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1. INTRODUCTION

The classification in [8] reduces the study of the fixed point subalgebras of the
automorphisms of the rotation algebra .Ag induced by SL(2,Z) to the computation of
the ones associated to the four automorphisms: &, 7,¢, 7. When & is rational, the fixed
point subalgebra of .44, under the action of the automorphism o : ¢ — u™?!
referred to as the “fip”, and of the automorphism 7 : u — v™1, v — u referred to
as the “square root of the flip” were characterized as trivial C*-bundles over the 2-
sphere in [4] and [6]. We now consider the fixed point subalgebra of the rotation
algebra defined using the automorphism ¢ : # — e ™¥y~1y, v — u~!, The only
other relevant example is A} which is studied in [7].

w1
y U= 7,

Our main result is a characterization of .Af,, 8 = p/q¢, p,q coprime integers, as a
trivial C*-bundle with generic fibre M, over the 2-sphere with three “singular points”
120, £21, £25. We will not give the precise result here (for this see Theorem 3.4.1), but
illustrate it for small ¢. For example, when ¢ = 1, .Ag is the algebra of continuous
functions on $? and when ¢ = 2, 45 is the algebra of continuous functions from $?
to M? such that the functions take values in the subalgebras M; @ M; at the three
points §2;. Interestingly we had to make extensive use of results in analytic number
theory and compute explicity several examples of generalized Gaussian sums. Also,
as with A and Ag, note that .Ag up to isomorphism, is independent of p. A simple
corollary of the main result is the calculation of the K-theory of Ag.

CoroLLARY. Let 0 = p/q, where p, ¢ are comprime positive integers. Then the
K-theory of Ag is given by,

* g=1 q=2 g=3 g>3
Ko(AS) iz 75 z7 z3
K1(A4%) 0 0 0 0
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We can also consider the related algebra Ag»,Z3, and with computations anal-
ogous to those in [6] we have:

THEOREM. Let 8 = p/q, where p, q are coprime positive integers and let £, i =
= 0,1,2 be any three distinct points of the 2-sphere $2. Then the crossed product al-
gebra Agx 3 is isomorphic to the following subalgebra of the C*-algebra C(§?, May):

Apx¢Zs = {f € C(§%, Ma,)|f(£%) commutes with P:},

where P{ , 1= 0,1,2, = 0,1, are self-adjoint orthogonal progections in Mz,. The
dimension of P,-j is q for all i, 3.

The format of the paper is as follows. In Section 2 we give the basic notation
and definitions we will use. In Section 3 we introduce the automorphism { and state
the main result on the description of 45. In Section 4 we give the scheme of the
proof with Section 5 detailing the results on Gaussian sums we need. In Section 6 we
compute the dimensions of the projections associated to the points 2y, £2;, £2; while
in Section 7 we end the proof of the main theorem.

We would like to take this opportunity to thank Professor George Elliott for
helpful discussions and also the referees for useful comments on earlier versions of
this paper.

2. THE ROTATION ALGEBRA
2.1. Introduction

This section will give a characterization of the rotation algebra Ag, # rational
(see e.g. [4], [10] or [6]) which we will use, together with some additional notation.

2.2, Notation

Assume that 8 = p/q, where p, ¢ are comprime positive integers with 1 < p <
€g—1. Let p=e2* 4 =™ and define the following ¢ x ¢ matrices:

1 0 0 --- 0 1
6 p 0 --- 0
U = (5595)5,520,...,9_1 ={0 0 p* ... 0 ’

-0 0 0 e pqéim
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010 .. 0 0

0 1 0 0

. 000 00

Vo= (871, jog, g = : SR
000 - 01

[1 00 --- 0 0]

'L 00 -+ 0 0 07

00 --- 001
. 0 0.0 -~ 01
Fo=(6;-i(modq))"»-7'=D:"’a?"’1: Lo Do

000 --00 0
010 ---00 0]

1., . a=11 ois 1o s
Zy = —=(p - Q=0T 2=y, o
_\/q—( )h] 3t g
Now Up, Vo, Zp are unitary and Iy is a self-adjoint unitary. Also Uy and Vi
generate My, the algebra of ¢ X ¢ matrices. Hence we can define four automorphisms
of My, {o, 7o and o, i=1,2, by:

1-

¢o(Uo) = eml-1+-0" "/ Qa1 ¢o(Vo) = Ug?,

vo(Uo) = U5 Y, Ya(Vo) = Vi,
a1{Up) = Uy, a1(Vo) = wip,

az(Uh) = wly, a3(Vo) = V.

