J. OPERATOR THEORY © Copyright by IMAR, 1993
30(1993), 267-299

ON THE REFLEXIVE ALGEBRA
WITH TWO INVARIANT SUBSPACES

ANOUSSIS, M., KATAVOLOS, A. and LAMBROU, M.

INTRODUCTION AND PRELIMINARIES

This paper is devoted to the study of the algebra A of all bounded operators
on a Hilbert space H which leave invariant two closed subspaces L, M of H, with
LNM=0,L+ M = H. In symbols,

A= {AeB(H): A(L) C L, A(M) C M}.

When L and M are orthogonal, A is simply the algebra of all block-diagonal operators
with respect to the decomposition H = L @ M. We are interested in the case where
L and M are not orthogonal, especially when the “angle” between L and M is zero
(by which we mean that the sum L+ M is not closed). In this case, A is the simplest
instance of a reflexive algebra which is not a C'SL algebra (a reflexive algebra whose
invariant projection lattice is not commutative). Results related to this algebra can
be found in {2}, [17], [20] and [24].

In Section 1, we determine when the set .A + A* is ultraweakly dense in B(H).
This property (called *-density by Gilfeather and Larson) is always valid for nest
algebras; in fact, it characterizes them among CSL algebras [11]. Our result shows
that non-CSL algebras, such as the ones we examine, may be *-dense, thus answering
a question of [11] in the negative.

In Section 3, we examine the set A + S§*, where & is the A-module

S=1{SeBH):S(L) C M,S(M)C L}

(when L is orthogonal to M, S consists of all off-diagonal operators).
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We show that A + S* is always ultraweakly dense in B(H), but is only equal to
B(H) when the angle between L and M is positive. We also investigate the validity
of the corresponding equality in the Von Neumann-Schatten classes.

For CSL aigebras, Katsoulis {15] has also studied “approximate complements”;
more precisely, he has shown that A+7* is always ultraweakly dense in B(H) (where
T* is the annihilator of the rank one subalgebra of the CSL algebra A). For example,
when A is the algebra of all upper triangular operators with respect to some basis,
T is the set of all strictly upper triangular operators. Similar decompositions with
respect to a nest in a Von Neumann algebra are studied in [11).

In our case, the annihilator of the rank one subalgera of A is precisely the adjoint
of the A-module S.

In Section 4, we study compact perturbations of the algebra A. The algebra
A+ K is always norm-closed; we show, however, that it is not equal to B = {X €
€ B(H): PLXP is compact for all invariant projections P}, unless a “distance esti-
mate” holds for A.

We also investigate whether A+K remains invariant under compact perturbations
of the operator expressing the “angle” between the subspaces L and M. We prove
that this only happens when the “angle” is positive. However, both algebras B and
D 4 K (where D is the ideal generated by operators in A which annihilate one of the
subspaces L, M) always remain invariant.

Finally, in Section 5, we show that the essential commutant of our algebra A is
the sum of its commutant and the compacts. By contrast, the essential commutant
of the ideal D is always larger, when the “angle” between L and M is zero.

TERMINOLOGY AND NOTATION

Let H be a (complex, separable, infinite dimensional) Hilbert space. The symbols
R, F, K, and B(H) denote the sets of rank one, finite rank, compact, and bounded
operators on H respectively; C, denotes the Von Neumann-Schatten class (we identify
Coo with K). If X C B(H), we write R(X) = RNX, F(¥) = FNX, G(X) =CNA,
K(X)=KNX. The commutant of X is denoted by X’.

For1 < p < +ooand 1/p+1/g=1 (or ¢ = 1if p = 400), we identify the Banach
space dual (Cp)* of C, (antilinearly) with C,, using the sesquilinear mapping

CpxCy—C
(X, TY — tx(XT*)

e PL
where tr(.) is the usual trace on B(H). Thus, if X C Cp (1 < p € o), we write X'~?
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or X+ for its annihilator in Cy, namely
XYP = X+ = {T € Cptr(XT*) =0 VX € X}.
When p = 1, this duality identifies (C;)* with B(H), and so, if X C (1,
Xt = Xt = (T e B(H):tx(XT*)=0VX € X}

is the annihilator of X in B(H). For Y C B(H), we write + for the preannihilator
of Y in C;, namely
Ly ={TeCrt(YT*")=0VY €V}

Also, X7 will denote the closure of a subset X C Cp in the norm || ||, of Cp, while
Y will be the closure of ¥ C B(H) in the ultraweak (w*) topology.

If X is a subset of a vector space, we will denote the linear span of X by [X].

The (orthogonal) projection onto a subspace N of H will be denoted by P(N).
If M and N are subspaces of H, M V N denotes the closure of M + N. If £ is a set
of (closed) subspaces of H, we write AlgL for the algebra of all bounded operators
leaving each element of £ invariant. If e and f are two vectors in H, the operator
e ® f* is defined by (e @ f*) = (z, f)e. We generally follow the, by now standard,
notation of [6] and [26] for matters concerning invariant subspace theory.

PRELIMINARY RESULTS

Given two subspaces L and M of a Hilbert space H with LNM =0and L+ M =
= H, we study the algebra

A=Alg{L,M}={A e B(H):A(L)C L,A(M)C M}
and the A-module
S={SeB(H):S(L)C M,S(M)C L}.

We will use the following facts about .4 and S:
LEMMA 0.1 (see [22], [17]). Every finite rank operator in A (resp. 8) is a (finite)
sum of rank one operators in A (resp. §). In fact,
F(A) = [P(L)RP(M™Y), P(M)RP(L*): R € R]
F(S) = [P(L)RP(LY), P(M)RP(M*): ReR].
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THEOREM 0.2 (see [24]). The finite rank subalgebra F(A) of A is ultraweakly
dense in A.

