If M is an invariant subspace (necessarily Szegd) of H3(T2),
then by Corollary 8 and Theorem $ and 4, M has one of the following forms: M =
= fH*(T?), M = M, and is maximally supported with f unimodular functions. In
the first case it clearly results that f is an inner function.

Finally, if M is of ultraevanescent type let M = M7 & MJ be the Wold decom-
position of M with respect to the individual isometries M; (5 = 1,2). If M} were
non-trivial for § = 1 or 2, then the operator Z; would be unitary on M. By choosing
h € M, h #0, we would obtain ¥k € H2(T2) for all k € Z,, which by Corollary
1 from [10] leads to £, € H?(T?), a contradiction. Thus Mi = {0} for j = 1,2,
or equivalently, M = M! = M?, which proves that M; and M, are (non doubly)
commuting shifts on M, n
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6. CONCLUDING REMARKS

1. Let M be an invariant subspace in L?(T?) and E = s(M). As was seen in
Section 2

N = {f € L*(T?), xgf € M}

is an invariant subspace in L?(T?) such that M C N and M = xpN. lf ma(E) < 1
and M, = {0} then A is of ultraevanescent type only. In other words an invariant
subspace without doubly invariant subspaces supported on a set of measure strictly
less than one, is of ultraevanescent type and cannot be represented with the aid of
any H2- or M2-type subspaces. For example if 0 < ma(w) < 1, then (¢l meaning
the closure in L%(T?)) el[x, H*(T?)], cl[x.M>(T?)] are such subspaces. They are
ultraevanescent and cl[y, H2(T?)] = xuM, clxoM2(T?)] = x.,N2 with V; and Ny
maximally supported ultraevanescent invariant subspaces. This is why it would be
interesting to characterize the maximally supported ultraevanescent invariant, sub-

spaces,

2. Because of the Szegd property all the ultraevanescent invariant subspaces of
H?%(T?) are maximally supported. By the same reason H2(T?) does not contain any
unitarily equivalent subspace to H* or to H* (they do not have the Szegd property).

3. The Theorem of Beurling in the one dimensional case ([2]) leads to the famous
factorization theorem of functions in H?(T) into an inner function and an outer
function. In the two dimensional case our Beurling type Theorem 2 does not imply
such a factorization. However, if we adopt the definition of outer functions in the
sense of Helson i.e. h € H%(T?) is an H-outer function if

5(h) == \/ Z¥Zh = HY(T?),
k20

then the following holds: ” a function ¢ € H2(T?) admits a Beurling factorization (i.e.
g = fh with h an H-outer function and f an inner function) iff S(g) is an invariant
subspace of H2-type”.

4. Since M?(T?) plays an important role in our approach it is meaningfull to con-
sider invariant subspaces in M2(T?). Unlike the space H2(T?), which does not have
any invariant subspace of M2-type, the space M2(T?) contains invariant subspaces
of H?-type (for example Z; H2(T?)).

It also contains ultraevanescent “doubly commuting” type invariant subspaces
(Z1M* and ZyH? are contained in M2(T2)). It is not difficult to see that a M2-type
invariant subspace gM?2(T?) is contained in M?(T?) iff g is an inner function. An
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interesting question would be the characterization of those unimodular functions f
for which fH?(T?) C M?(T?). By the orthogonality between M2(T?) and H?(T2)
we can prove that M?(T?) does not contain ultraevanescent subspaces of the form
clixogM2(T?)] or of the form cl[x, H2(T?)] with mz(o) < 1. It would be interesting
to characterize the ultracvanescent invariant subspaces of M?(T?). In order to obtain
a Beurling type factorization for functions from M?(T?) it would be desirable to know
if there are functions h € M%(T?) so that S(h) = M%(T?).

5. Let us suppose that M is invariant of ultraevanescent type. Then M is of
ultraevanescent type too. Moreover from Proposition 1 we have that (M;, M) and
(A-fi, }T/fg) are simultaneously doubly commuting. This means that we cannot obtain
new “known” ultraevanescent type subspaces from the corresponding +-invariant dual
on which the restrictions of Z}, Z3 would be doubly commuting.

6. It is possible to make analogous investigations for invariant subspaces in L? (),
with 4 a positive measure on the bitorus T2, The Lebesgue decomposition of yu with
respect to my will play an important role in such a framework (see also [4] Theorem
6). In a forthcoming paper we shall study such subspaces in connection with the
two-time parameter stationary processes.
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