Notice that ayaz =gy, {§ =1, where ¢ is the identity, Cgai'l =12l (oo l=
a7 'Co and o =(oay ozl

Then, if we use the convention that, for a unitary matrix U, AdU denotes the
automorphism of M, given by (AdU)(A) = U*AU, A € M,, we have,

Co=AdZy, yo=Ad Ty,

and,
oy = Adm, i= 1)2:
where,
1 0 0
—at i 0 w - 0
Wi =Ug? = (ﬁfw’)i,:‘:ﬂ,--.,q-l = : ’
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with pp’ = —1(mod ¢}(0 < p' < g),
" C 0 Iou
Wg = V‘p = [ ? ] s
° Igpn 0
with pp’ = —1(mod ¢)(0 < p” < ¢), and I; € M; is the ¢ x £ identity matrix.

DEFINITION 2.2.1. The rotation algebra Ay is the universal C*-algebra generated
by two unitaries u and v satisfying vu = puv where p = e?*¥ and 0 8 < 1.

THEOREM 2.2.2. The rotation algebra Ay, § = p/q, where p,q are comprime
positive integers, can be described as,

f(z,y+n) - a?(f(zay))) T,y € R) }

Aﬂ = {f € C(R2, MQ) f($ + m, y) - a'g”(f(z,y)), n,m € z‘

with pointwise multiplication and involution.
The generators u and v correspond to the functions:

U("”? y) = w®Uy,

Vizg,y) =w?V, for(z,y) ERxR,

Zsrit
where w* = v .

3. FIXED POINT SUBALGEBRA
3.1. Introduction

In this section we will state the main theorem concerning the fixed point algebra
of the cubic automorphism.

3.2. The cubic automorphism

DeFINITION 3.2.1. The cubic automorphism ¢ is the automorphism of A defined
by ((u) = e="0u~1y, ((v) = u~L.

LEMMA 3.2.2. In the description of Ag given in Theorem 2.2.2 { corresponds to
the automorphism,

(C)(z,9) = Co(f(6 - 2 + y,—2)),
where § = [~1 + (—=1)?]p/4.

Proof. Here we prove the case ¢ odd, ¢ even follows similarly.

T (2,4) 7V (2, 4) = e WYY Vo = Go(U(—p/2 - =+, ~3),
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U(z,y) t =w™U; = G(V(p/2 ~ 2 + y, —2)). ]

REMARK 3.2.3. The fixed points of the transformation ¥ on T2 = R?/Z? induced
by the transformation 3 of R%:

$:(z,y)— (6—z+y,—z) forall(z,y) €R?,

are the images in T2 of the following points:
1. gand podd : £ =(1/6,5/6), 21 = (1/2,1/2), 2 = (-1/6,1/6).
2. gorgeven: 2=(0,0), 2 =(1/3,2/3), % = (2/3,1/3).

3.3. Fundamental domains

Figure 1 below shows how the orientable, area preserving transformation ¥ acts
on T2 (which is identified with [0,1] x [0, 1] modulo boundary identifications) with
capital letters denoting plane regions, while small letters denote line segments. It
is straightforward to check how ¥ acts on the various line segments, and since ¥
is continuous and preserves the orientation, the plane regions inside get transformed

accordingly.
Figure 1: The action of ¥ on the 2-torus,
q and p odd
2
oy T auy YO qpy FO Wy
YO —F—t < > !

¥ ()

(1,3/4)
W& C i w

b (1,172)

s W(4) - ¥(B)
A () 2
] (5/6,1/6)
¥

g |
™) Yo YO

TN & —>
(0,0). (1/4,0) (12,0 ¥(s) (1,0)

¥
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g or p even
- s
Y 2 Y
Yw) ) Yiw)
(1/2,2/3) Y2
x ¥(B)
Y(x)
{0,1/2) | ¥0) ) t (1,172)
A
(/3,1/3) |
z % : o’
¥ B ¥(B)
7 <
) o 020wy (1,0)

Figure 2: The fundamental domain F,
g and p odd

g or p even
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By using Figure 1 it is clear that a fundamental domain, say F, of the transfor-
mation ¥ is given in Figure 2 above (where we now identify T2 with [~1/2,1/2] x
x[=1/2,1/2] modulo boundary identifications, when p and ¢ are odd). The quotient
orbifold in both cases is the 2-sphere §2 with three singular points £, 21, £2,.

3.4. The main theorem

We will now state our main theorem, the proof of which will be presented in
Sections 4, 5, 6 and 7.

THEOREM 3.4.1. Let 6 = p/q, with p, ¢ coprime positive integers and let £, i =
=0, 1,2 be any three distinct poini;s of the 2-sphere §2. Then the fixed point subal-
gebra of the cubic automorphism (, .Ag, is isomorphic to the following subalgebra of
the C*-algebra C(§2, My),

AS = {f € C(S%, M,) | £(£%) commutes with P}, i =0,1,2, j = 0,1},

where P,-j , §=0,1,2, j = 0,1, are self adjoint orthogonal projections in My. The
dimensions of P‘-" are given by the following table, where g is given modulo 12 and (|)
denotes the Jacobi symbol.