Note that Lemma 0.1 implies that A and S* annihilate each other’s finite rank
operators. It follows that Co(A)t € Cy(S*). Conversely, if T is in C,(S*), then for
each A in Cyp(A) the operator T* A is trace class; by Theorem 0.2 there is a net {£;}
in F(A) such that w* — limR; = I, hence lim(tr(T*AR;)) = tr(T*A). Since AR; is
in F(A), by Theorem 0.1 we have tr(T* AR;) = 0 for each 7, hence T € Cp(A)*. It
also follows that F(A) = Cp(A). Similar arguments complete the proof of

COROLLARY 0.3.
) FA=GSY), GA =C(S), FOAT = GolA), FA) = K(A).
(i) 18 = C1(A), Go(8)* = Co(A"), F(S)™ = S, F(8) =Cp(S), FS) = K(8)-

1. THE SPACES A + A* AND S + 8*

Suppose that L and M are orthogonal. Then A is the (von Neumann) algebra of
all block-diagonal operators with respect to the decomposition H = L& M, and § is
the (selfadjoint) subspace of all off-diagonal operators. Thus A+8 = A+8* = B(H)
while A+ A* = A is “small”.

When L is not orthogonal to M, the sum A + .4* may be “large” in the sense
that (A +.4*)"%Y = B(H) (Theorem 1.3). This allows us to answer the question of
Gilfeather and Larson [11] mentioned in the introduction (Corollary 1.4). We also
give an unexpected operator-theoretic characterisation of Halmos’ “generic position”
in terms of the “largeness” of S + S* in a weaker sense (Proposition 1.6).

As long as the sum L+ M remains closed (even though it may not be an orthog-
onal sum), the equalities A + & = A + $* = B(H) remain valid. Indeed, in this case
there is an equivalent inner product on H with respect to which L and M become
orthogonal, hence A + 8 = B(H). For the other equality, see Theorem 3.3.

Things change dramatically as soon as L+ M # H.

As we show in Section 2, while A + S remains ultraweakly dense in B(H), it is
never equal to it (Theorem 2.1).

In Section 3, we show that the same is true for A+8* (Theorem 3.1); moreover, we
can construct a compact operator which is not in 4+8* (Theorem 3.3). However, any
Hilbert-Schmidt operator decomposes as an orthogonal sum of two Hilbert-Schmidt
operators in A and §* respectively (Theorem 3.2). This decomposability always fails
for some operator in €y (Theorem 3.3); however, there are situations in which C,(A)®
@Cp(S*) = C, for all p € (1, +00) (Proposition 3.8).
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Now for the details:

1.1. Given the subspaces L and M of H with LNM = 0 and L+ M = H,
following Halmos [12] we call L and M in generic position if Mt NL =L+ NM = 0.
A fundamental result [12] in the study of two subspaces in generic position is that, up
to unitary equivalence, we may write H as an orthogonal direct sum H = Hy @ Hp
and L, M in the form L = Gr(B) = {(«,Bz):z € Ho} and M = Gr(—B), where
B € B(H,) satisfies 0 < B < I and Ker(B) = Ker(I ~ B) = 0. Furthermore, the sum
L+ M is closed if and only if B is invertible.

When L and M are of this form, the sets Aan S are easily described:
indeed, a calculation shows that

A= {(BZB g):P,Q,ReB(I{Q) and BP:-‘RB}

and

X -y
8= . 75l
{(BYB _z) X,Y,Z € B(Ho) and BX B}

In the general case, we may decompose H as an orthogonal direct sum
H=H & H,= (L1 VMl)@((M'L nL) @(MQL’L))

where Ly = LNHy = Lo(M*NlL)and Mi = MNH =Moo (MnLY). Itis
easy to see that L; and M; are in generic position as subspaces of Hy, and the above
applies. We call H; the generic part and Hs the non-generic part of H.

The subset AN.A* of A is the (von Neumann) algebra of all operators leaving both
L, M and their orthogonal complements invariant; in other words, it is the commutant
of the projections onto L and M.

Observe that both 4 N.A* and § N S* reduce the non-generic part H, and that
the compressions of A4 and & to that space are easy to describe:

(.AﬂA*)[Iﬁ:{(]g g)} (SnS*)lﬂzz{(S- ?)}

where P, Q, X, Y are arbitrary operators on the appropriate spaces.
Restricting attention to the generic part H,, we may take L; = Gr(B), M; =
= Gr(—B). Then, as can be deduced from [12], we have

(ANAYH; = {(g f;) Pe {B}’}.

Observe that the operator © € B(H,) given by
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is a selfadjoint unitary in (§ N &*)|H;. Hence (SN 8*)|Hi = @(AN A*)|Hy, and
therefore :
(SN S)\H; = {(X 0 ) X e {B}’}.
0 -X
ProprosITION 1.2. If L and M are in generic position, the subspaces ANA" and
88" contain no rank one operators. They contain rank two aperators if and only
if they contain compact operators, if and only if B has eigenvalues.

Proof. The first statement follows trivially from the matrix forms just given.
If B has eigenvalues, let P denote the rank one projection onto an eigenvecior.

By the above, the operator
0 P

is a rank two operator in A4 N .A*, while the operator § = @A is a rank two operator
in SNS&*.

Conversely, if AN A* or §NS* contain a (non-zero) compact operator, then
there is a non-zero compact selfadjoint operator P € {B}'. But then, by the spectral
theorem, there is a compact non-zero projection commuting with B, so B has finite
dimensional non-trivial reducing subspaces, hence also eigenvalues. [+

THEOREM 1.3. If L and M are in generic position, the following are equivalent:

(a) No finite rank proper projection commutes with both P(L) and P(M).

(b) B has no eigenvalues.

(c) (A+ A*)~¥¥ = B(H) (resp. (8 + 8*)~*¥ = B(H)).

(d) (Cp(A)+Cp(A*)) P = Cp (resp. (Cp(S)}+Cp(S*))™P = C,) for somep € (1, 00].

(&) (Co(A) + Co(A*))™P = Cp (resp. (Co(S) + Cp(S*))~? = Cp) for all p € (1, 0]
However, C1(A) + C1(A*) and C;(S) + C1(S*) are never dense in C;.

Proof. The equivalence of (a) and (b) is obvious from Proposition 1.2.