* g=20,6 ¢=1,57,11 ¢=2,4,8,10 g=3,9
P9 9-3 g —{ql3) q—(g(3) g_
3 3 3 3
P} g g - (413) g+ 2(al3) q
3 3 3 3
po g g —(ql3) g+ 2(q3) g+3
! 3 3 3 3
P g g —(qI3) g — (gl3) 7=3
3 3 3 3
PY q g—(q(3) g—(ql3) q
3 3 3 3
P [ a—(4l3) 7+ 2(¢13) g
3 3 3 3

COROLLARY 3.4.2. Let 8 = p/q, where p,q are coprime positive integers. Then
the K-theory of .Ag is given by,

* g=1 . g=2 T =3 | ¢>3
Ko(Ag) 72 75 A 78
K1(4Y) 0 0 0 0
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Proof. See [5] and [6]. [ ]

4. SCHEME OF THE PROOF OF THEOREM 3.4.1.
4.1. Introduction

This section will begin the proof of Theorem 3.4.1. After some preliminary results
we will outline the scheme of proof leaving the necessary calculations to Sections 5, 6
and 7.

4.2. A characterization of the fixed point algebra

REMARK 4.2.1. As a consequence of Lemma 3.2.2 we obtain that on the bound-
ary of F, for a fixed point of {, we have,
1. ¢ and p odd:

flz, =z +1) = (of(—p/2 - 2z + 1, —z) = ooy Loy /P2 f(~22 + 172, —2 + 1),
(2,22 = 1/2) = Cof(~p/2 + 2 — 1/2,~2) = Gooy a5 P72 f(z, -2 +1),
£0,4) = Cof(~p/2 +3,0) = (oo *** 2 f(y — 1/2,0),

f(2,22 +1/2) = Cof(~p/2+ 2+ 1/2,—2) = Gy /2 f(z, -2).

2. g or p even:

£(0,4) = Cof (6 + y,0) = (003 (v, 0),
flz, =24+ 1) = C(f(6 - 2+ 1,—2) = (oaboT (=22 + 1, —2 + 1),
fz,22 -~ 1) =Cof(6+z—1,-2) = (ad a7 f(z, —2 + 1).

We claim that .A§ is isomorphic to the algebra,
A = {f e C(F, M,)| the relations described in Remark 4.2.1 are satisfied},

where the identification is by restricting f € Ag from R? o 7. In fact, given f € ./-l'g,
define the function f € A4y by,

fz.9) = f(z,9), F($(=, 1)) = (5 Fl2,9), @2 (2, 0)) = (T2 (2, 99 (2,0) € F,

fey) = eleZ f(z,¥),

where z'~z=mel, y —y=n €, (z,y) € FUPH(F)Y*(F). 1t is strainghtforward
to check that on the boundaries of the three regions F, %(F), $?(F) the relations in
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Remark 4.2.1 actually guarantee that f is well defined and also it is clear from Figure 1
that the interiors of the three regions do not overlap and that FU(F)Up2(F) modulo
boundary identifications is homeomorphic to T2 so that f € A (and f € Ag as it
can be seen by using Lemma 3.2.2 and the relations in Section 2.2) . Conversely the
restriction to F of any f € .Ag satisfies the relations in Remark 4.2.1 and since f is
a fixed point of ¢, its values on R? are determined by its values on F (see Lemma
3.2.2).

REMARK 4.2.2. By using the definition of { we see that at the exceptional point
£2; the values of f € .Ac are restricted to a subalgebra A; of M, described as follows:

(1) ¢ and p odd:

1. At 0 = (1/6,5/6) : {A € M,|Goas” > %5 (4) = A},

2. At 2 = (1/2,1/2) : {A € M, o a"’“‘l’z ~1(4) = A},

3. At 2, = (~1/6,1/6): {A € M, icoa"“?“/-’* T1(4) = A).

4. Note that at the points (0,3/4), (1/4,0) and (1/4,3/4) the restricting au-
—{p- 1)/2C 1—1 (p+1)12< ailey (p~ 1)/2,(a'1 —(p+1)/2 |

G- iz, *(”“1”24 o (p+1)/2 respec-

tomorphlsms would be (oo
oo lag -(p- 1)/24 -(P 1)/2

tively.

and (oo ter,

By using the relations between o, as and (o given in Section 2.2 it is straight-
forward to show that these are in fact the identity, so there is no restriction at these
points and therefore the corresponding algebras are M,.

(i) ¢ or p even:

1. At 20 = (0,0) : {A € Myl(oad(4) = 4},

2. At 2 = (1/3,2/3) : {A € MylGoadai*(4) = A},

3. At 2 =(2/3,1/3) : {A € M,|¢oa~ a7 (4) = A}

4. As in the previous case there is no restriction at the points (1/2,1/2),(0,1/2)
and (1/2,0) since the restrzctmg automorphisms Coada oadCoar  af ™, (oadloas™

a7 oo ef and Cood rar e o are in fact the identity.

The algebra A; is determined by the dimensions of the eigenspaces of any matrix
implementing the isomorphism, say 7;, of M, associated to A;. Such dimensions will
be computed in Section 6 and this will show that the dimensions associated to the
three points 2, £, 2 in Theorem 3.4.1 are as stated. We will call T; the matrix
implementing 7; obtained by composing the matrices associated to the isomorphisms
0,70 and @, i = 1,2, in Section 2.2 (cf. Section 5.2). In order to end the proof of
Theorem 3.4.1 we still need to show that f'{g is isomorphic to the algebra B,

B = {f € C(§%, M)|f(£) = n(f(%))}.

To do so, we will construct a non necesarilly single-valued map 7 : §2 — Aut (M)
which is single-valued and continuous in §2 — Y, where Y is the image in $? of the
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boundary of F, and has the limits show in Figures 3 and 4 below on the edges of
the tree Y. This describes how A5 wraps up to give B. Note that we use 7 to go
{clockwise) around £2;. We have also used,

agp—l)ﬂc&q =7 (Coa;'(p"l)lzal“l) — (Coa;(p“)/z&fl) ((oa;(”"l)/za‘;l) ’

and e1a7 (" = n(Goad) = (Ceder ) (Coad).
The map 7j is given in terms of the adjoint of a unitary field in $2, which we will
call 5,

n:seU(s)e U, s €S

Now we will make the construction of 5 precise.

REMARK 4.2.3. Let 7 be the automorphism of M, associated to the point {2,
Le.,

A{A € M|m(A) = A}.

Figure 3: The fundamental domain F,

¢ and p odd g or p even
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Figure 4: The Tree Y,

g and p odd q or p even

Qo = (0,0)

By using the definitions it is straightforward to check that Tf’ = 1. The phase we
are going to introduce makes the unitary T; implementing ; into a matrix whose third
power is the identity. We will call it T;. In particular we put T3 = p3;,,1,, Ti =
= pm i, 1= 0,1, T = p3,1,, Ty = pZiTy, for ¢ odd and T = 0, T =

= /“2-1‘1T2i; 1=0,1,2, for q even.

Let C be a path around Y as in Figure 5 below. On the straight parts of C, the
value of 7 : s ++ U(s) is given by the matrix implementing the automorphism ) as
shown, with z some phase factor. Note that we will use 7} to go (clockwise) around

;. Accordingly:

PP —— . L1 Ly BEL 1yt
1 1#3 1W1 1W2 3 Zo(W, 1W2 L%JZO) = uZ; IW;LT)-,

s Y WE 2o (W WE Zo) = uZ Wi S H WA
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Figure 5: The Tree Y,
g and p odd g or p even

o))
W T 2y
{p-1)

lw—lwz_ 2 Zy

Let P, and Py, be the spectral projections of Ty onto the e?*/2 and the &*i/3
eigenspaces (resp.), Qo and @, the spectral projections of 73 onto the e2*i/3 and the
e*™1/3 eigenspaces (resp.) and Rp and Ry the spectral projections of T onto the e27i/3
and the e*"/3 eigenspaces (resp.).

To go (clockwise) around the circular parts of C we use the following paths:

1At 20:Ct) = 1 — (Py + Py) +e27ilE+hot) py 4 25T R Py ¢ € {0, 1],

2. At 2, : C(t) = 1 — (Qo + Qy) + e27iGHa)Qy 4 27F+mN)Q, ¢ € [0, 1],

3. At 2,:C(t) =1—(Ro+ Ry} + (G5 o) g 4 2CFRHHDR ¢ e 10, 1.

This defines n (and hence #j) on C. If we deform continously the path € to make
it coincide with Y in the limit, we have also defined # in the interior of C. In order to
finish the proof of Theorem 3.4.1 we need to show that the map 7 extends to $? and
for that it is enought to prove that the winding number Dy of the path 5 : 5 U(s)
around C is an integer multiple of ¢ (cf. [4]). This shows that [C] = 0 in = (U,). We
have,

Py = K%-i-ko) dim Py + (%-{-Icl) dimPl] +‘[(%+no) dimQo + (%—{-nl) dile} —

-— [(% + Io) dim Ry + ('3- <+ Il) dlmRo] + UWPP.
The last term UWPP in Sy comes from unwinding the final phase factor A =
= ¥y € Q, (X is the product of all the phase factors we introduced) by
using the path,

C(ﬂ = e2vriwo(1—t)621ritmo’_ ma -Fl,- i€ [ _u

L=z
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so that,
UWPP = (—wy + mg)yg,

and it will be discussed in detail in Section 7. The isomorphism & from B to .15 is

then given by,
(#5)(s) = i(s)f(s), fe€B, s,

where 7(s) = Adn(s).