Since, by Corollary 0.3,

LA+ A4 =t ANt (A% = G (S NE(S) = G(SNSY),
and

(ColA) + Co (A = C(AY NG(AY = Ci(S™)NCy(S) = C(S N S7),

for 1 < p < 400, the remaining equivalences follow by Proposition 1.2. Finally,
G +aA* )N =snst

which is never trivial. The statements about S are proved in the same way. W
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REMARK. The set A+ .4* is never equal to B(H). It will be convenient to prove
this fact using techniques of Section 3 (see Proposition 3.10).

There are several ways in which a subset Y of B(H) can be “large”: it can be
dense in B(H) for some operator topology, or it can have the weaker property of
acting (topologically) transitively on H. These notions were studied by Gilfeather
and Larson [11}, to whom the following definition is essentially due.

DEFINITION. A linear subset X of B(H) is said to be *-dense in casg X' + &A™ is
ultraweakly dense in B(H). X is said to be -transitive if, for each nonzero z € H,
(X + A*)2 is dense in H.

In [11], the authors ask whether *-density of an algebra implies that its invariant
projection lattice is totally ordered (they show that this is true when the lattice is
commutative). It follows from Theorem 1.3 above that, not only is the answer negative
in general, but the opposite extreme might occur.

COROLLARY 1.4. There exists a subalgebra A of B(H) which is x-dense but whose
invariant subspace lattice has no pair of (non-trivial) comparable elemants. Moreover,
there exists such an A which is similar to a (proper) von Neumann subalgebra of B(H).

Proof. Apply Theorem 1.3 to A = Alg(Gr(B), Gr(—B)) where B has no eigen-
values. For the second statement, take B to be, in addition, invertible. ]

As shown in [11], a unital algebra A has the (weaker) property of *-transitivity
ifand only if Ny NNst =0 or Ni- N N = 0 for every pair of A-invariant subspaces Ny
and Nz. Thus, in our case, when L and M are in generic position, A = Alg{L, M} is
always *-transitive. On the other hand, when both LN M* and L* N M are nonzero,
A cannot be *-dense. If, however, one of L+ N M, LN M* is zero, then the x-density
of A is governed by its generic part.

[For an example in which this situation occurs, let A be a non-injective operator
on Hy with dense range (for instance, the adjoint of the unilateral shift). Set L =
=0® Ho, M = Gr(A4). Then Lt N M # 0 while LN M+ = 0. Thus, by the result of
[11], A is *-transitive.]

PROPOSITION 1.5. Suppose that A = Alg{L, M} is »-transitive. Then A is -
dense if and only if its compression A; to the generic part Hy of the space is +-dense
(in B(H1)), if and only if any finite rank projection in {P(L), P(M)} is orthogonal
to P(Hl)

Proof. If A is *-dense, then clearly so is A;.
Conversely, suppose .4 is *-dense. To show that A + .A* is ultraweakly dense in
B(H), we show that +(A + A*) is trivial. As noted in Theorem 1.3, L(A+ A") =
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= C1($NS*). But an operator in $MS* must map M N L+ into LN M<, and one of
these subspaces is zero by assumption. Hence SN 8* lives in the generic part of the
space. But since A; + A} is ultraweakly dense in B(H, ), the set (§NS*)|H contains
no trace class operators. Therefore C;(SNS*) =0..

" For the second equivalence, take a finite rank-projection E in the commutant
of {P(L), P(M)} and decompose it as E = E; + E, with respect to H = Hy & Ho.
Clearly, E; commutes with P(L;) and P(M;). By Theorem 1.3, A; is *-dense if and
only if £ is zero.

This completes the proof. |

We conclude this section with an operator-theoretic characterisation of generic
position.

PROPOSITION 1.6. § is »-transitive if and only if L and M are in generic position.

Proof. If L and M are in generic position, then A is *-transitive by the result of
[11] quoted above. As we have seen in 1.1, there exists then a symmetry € such that
8§ = BA. Since O is invertible, it follows that S is also #-transitive.

Conversely, if, for instance, L N M* contains a nonzero vector z, then Sz is in
M hence z L Sz; thus also z L 8*z and therefore (S + S*)z cannot be dense in H.W

2. THE SPACE A+ S8

We now show that A 4 § is always ultraweakly dense in B(H), but is equal to
it precisely when the sum L + M is closed. The situation is similar in the various
operator ideals.

THEOREM 2.1.
() A+ 3" = B(#H) and Go(A) + Go(S) = Cp for 1 < p £ +0o.
(i) A+S=BH) & C(A) +Cp(S)=C @ FA) + F(S)=F < L+ M=H.

Proof. (i) Since LN M =0, clearly ANS = 0. But
LA+ 8) =t Ant 8§ =6 (S*)NCi(AY)

(by Corollary 0.3) hence +(A+ 8) = 0. The second equality is analogous.

(ii) First notice that, by Lemma 0.1, F(A) + F(8) contains all finite rank opera-
tors mapping L + M< into L + M. Since L+ M = H if and only if L+ + ML = H,
this proves the last equivalence. Now let

E:L+M-L+M

r+y—=zx
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be the (skew) projection. It is bounded if and only if L+ M = H. K T(L+ M) C
C L+ M, define
&p(T)= ETE+ (I — EYT(I - E).
This is an idempotent, well-defined on A + &, with range .4 and kernel §.
If E is bounded, then ®g is defined and bounded on B(H). But then, for every
X € B(H),
X = &p(X) + (X - 25(X)),

showing that A+ & = B(H). The proof for C, is identical.
If E is not bounded, for each n € N there are z, € L, yo € M with ||za]| = ||ya]| = 1
and ||z, — yn|| € 1/n. Choose z € M*, z # 0 and consider T, = (zn — yn) @ 2*.

Observe that ||T5|| < ||z]|/n while [|@a(Ta)ll = |lza © 2*|| = ||2]| (because #,®
®2* € A and y, ® z* € 8). Thus &g is unbounded and so A + S cannot be closed.
Similarly Cp(A) + Cy(S) # Cp for all p € [1, +00]. . .

3. THE SPACE A + §*
It is shown in [17] that ANS* = 0; hence the sum A+ 8* is direct. How “large”
is this space?

THEOREM 3.1. The space F(A) + F(S*) is ultraweakly dense in B(H), and
(F(A) + F(S*)™P = C, for all p. A fortiori, (A + 8*)~%* = B(H) and (C,(A)+
+Cp(8*))™? = C, for all p, and the sums are direct.