So, to finish the proof of Theorem 3.4.1 we need to compute the dimensions of
the spectral projections of T3, i = 0,1,2 and to show that Sy is an integer multiple
of ¢ for some choice of the integer parameters ki, n;, l;, ¢ = 0,1 and mg. (We choose
mg = 0)

5. GAUSSIAN SUMS
5.1. Introduction

Here we will compute the Gaussian sums which will be needed in the Section 6,
but first an overiew of the general situation.

5.2, General remarks

We now describe what is to be computed. We distinguish two cases according to
the parity of ¢ and p.
(i) q and p odd:

Ti = W{IW{(p_1+2i)/2ZO, Ty = ”:.’.‘.}Hﬂ’ i=0,1,

Ty = Wy 027, Ty = uoimy,

where p3, and puZ} are determined by T2 = p3;, I, and T3 = 43,1, i = 0, 1.
(ii) p or q even:

Tn = W;Zo, T'g = I.AO-IT(),
Ty = Wi 'Wiz,, T = p3'1h,
Tp = Witw, T 20, Ty = pi' M,

where 45! is determined by T3 = p3;1,, i = 0,1,2.

By Remark 4.2.2 T3 = ¢t = 0,1,2. Therefore 7% has only the eigenvalues
1,e2m/3 47/3 and to determine the dimensions of its eingenspaces it is enough to
compute the Trace of 7:. To do so we actually determine the Trace of 7; and the
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phase factors pq(iy. These are given by Gaussian sums, as will be explained in Sections
5.3 and 5.4.

5.3. Traces
All the matrices T} are of type,
Wi Wy *Zy, r,5€EN.
If we put,

g—1
1 5 :e-swipmalq-riam{g’

Tra(p, -3m?/2, ~om{2
a(p,9) = f E p i

we have,
(i) ¢ and p odd: Trace(T;) = Trzit1(p,q), i = 0,1, Trace(T3) = Tr-1(p, 9)-
(ii) ¢ or p even: Trace(Ti) = Tralp,q), i=0,1,2.
5.4, Phase factors
We have,
—r s 1 (omimia-2i2,mi2mjiy, .
Wi W, 20 = ‘\7‘6(‘*’ 4 £,j=0,¢—1s

where a = 2(r + 5) — [1 — (—~1)¢]p/2, r, s € N. Therefore,

q—l 3 1 —_-ﬂ —mu
(W™ Wy°Zo)s; = 1/ (Z W= (a=2G+m)/2 pmm? {25712 ;) .

m=0
So,
g=1 ¢~1
—r Ty - ~2)/2)(i4m) = +)’/2
pe = (W, W, "Zo)g,o = Z Z“’ (1+H{a=2)/2)(j+m) p=(m+]
7 =om=0
putting j +m = d,
g—1 g=1+j )
Z z w—d(1+(a=2)/2) =@/,
'——o d=j
exchanging the order of the two sums,

Z Zw—a(1+(a~2)/2) -d’f2 }: Z wmd(1H(e=2)/2) p= /2

d =0 j=0 d—q j=d~(g-1)
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3 29 ! ) 2/
(d+1)w—d(1+(a 2)/2) —d /2+____ [2(g— ~1)—d+1]w —d(14(a~2)/2 p-d 2
\/“ :‘;:, V] :‘_:

If we put &’ = d — ¢ in the second sum we obtain,

Zw-ad/z -2

d"-O

5.5. Computation of Gaussian sums

As seen in Sections 5.3 and 5.4, we need to compute,

-1

Tra(p, Q) — Z euampm’/q mam/q
m=0

-1
«/"Z e~mipdlag-miadle g = _1,0,1,2,3,4.
This will be done in Section 6, here we state the results which will make such com-

putations possible.

DEFINITION 5.5.1. Let p,¢ be two non-negative integers and a € Z. Then we
define the Gaussian sum G(p, ¢, a) by,

g~1

Glp,g,0) =) (27ipd? /g 2miadfq
d==0

REMARK 5.5.2. If ¢ = 0, G(p, g, 0) is the usual Gaussian sum.
LEMMA 5.5.3. If (k1, k2) = 1, then,

G(pi k1k29 (1) = G(pkl, kZJ E)G(kas kl; a)'

Proof. This is a generalization of the multiplicative law for Gaussian sums. The
proof given in [9] works verbatim in this case too. u

Thus if ¢ = 2°r, with r odd and (p, ¢) = 1, we have,
G(p,q,0) = G(p, 2°r, a) = G(p2°, r,a)G(pr, 2%, a).