Proof. We have

HF(A) + F(S) = (8" NCi(A)
and

(F(A) + F(S"NP = Cy(S") N Cy(A)

by Corollary 0.3. The result follows from the Theorem of [17] just quoted. [ ]
For the case p =2 we can actually say more:

THEOREM 3.2. In the Hilbert space Cy, the subspaces Ca(.A) and C2(S*) are each
other’s orthogonal complements:

Cz(.A) & (32(8") = Cs.

Proof. By Corollary 0.3, (C2(8*))* = C2(A)- =

The situation is altogether different for p = 1 or p = oco:
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TurorEM 3.3. The following are equivalent:
(a) Ci(S*)+ C(A) =G

(b) 8* + A= B(H)

() K8+ KA =K

() L+M=H.

For the proof, we will need some preliminary results:

LemMA 3.4. Suppose that L = Gr(B) and M = Gr(—B) are as in 1.1. Then

? ;:2 belongs to A + 8* if and only if there exist (necessarily
3 Ty
unique) bounded operators P, () such that P* and T} — P leave the range of B

invariant and

an operator T' = (

(1) B?P 4+ PB?=T,B? + BT4B
(2) Q + B2QB? =T, + BT3B.

Proof. f A€ A and § € §, then A+ 5* has the form

( P Q) 4 ( X BYB) ’

BB R ~Y -Z

where P, Q, R, X, Y, Z are bounded operators such that BP = RB and XB = BZ
(see 1.1). In particular, the relations P*B = BR* and X B = BZ imply that P* and

X both leave the range of B invariant.
If T is as in the statement, then T'= A + S* if and only if

I1=P+X
T, =Q+ BYB
T3=BQ@B-Y

Ta=R~-&

The equations for 7% and T3 imply

Q+ B?’QB?=T,+ BT3B
and
Y = BQB ~T;.

Moreover,

R—Z=Ty= BRB— BZB = BTyB = B’P- XB? = BT3B =
= B?’P+ PB? = BTy B+ T\ B?.
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Conversely, if P satisfies this last equation and both P* and Ty — P leave the range
of B invariant, then defining X =Ty — P, R= BPB~! and Z = B~'X B (note that
R and Z are bounded operators by Douglas’ range inclusion Theorem [8]) we have
N=P4X and

BRB = B?P = BTyB + T ,B? — PB? = BT4yB + XB® = BI4,B + BZB

which, by the fact that B is injective and has dense range, gives the required relation
Ty = R~ Z. Finally if Q satisfies (2), we set Y = BQB — T3 and we are done.
Uniqueness follows from the fact that AN S* = 0 [17)]. n

Lemma 3.4 shows that the proof of Theorem 3.3 relies on the solvability of the
operator equations (1) and (2) above. The next proposition disposes of the easier
cases (with A in place of B?).

ProrosITION 3.5. Let A € B(H) be a positive operator.
(i) Given T in B(H) (resp. K, C,), the equation

(2" X+AXA=T

has a unique solution X in B(H) (resp. K, Cp), which is a continuous function of T.
(ii) If the spectrum o(A) of A has limit points in [0,1) (for example, if A is
injective but not invertible), then there is a rank one operator T such that the solution
X of (2') isnot in F.
(iii) If A is invertible, for each T in B(H) (resp. K, Cp) the equation

(1) AY +YA=T

has a unique solution Y in B(H ) (resp. K, Cp), which is a continuous function of T'.

Proof. (i) Denote by X the B(H )-Banach module B(H ) (resp. K, Cp). If L1 X —
— X denotes the operator of left multiplication by A, namely L(T) = AT, and
similarly R(T) = TA, then clearly o(L) = o(R) C o(4) € [0,400). Since L and
R commute, we have o(LR) C o(L) - o(R) C [0, +0c0) (see for example [26], Lemma
0.11). Thus 0 € o(I + LR), i.e. I + LR has a bounded inverse on X'. Therefore,

X +AXA=T & (I+LR)(X) =T ¢ X = (I+LR)™(T).

giving the solution as an operator in X', depending continuously on 7.
(ii) Suppose first that ||Af| < 1. Let z be a unit separating vector for A, and let
T =z®z". If 2z = A%z then [|ai|| < ||A4]|¥||2l], so ||zkl| — O-
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Therefore, if we define
X = Z(—-l)’“mg ® i,
P

then X is a well-defined (compact) operator, and direct substitution shows that X+
+AXA =T. However, we claim that X has infinite rank. Indeed, suppose y is in the
kernel of X. Then

0=Xy=Y (-1)¥y,zx)A*z = f(A)z
k

where

1) = Yo(=1) (w, z) 7
k

is analytic in the unit disc. Since z is separating for A, it follows that f(A)} = 0. The
spectral mapping theorem ([5], VIIL.2.7) now shows that f vanishes on ¢(A). Since
o(A) has limit points in the unit disc, the analytic function f must vanish identically.
Thus (y,zx) = 0 for all k. Hence each #; is in the orthogonal complement of the
kernel of X, that is,jn the closure of the range of X. But {zx} is a;fl infinite linearly

independent set. Indeed, if g (k = 1,...,n) are scalars such that 2 przp = 0, then
k=0

n n
> uxA* =0, since z is separating. Hence > urA¥ = 0 for each X in o(4), and thus
k=0 k=0
all yp are zero.

For the general case, let 0 < a < 1 be such that o(A) has limit points in {0, a)
and let A; = AE, where E is the spectral projection of A corresponding to the
interval [0,a]. If z € E(H) is a unit separating vector for Ay and T = 2 @ «*, then,
since o(A1) is infinite, the previous paragraph shows that the unique solution Z of
Z + A1ZA; = T has infinite rank. But, since Az = Az, the definition of Z shows
that 2+ AZA = Z + A1 ZA; = T and we are done.

(iii) If A is invertible, then (1’) is equivalent to

Y4+ A" YYA= AT

or

(I+LiR)(Y) = A='T

where R denotes, as in (i), right multiplication by A, and L; now denotes left mul-
tiplication by A~!. As in (i), we find that the operator I <+ L; R is invertible. The
result follows.

The solvability of equation (1) of Lemma, 3.4 requires a finer argument. We need
the following
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NoTaTION 3.6. Let A be a positive non-invertible injective contraction on a
Hilbert space H. For A € (0,1), let B, = E((A%,1]), n = 1,2,... where E(:) is
the spectral measure for A. Let 4 = E((\,1]), 4, = E((A"T1,A"]) = Epya — B,
(n = 1,2,..), 50 that Y A, = I. For T € B(H), let Tom = ApTAm. By the
upper triangular part of 7' we mean the operator X defined on the linear span of
{An(H):n=0,1,...} by Xnm = Tnm if m 2 n and Xpm = 0 otherwise.

LemMMA 3.7. If A is a positive non-invertible injective operator, there exists a
compact operator T such that the equation AX + XA = T A has no bounded solution
X. :

Proof. We may clearly assume that A4 is a contraction. Form the nest {0, Fy,
E,,...,H} as in Notation 3.6. Denote by 7 the algebra of all bounded operators
that are upper triangular with respect to the decomposition H = @A,(H), i.e. all
operators that leave the nest invariant. A theorem in [23] states that a bounded
operator Z leaves the range of A invariant if and only if Z belongs to T + (A~1T 4)".

The equality AX = (T — X)A gives (T — X)(Ran(4)) C Ran(A) and therefore,
by the theorem just stated, there exist bounded operators P, @ in 7 with ' — X =
= P+ (A~*QA)*. Since both terms have bounded upper triangular parts, so does
T — X. The equality A(T — X)* = X* A similarly shows that X*, and hence also X,
has a bounded upper triangular part (since the diagonal part of a bounded operator
is bounded). It therefore suffices to produce a compact operator T with unbounded
upper triangular part.

Let T, be the n x n matrix (¢;) where t;; = (vIogn(i — §))~! for i # j and
tii = 0 (n > 2). It is known [6, Chapter 4] that ||T5|| < 7(logn)~*/? while its upper
triangular part, say S,, has norm at least 4(logn)1/2/5.

Since A is injective but not invertible, we may find a subsequence {Apmny} of
nonzero Aps. For each », pick a unit vector e, in Apm(n)(H). Let T be the operator
which is zero on [e,:n > 2]* and is T on [ez, e3], T5 on [es, €5, &), etc. This operator
is compact, being a norm-convergent sum of finite rank operators (since ||T,|| — 0).
But its upper trianguler part, which is well-defined on the (non-closed) linear span of

" the An(H) and equal on [e,: n € N] to the direct sum of the Sy, is unbounded.  #

Proof of Theorem 3.3. (i) Suppose first that L + M = H.

(a) If L and M are in generic position, then, up to a unitary equivalence, we may
write L = Gr(B), M = Gr(—B), where B is positive and invertible (see 1.1). Using
Proposition 3.5, we see that equations (1) and (2) of Lemma 3.4 are uniquely solvable
in B(H) (resp. in K, C,) whenever their right hand sides are any operators in B(H)
_(resp. in K, Cp). Since the range of B is the whole space, Lemma 3.4 now shows that
A+ 8* = B(H) and Cp(A) + Cp(S*) = C, for any p in [1, +o0].
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(b) If L and M are in general position, as in 1.1 we decompose H as a direct sum
H=({IivM)e({(MtnLye(MnL))

where L, = Lo (Mt N L) and M; = M © (M N L*) are in generic position as
subspaces of Ly V My. ‘
Let T be an arbitrary operator in B(H). Let T3 be TP(LN M=), Then T} =
= P(L)T1 + P(LY)Ti, and P(L)T; is in A, because it maps L into L and M to
0, while P(LY)T} is in 8*, because it maps L+ to 0 and M* into L*+. Thus T}
is in A4 + 8*. We may similarly decompose Ty = TP(M N L*), and we deal with
P(LNMY)T and P(M N LY)T by taking adjoints. Since T is arbitrary, it follows
that P(LNML)TP(L; vV M;) and P(M N LY)TP(Ly V My) are also in A+ 8*. But

T=T1+T2+TP(L1VM1)=

= Tl+T2+P(LﬂM"L)TP(Ll\/M])+P(M0LJ')TP(L1VM1)+P(L1VM1)TP(L1VM1)

and the last term is in A + S*, by part (a). Thus T' is in A + 8". By the same
argument, we also have Cp(A) + Cp(S*) = Cp for any p in [1,+00].

(ii) Suppose now that L+ M # H. We will construct a compact operator T living
in the generic part of the space such that 77 ¢ A + §*. Thus we may assume that
L = Gr(B), M = Gr(—B), where B is a positive, injective, non-invertible contraction
and I — B is also injective.

By Lemma 3.7 (applied to A = B?), there is a compact operator T; such that
the equation

B*P 4+ PB? =T\ B?

has no bounded (let alone compact) solution P. In view of 3.4, this shows that the

(3 1)

0 0
is not in & + A (let alone in K(8*) + K(A)). This deals with the bounded, as well
as the compact case.

If C1(S*) + C1{A) = C;, there would be a bounded idempotent P acting on the
Banach space C; with Im(P) = C;(A) and Ker(P) = C;(S*). Then the (Banach space)
adjoint operator P* would be a bounded idempotent acting on B(H) with Ker(P*) =
= (Im(P))* = (C(A)* = S* and Tm(P*)~9 = (Kex(P))* = (G1(S*)* = A (by
Corollary 0.3). Note that P* is a w* — w* continuous idempotent, hence Im(P*) is
w*-closed; thus Im(P*) = A. This would imply that A+ S* is closed, which we have
just shown not to be the case. |

compact operator
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Note that the proof of Theorem 3.3 relies on the fact that compact operators
do not necessarily have bounded upper triangular parts. However, for 1 < p < +00,
operators in C, do have bounded upper triangular parts, which in fact lie in Cp.
Hence it is natural to ask whether the equality Cp(A)®C,(S*) = Cp (valid for p = 2 by
Theorem 3.2) holds for all p in (1, +00). We have been able to answer this affirmatively
in a special case:

PROPOSITION 3.8. If the generic parts of L and M are of the form Gr(B),
Gr(—B) where B = diag(b”) for some b with 0 < b < 1, then

Cp(A)@Cp(S™) = 6Cp
for all p € (1, +00).