Therefore we only neeed to compute the two types of sums:
(1) G(p, 2, a) with p odd,
(II) G(p, ¢, a) with ¢ odd and (p,q) = 1.
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LeMMA 5.5.4. Let ¢ > 2. Then,

0 if @ is odd
2¢+1  if g is even

62,0 = {

Proof. Straightforward computation. u

We will also make use of the following reciprocity law for generalized Gaussian
sums given, for example,in [2].

. THEOREM 5.5.5. Let a,b, ¢ be integers with ac # 0 and ac+ b even. Then,

-1 laj-1
CZ ewi(am’-}-bm}/c - |c/al1/287ri(|ac}—b’)/(4ac) Z e—ri(cm’-{-bm)/a.
m=0 m=0

COROLLARY 5.5.6. If p is odd, ¢ > 2 and a is even, we have,

(c+1)

G(p, 2c’ a) = 2___p_geii(1/4—-a’/(pzcﬂ))"-G(?c—z’p, 0/2)‘

Proof. Straightforward computation. u
REMARK 5.5.7. If p is odd,
G(p,2,a) = 1 + (=1)P+e.
Corollary 5.5.6 and Remark 5.5.7 give the value of the sum of type (I). We now
describe the sum of type (II):

LeEMMA 5.5.8. If p and ¢ are two positive relatively prime integers with ¢ odd

tben, (20) )
‘ gmiaz(—¢+t1)/(20)  if g = 1(mod 4
G(P: g a) = '\/E(PIQ) {ieﬂaz(q.}.l)/(itq) ifg= 3(mod4) ’

where pz = —a(mod g) and (|) is the Jacobi symbol.

Proof. This can be proved by an adaptation of Schur’s evaluation of Gaussian
sums {an account of which is in [11]). See also [6] Section 5 for similar results. W

6. DIMENSIONS
6.1. Introduction

In this section we compute the dimensiqns of the projections in Theorem 3.4.1,
which are the dimensions of the e and e*¥ eigenspaces of T;. We will devide the
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computation into three cases: ¢ and p odd, ¢ odd and p even, ¢ even. Each of these
cases is in turn divided into subcases: ¢ = 0{mod3) and (g,3) = 1. But first some

introductory remarks.

LEMMA 6.1.1. In the cases we consider we have that,

Tra(p, q) = fG(3p, 2, a),

ud ‘2\/_.G(p,2q,a) a=-1,0, 1234.

Proof. For the first sum we have,

G(3p,29,a) = 2‘121 &Smipm?/(2¢)+2miam/(29) —
m=0
g1 2g-1
— 2 J3xipm? fg4-2niam fg + z 33”1Pm2/q+rmm[q
m=0 m=gq

put m' = m — ¢ into the second sum to get,.

g1 g—1
- E : eSaripm’/q-Mriam/q + z e.'sﬂpm’/q+xiam/qewx(3pq+a)'
m=0 m=0

Now, sinee in the cases we consider, p and ¢ odd = a odd, and p or ¢ even = @
even, we always have that 3pg + a is even so,

Tra(p, ¢) = =G (3p, 24, a).

f

The other equality can be proved in an analogous way. »

REMARK 6.1.2. Remark 6.1.1 and Section 5 clearly allow us to compute Trace(7})
and hence the dimensions of the eigenspaces of 7.

DEFINITION 6.1.3. Let my, uy, v;, ¢ = 0, 1,2, be defined by,

m; = dim+1 eigenspace of 7,

u; = dime?™/3 ejgenspace of T3,
v; = dime*™/® eigenspace of T;.

Note that m;, u;, v; are the solutions of the following linear system:
my — (i +v;)/2 = Re('f[l‘a,ceff;-)
or (ui — v:)v/3/2 = Im(TraceT})
m; ~+ Ui +v; =g

{ m; + u;e?™/3 o ;8713 = Trace(T})
mi +u;+vy=gq
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6.2. ¢ and p odd

We first consider the case when g = 0(mod 3).
Case 1: ¢ = 0(mod 3). Let ¢ = 3r. Now,

Trace(Tp) = Trace(T3) = 0,

which can be seen, for example, by computing the norm square of the trace. At £
we have a more complicated situation.

LEMMA 6.2.1. If ¢ = 3rthen,

G(3p,24,3) = 3G(p, 2r, 1).

Proof. Straightforward computation using the definitions. n
Now,
1/3
Trace(T} ) = Trace(u; 'Th) = \/_G'(p, G(p, 2r,1) ( \/-G(P, 2q, 3)) .

By using Lemma 5.5.3 we get,

1/3
Trce() = 52 GERTDO6r 8D (7560 0 2,5)

i
Therefore by Lemma 5.5.8 and Remark 5.5.7,

Trace(Th) = v3(2p13)i~ 1.
Also notice that (2p|3) = —(p|3) since (2]3) = —1. Therefore we get:

m; = q/3 u; = ¢/3, v = q/3, i=0,2,

Case 2: (g,3) = 1. We have that,

1/3
Trace(Fy) = 500, 3,80 (5700, 2000) ) =

Vi 2

= L paa®)) = (gl3), k=012
= —=CT67,3.4(8) ( J60p, 0.0 ))) — (al3), k=0,1,2.