Proof. Arguing as in part (i.b) of the proof of Theorem 3.3, we see that it is
enough to assume that L and M are in generic position. We now apply Lemma 3.4.

(a) By Proposition 3.5, we know that equation (2) of Lemma 3.4 is uniquely
solvable. To solve (1), we solve the equations

3) B®X + XB?*=TRB?
and
(4) B2X + XB% = BTB

separately for all T € Cp, and then obtain a solution of (1) by addition. We have
(i) With respect to the orthonormal basis {e,} which diagonalizes B, (4) can be
written
b2 2o + Zamb®™ = b tpmb™
or

Znm = bman(l +b2(m~"))-1tnm.

For each k € N, let X} be the operator whose matrix with respect to the basis
has k’th diagonal equal to that of X, and the remaining diagonals equal to zero.
Since X = ¢x Ty where ¢z = b*(1 +b%%)~1, it is clear that each Xy is in C; and that
1Xkllp = cxllThilp < 0 - [|T]p-

Hence the series

0o
Y:ZXL-
k=0

converges absolutely in p-norm, because

DXkl < D28 Il < (1 =8)7" - (1Tl
k=0 k=0
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Therefore Y is in Cp and ||[Yl, < (1 — )~ - ||T}|,. Clearly Y is the upper triangular
part of X. But

B?X + XB? = BTB = B*X*+ X*B?= BT*B

therefore, applying the same reasoning to the latter equation, we find that the lower
triangular part of X is also in Cp. Finally, since zp, = t5,/2 for all n, the diagonal
of X is clearly in C, and has p-norm at most 1/2 that of 7. Hence X itself is in C,
and in fact

X1l < C - 1Tl

where C' is a suitable constant (independent of T). This completes the solution of
(4).

(ii) For (3), we argue as follows:

The equation gives

p2n pn-m)
tam — Tam = mbz" T+ om tam = ""‘—"—bz(ﬂ_m) n ltnm-

As above, this shows that the lower triangular part of T'— X is a (bounded)
operator in C, with p-norm at most (1—4%)~*||T||,. Since T € C,, its lower triangular
part is in Cp, hence the same is true for X.

For the upper triangular part of X, we argue in the same way, using

p2m p2(m—n)

Tnm = h2n 4 p2m thm = p2(m-n) 4 itnm-

Again the preceeding equality shows that the diagonal of X is in Cp. Thus we
have shown that X € C, and || X|l, < M - ||T|, for some constant M.

(b) We have now proved that, for any Ti, T2, T3, T4 in Cp, equations (1) and (2)
of Lemma 3.4 are (uniquely) solvable and the solutions lie in C,. It remains to prove
that if P solves (1), then P* and T} — P leave the range of B invariant.

Observe that, if X is a solution of (3), then, since (T~ X)B? = B2X, both T—X
and X* leave the range of B? invariant. Thus, by Proposition IL5 of [10] or Corollary
2 of [23], both leave the range of B invariant. Next, we claim that any solution of (4)
and its adjoint leave the range of B invariant.

For this, let Y be the solution of B2Y + Y B? = B?T™ (which exists if T' € Cp, as
we have just proved). By the result just quoted, ¥ leaves the range of B invariant;
thus (by Douglas’ range inclusion theorem) there is a bounded operator Z such that
YB = BZ*. But

B(B%Y +YB?)B = BB*T*B
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B%(BZ*)+ B(BZ*)B® = B*T*B
hence, since B? is injective,
B?Z* 4+ 2*B? = BT*B

therefore, taking adjoints,
B?Z 4+ ZB? = BTB.

Hence Z is the unique solution of (4), and by construction ZB = BY™, so it
leaves the range of B invariant. Since Z* solves an equation of the same type, it also
leaves the range of B invariant, as claimed.

Summarising, given 71, T4 in C,, we find Py, Py in Cp such that

B2P1 + P132 = T132

B2P; + P4B? = BT4B

and Py, Ty — Py, P} and P, all leave the range of B invariant. Hence if we define
P = P, + P4, then P solves the equation

B?P + PB? =T B* + BT4B

and P*, Ty — P leave the range of B invariant.
The proof is complete. |

REMARK. When A is not invertible, we do not know whether the equation
AX + XA = TA is solvable in £, (1 < p < +00) for any T € Cp, except when A is
of a special form (Proposition 3.8). Remark, however, that Theroem 3.2 (combined
with Lemma 3.4) gives an indirect proof that this equation is always solvable in C; if

T €.

There is a, perhaps unexpected, difference between A+ & and A 4 8* regarding
decomposability of finite rank operators: Recall (Theorem 2.1) that F(A)+F(S) = F
if and only if L+ M = H. Only one direction of this equivalence is valid for A + §*.

ProposiTioN 3.9. Whenever L + M # H, there exists a rank one operator
which is not in F(A) 4 F(8*). The converse is, however, false.

Proof. We will construct a rank one operator living in the generic part of the
space. Thus we may assume that L, M are in generic position, and take L = Gr(B),
M = Gr(—B) with B positive, injective and non-invertible. Then Proposition 3.5 (ii)
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shows that there is a rank one operator T such that the equation @ + B2QB? = T
has no finite rank solution. But then the rank one operator

(6 )

does not decompose as a sum of finite rank operators in A and &*, for if it did, then
by Lemma 3.4 the equation Q@ + B?QB? = T would have a finite rank solution.

For the second assertion, we repeat the same argument, this time using an invert-
ible B whose spectrum has limit points in [0,1). Now L + M = H, but Proposition
3.5 (ii) still applies. n

We conclude this paragraph with the proof of a fact already noted after Theorem
1.3:

ProPosITION 3.10. The set A+ A* (respectively § + 8*) never equals B(H).

Proof. As usual, it is enough to consider the case H = Hy @ Ho, L = Gr(B),
M = Gr(—B). A short calculation (as in Lemma 3.4) shows that if an operator of
the form 7@ 0 is in A + A* then T satisfies

TB? = PB*- B*P

for a suitable operator P on Hg. If B is invertible, the fact that the identity cannot
be a commutator ([13], Problem 230) shows that B~2@0 cannot be in A+ A*. If B is
not invertible, then arguing exactly as in Lemma 3.7 we find that the above equation
implies that 7' must have bounded upper triangular part in the sense of Notation 3.6.
So if T is the operator constructed in Lemma 3.7, then T & 0 is not in A + A*. This
concludes the proof for A, and the proof for & is similar. . |

4. COMPACT PERTURBATIONS

Let B = {T € B(H): P(LY*TP(L) € K,P(M)*TP(M) € K}. It is clear that
B is a || ||-closed subalgebra of B(H) and B 2 A + K. Note that A + K is also
[} {[-closed. This follows, by a result of [9] (see also [25]), from the existence in A of a
bounded approximate identity (for the strong operator topology) consisting of finite
rank operators (see 2] or [20]). If L + M = H, then, orthogonalizing L and M with
a similarity, it is easy to see that B = A+ K.

Recall that, for a nest algebra U, the equality B = U + K (with the appropriate
modification (see 6.3) in the definition of B) is a consequence of rank one density and
the validity of a distance estimate {9] for &. The link between distance estimates and
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the equality B = A + K again appears in our situation. Indeed, in [24] (see also {17])
it, was shown that the validity of a distance estimate is equivalent to L+ M = H.
Here, by a direct argument, we show the following:

THEOREM 4.1. The equality B = A+ K is equivalent to L+ M = H.

Proof. As remarked above, if suffices to suppose that L + M # H and construct
an operator in B which is not in A + K. Hence we may assume that L = Gr(B),
M = Gr(—B) where B is not invertible. A short calculation then shows that

_ (I+Bg)-1 B(I_I__BZ)-—I _ (I+B2)-—1 0 I B
0= (o maesn)=( 0 a ) (5 )

Pon= (0 ) (s )

Let {4An} be the sequence of spectral projections of A = B? defined in 3.6. As B isnot
invertible, there is a subsequence {4,,(n)} of non-zero 4,’s. For each n € N, choose a
unit vector zn in Am(ny(H) such that || Bzal| > |[BAm(a)|l/2. Let F be the orthogonal
projection on [z,:n € N]. Observe that, since [|Bz.|| — 0, BF = Z(an) ®z), is
compact. Using this, an easy calculation shows that the operator

F 0
T=
(o o)
is in B. If it .were the case that T € A + K, we would have
(¢ 0)=(s00 2)*(5 &)
0 0/ \BQB R D E
where BP = RB (see 1.1) and A, C, D, E are compact. Thus B(F — A) = —EB and
so BF = BA - FEB. Denoting by X,, the compression of an operator X to Apn), wWe

and

obtain
BnFn - BnAn - Ean'

Since A and E are compact, we must have 8||A,]| < 1 and 8|| E,]| < 1 for large enough
n. Hence

4| Bn Fal| < [|Ball-
On the other hand, 4||B, Fu|| = 4||Bzn]| = 2||Bal| by construction. This contradiction
completes the proof. u

Given two pairs of subspace (L, M) and (L, My), it is natural to ask for con-
ditions under which the compact perturbations of the corresponding algebras A and
A1 are equal.
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In the special case where L = Gr(B), M = Gr(—B) and L, = Gr(D), M; =
= Gr(—D) where B, D are in B(H}), a necessary condition is that the corresponding
projections differ by a compact (Proposition 4.3.1). However, this condition 1s in
general far from sufficient: indeed, in this special case, if A + K = A; + K whenever
the corresponding projections differ by a compact, then L + M must be a closed sum
(Proposition 4.3.ii).

Perhaps surprisingly, the above condition turns out to be sufficient both for the
equality of the larger algebras B and B; and for the smaller algebras P + K and
D; + K, where D (resp. D,) denotes the algebra of “decomposable” operators of .A
(resp. A;) introduced in [17] (Proposition 4.4).

These results mean that, when L, M are in generic position, the algebras 8 and
D + K are invariant under compact perturbations of B, whereas the intermediate
algebra A+ X is not, unless of course B is invertible, in which case the three algebras
are equal. {Note that the operator B may be thought of as expressing the “angle”
between L and M; indeed, when the Hilbert space is R?, B is just (multiplication by)
the tangent of the half-angle between L and M).

We will use these results to show that, whenever L + M # H, the inclusions

E+KCA+KCB

{where £ is the norm closure of D) are strict inclusions of Banach algebras (Proposition
4.5).

DerINiTION. If A = Alg{L, M}, the algebra D of decomposable operators is
D={Te ATL)=0}+{T € A:T(M)=0}.

NOTATION. For the rest of this section, let Hy be a Hilbert space and H =
= Ho® Hy. Whenever B is a positive injective contraction on Hg with 7 — B injective,
we will denote by Pp (resp. P_pg) the projection on Gr(B) (resp. Gr(—B)), by Ap the
algebra on H leaving Gr(B) and Gr(—B) invariant, by Dp the set of decomposable
operators in Ap, and by Bp the algebra of all operators T such that PATPp and
PL.TP_p are compact.

We will need the following

LEMMA 4.2. With the above notation,

Pp—-PpeKeB-DeK& P g—P_pek.

Proof. As remarked in the proof of 4.1,

o= (U0 i) (5 )
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Let C(B) = (I+ B?)~1. f Pg~ Pp € K or P_p — P_p € K, the (1,1) entry of the
equivalent matrix condition gives C(B) — C(D) € K. Since

(%) C(B) — C(D) = C(D)((I + D?) - (I + B?))C(B)

it follows that D? — B2 ¢ K, i.e. that the images of D? and B? in the Calkin algebra
B(H)/K are equal. Since D and B are positive, so are their images in the Calkin
algebra. But square roots in a C*-algebra are unique; hence these images must be
equal, and so B~ D € K.

If, conversely, B — D € K, then (%) and similar equalities show that the corre-
sponding matrix entries of Pg — Pp and of P_g — P_p are all in K. |

ProrosITION 4.3. (i) Let B, D be positive, injective contractions on a Hilbert
space Hg with I — B, I - D also injective. If

Ap+K =Ap + K,

then B — D is a compact operator.
(i1) The converse is false. In fact, if B js not invertible, there exists a compact
perturbation D of B such that Ag + K # Ap + K.