Therefore,
- 9‘{'2(9‘3), w = R Gl C1) JPUY
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6.3. ¢ odd and p even

This is the simplest case since we do not need to “double up” the sums involved.

LEMMaA 6.3.1. Let p = 2¢. Then,

L

Trace(T}) = 7

1/3
CEra® ( (t,q,fc)) E=0,1,2

1
—G
Vi

Proof. It is sufficient to use.the formulae in 5.5 and 6.1 by noticing that a(k) =
%, p=2t. ‘ =
Case I: ¢ = 0(mod3). Let ¢ = 3r and note Trace(T:) = 0 if k = 1,2, so it only

remaing to compute,

R | RASE Jreeemm— g | i
Trace(Tp) = V_EG(M, g,0) (7q.G(t,q, 0)) = -ﬁG(t’ r,0) (ﬁG(t, 4, 0)) =
= V(1) ()i~ = V()i
Therefore:
mo =q/3, uo=4g/3~(¢3), wo=q/3+(¥3),
m; = q/3, u; = q/3, v; = ¢/3, i=1,2,
Case 2: (g,3) = 1. We'have that,
Trace(Ti) = (¢}3), %k=0,1,2.
So the dimensions of the eigenspaces are given by,
mg = ————9+§(9|3), U = Y= _q_::giﬁ_)_’ 1=0,1,2.

6.4. g even

Case 1: ¢ = 0(mod 3). Since,
Trace(Ti) =0, i=1,2,

we only need to compute,

) s 7 1/3
Trace(7p) = ﬁ—ﬁG(p’ 24/3,0) (-2—\_/—50(}7’ 24»0)) .
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Thus if ¢ = 2°~1r, with r odd, r = 3s, we have,

N 1/3
Trace(Tp) = —=G(p2¢°,s,0) G(ps, 2¢, 0)( —=G(p2°,r,0)G(pr, 2°, 0)) =

e Vi
= \/g(p2¢I3)(2c—2|3)i~1e——1ri/6 i= \/?;(p]{'))e"ils,

Therefore,
mo = ¢/3+ (pl3), vo=¢/3 —(pl3), vo =4¢/3,

m=u=v=¢/3, i=12.

Case 2: (g,3) = 1. Suppose that ¢ = 2°~!r, with r odd. Then,

, 1/3
Trace(Ty/2) = --I——G(Sp, 29, a) G(3pr, 2¢,a) ( —=G(p, 2q, a)) .

27 2/i
By Lemma 5.5.3, Corollary 5.5.6 and Lemma 5.5.8 we have,

1/3
Trace(Ty/2) = \/_G(3p2° W 1 a)( \/_G’(p2° ,1,8)G(pr, 2°, a)) =
= XD 14 e N G T A
2 qpr LI}
XG(Qc—2 3 /2)( +1/2 ri(l/4-—a°/(pr2°+1))G( 9¢ )M} e
7a ’ria - ¥ r!a H
pr N f2 P

et2miby/3 if pr = 1(mod 4)

71\ — o®if3
> Trace(Ty) = e (2q'3){e—2*ibv/3 if pr = 1(mod4)

where 2°=2y = —b(mod 3pr) and b = a/2. Therefore at 2y we have b= 0 and,
Trace(Th) = e™/3(2¢]3).

The congruence class of y(mod 3) is determined by the equation 2°~2y = —b(mod 3pr)
which implies 2°~2y 4+ b = 0(mod3). Therefore Trace(f},) is determined by e. By
solving for the dimensions we get:

mo = [g— (¢13)]/3, uo = [g — (¢13)1/3,v0 = [g + 2(¢(3)]/3,

g+ ’;(qi:i) g~ ?(:1!3) | 2:_?5@ 3¢-1pp = 1(mod4)
my = _ S U = 2 U = . !
q :5‘113) g+ 23(‘1|3) Lg@ 3¢=lpr = 3(mod 4)
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7. WINDING NUMBERS
7.1. Introduction

In this section we will compute the phase factors and winding numbers then show
that the winding numbers are always integer multiples of ¢.

7.2. Phase factors

‘We are éoing_tg determine the phase factor u of Section 4.2. We will do in detail
only ¢ and p odd. The other cases can be computed by using analogous techniques.
(i) ¢ and p odd: u is determined by the equation,

#;1N1-1W1-1W;(p-—l)mZOW;1W2—(p+1)/220 - yZEIWZLL;_i)'.
Since W~ 120 = Zo W ! (shown by direct computation) we get,
LHS = pu3tpT? Wl"lzon(p'H)/zZonm.
Notice that W, 2 Zy = p?" (" ~D/2 2, W, W, and,
(WoWh)* = P "O-DR2wawn, neN,

50,
LHS = pglﬂl““le"(Pn"l)/spP"(P""1)(P+1)/4W1-133W2§P+1)/2‘

Because W[ 23 = ZZW;* we finally get,

LHS = g5 py tw?” @7~ 1/8 0" (0" = 1)p+ 1)/ 4 g2y o= D/2,

Therefore,

o= yg'l,u{1w"“("ﬁ'1)/81)""(”"'1){“1)/420,

where Z8 = z1,.
(11) q odd and peven: y= ”6'1ﬂ;1w??"(9f2“1)/4pp”(1’”_1)(?/2+1)/2ZO_

(iii) ¢ even: p = pai‘uglp@")z/?zm

7.3. Explicit conputation of phase factors

Here we are going to find a sirnpler formula for the “fractional part” FP of the
final phase factor A. We call the “fractional part” of A that part which can not be
written as e2™£/9 where k € Z. This is the only fractional contribution to UWPP.
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Note that if ¢ and p are odd A = p~jp and if ¢ or p even A = p; ', where p is given
in Section 7.2.
(i) ¢ and p odd: The fractional part FP of A is in this case,

FP = puZip3'ui 0,

since w?"' @’ ~1)/82"(#"~1)(P+1)/4 are exponentials whose exponent has g as denomi-

nator. By computing Z§ directly we get 2, = ——=G(p, 29, —p) and so,

2
op eri(—g+1)11z/(60) ;f g="1{mod 4)
- {ewi(q-i-l)llt‘/(ﬁ?) if ¢ = 3(mod4)’
where 2pz = —1(mod g).
(ii) ¢ odd and p even:

FP emi(=g+1)(3t452)/(89) i ¢ = 1(mod 4)
- {e’i(‘?+1)(3‘+53’)/(69) if g= 3(mod 4) !

where tz = —1(mod ¢).
(iil) g even:
FP = em5ri/(3?9)p(P")2/2x

emi(-r+1)52/(3r) ifr = 1(mod 4) eMi(=pr1)5y/(Ber)  if ppr = 1(mod 4)
Lemi(r+1)52/(37)  if r = 3(mod 4) ° { eri(pr+1)5y/(6p7)  if pr = 3(mod 4) ’
where 2°pz = —~2(modr) and 2°~%y = —1(mod pr).

7.4. Explicit computation of winding numbers

To illustrate the method we only do the case ¢, p odd. The remaining two cases
(g odd and p even and g even) can be shown by doing analogous computations. As
in Section 6 we distinguish two subcases ¢ = 0(mod 3) and (g,3) = 1.

Case I: ¢ = 0(mod 3). We have,

Sy = K% + ko) a/3+ (13- + kl) q/3] +
+[(5+m0) sl + (G n1) trs - o] -
- [G + Io) a/3+ (-2— -+ 11) q/3] + UWPP.
Let ki = n; = I, i = 0,1. Then,

Ly =(1+4no+ n1)q/3 + (np — ny — 1/3)(p|3) + UWPP.
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Now from Section 7.3 we have that UWPP = 11az/3+(Int), where (Int) is an integer,
2pz = —1(mod g), and if ¢ = 4t+1, @ =, while if ¢ = 44+3, a = —(t+1). Therefore
since ¢ = 0(mod3), @ = 2(mod 3) and pz = 1(mod 3) so p and z must have the same
congruence modulo 3.

For p = k(mod3), k = —1,1,(p|3) = k, so by the above,

UWPP = zlf; + (Int'),

and, |
Ty = (14 no + n1)g/3 -+ k(ng — ny) + (Int"),
which can be made into an integer multiple of ¢ by choosing no = —k(Int") +n; and

ny such that 1+ 2ny — k(Int") = 0(mod 3).
Case 2: (¢,3) = 1. In this case,

Sy = [(1+ kﬂ) o= (o), ( ok ) o= ngsn] N

F[(3 ) L (2, (o]

_[(% )q'(913) (3+1)[Q__*§Q—L@]+UWPP.

We have,

(- 1)(4 1)/2)

UWPP = (~1)@-1/2l= 11z + (Int),

where (Int) is an integer. By choosing k; = n; = &, ¢ = 0,1, we get,

- - {—1)(g-1)/2
= (1 + np + nl),[q_,_éﬂ)_] + (~1)(q~1)/2 [q ( i% }112 -+ (Int)
We can choose z = 0(mod 3) since (g,3) = 1 thus,

Xy = (1 + ng + nl)kl_:éqj)_] o (Int').

Since ¢ and 9-"—(57-@ are coprime, (Int') = ag + @ [q%—-.ﬂéﬂi)l, for some integers a, .
Thus if we choose 14 ng +ny = -0,

Ey = @q.

This completes the proof of theorem 3.4.1. .
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