Proof. (i) Suppose that Ap + K = Ap + K.
This means (by 1.1) that, given P, @, R in B(Hy) with BP = RB there must
exist X, Y, Z in B(H,) with DX = ZD such that

(o (5o D)o
B@B R DYD Z

In particular, setting @ = I, we see that B2 — D? € K. As in the proof of 4.2, this
implies that B — D € K.

(ii) We assume that Ap + K = Ap + K whenever B — D € K and show that B must
be invertible. Suppose, to the contrary, that B is not invertible.

By the Weyl-Von Neumann Theorem [16], there is a diagonalizable operator C
and a compact operator X of small norm such that B = C + K. Adding to C the
diagonal of K (with respect to the basis diagonalizing C), we may assume that B and
C have the same diagonals. It is then clear that C is positive, and one may check that
the injectivity of B and I — B implies that of C' and I —~ C. Since B is not invertible,
neither is C, because their spectra can only differ by eigenvalues (Weyl’s Theorem,
[26] Theorem 0.10). Hence there is an orthonormal sequence {¢,} and numbers b,
with 4="~1 < b, € 4™ such that Ce, = bye,. Define D € B(Hp) by Dey, = /brén
and Dz = Cxz for z € [en:n € NJ*. Then D is positive, non-invertible, and D, I~ D
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are injective. Since D — C is compact, both D and C are equal to B modulo K; hence
by assumption we must have

Ac+K=Ap+K=Ap +K.

Define’ operators P and R on Hy by Pey = eng2, Ren = (bny2/bn)ensz and Pz =
=0= Rz for z € [en:n € N]*. Then P and R are bounded and CP = RC.

Thus the operator
(o »)
0 R

belongs to Ac, hence it must be a compact perturbation of an operator in Ap.
Therefore there must exist compact operators S, T' such that D(P + S) = (R+T)D,
that is RD — DP = DS — TD. This gives

<(DS = TD)emBn-o-z) = ((RD - Dp)emen+2) - (bn-g-2dn/bn) - dn+2
where d, = \/b,. On the other hand,
«DS - TD)en, 3n+2) = dn+2(Sen, en+2) - dn(Tem en+2)

hernce
dny2{Sen, enta) — dn{Ten, epyz) = (di+2/dﬂ) —dnyz
or
(Sen,eny2) = c; H{Ten, enpa) +ca— 1

where ¢p = (dny2/dy), hence 1/8 < e < 1/2 for each n € N. This contradicts the
fact that, since S and T are compact operators,

h;fn(se"" enta) = lign(Te,,,e,,“) =0.
This contradiction completes the proof. N

PROPOSITION 4.4. Let B, D be positive, injective contractions on a Hilbert
space Ho with I — B, I — D also injective. Then the following are equivalent:

(a) Bg =Bp
) Dp+K=Dp+Kk
(c) B-Dek.

Proof. (a)<>(c): First check (using the form of Pp stated in the proof of 4.1)

that an operator
X Y
T=
(2 w)
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is in Bpg if and only if the operators
(% )G WG »)
-B I z wW/\B B?
(5 DG w5 %)
B I z W -B B?

are both compact. This is easily seen to be equivalent to
BX -WBek }
Z-BYBeK |’

and

(*)
Now suppose that B — D € K. Then
DX -WD=(D-B)X-W(D-B)+BX-WBekK

and

Z-DYD=Z-BYB—(D-B)YYD-BY(D-B)€Kk

so that T' € Bp (by (*) applied to Bp).
Conversely, if Bg = Bp, observe that the operator

(2 o)
B? 0
belongs to Bp (in fact to Ag), hence to Bp, and thus, again by (x),

B*-D?=RB?-DIDeK.

This implies, as in 4.2, that B — D € K.
(b)¢>(c): From the definition of D it is not hard to see that T € DB if and only if

T ( PB Q@ )
BQB BP
where P, @ are arbitrary. Thus the proof of 4.3.(i) already shows that Dp + K =
=Dp + K implies B—- D € K.
For the converse, suppose that B = D + K for some K € K.
Given P, @ in B(Hg) we must find X, Y in B(H,) such that

(PB Q) (XD Y)elc
BQB BP DYD DX '
It is enough to set X = P and Y = Q, since PB— PD = PK, BP —~ DP = KP and
BQB - DQD = (B — D)QB + DQ(B ~ D) are all compact. =

]
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Returning to the general situation, if A = Alg{L, M} it is clear that the de-
composable operators form an ideal D in A. It is known (see [17] and [20]) that D
contains all finite rank operators of A, that its unit ball is strong-operator dense in
the unit ball of A, and that D = A if and only if L + M = H. Observe that, when
L+ M +# H,Disnot || |-closed. Indeed, there exists (see [17]) a compact operator
K € A which is not decomposable, but is the || ||-limit of decomposable (in fact, finite
rank) operators. Combining 4.3 and 4.4, we can show that, whenever L + M # H,
D is not || - ||-dense in A4, although it is ultraweakly dense (by unit ball density). In
fact, we can show more:

PROPOSITION 4.5. Suppose L+ M # H. Then

(1) The || - ||-closure, say £, of D is a proper ideal of A containing all compact
operators of A. '

(ii) The algebra £ 4+ K is || - ||-closed.
(ili) The algebra D + K is not || - ||-dense in A + K.

Proof. Observe first that £ 2 AN K. Indeed, as remarked above, A contains a
bounded approximate identity {R;} (for the strong operator topology) consisting of
finite rank, hence decomposable, operators. Therefore, if K € ANK, ||[KR;—K|| = 0
(since {R;} is a bounded net strongly converging to ) and K R; € D, hence K € £.

Now let @;: B(H) — B(H) be defined by &;(T) = R;T. Observe that supl|®;|
is finite, that ®;(B(H)) € K and that ;(£) € D C &; also, for cach K € K,
[|®:(K)~ K|| — 0 as we just observed. A theorem of Rudin ([27]; also see [25]) states
that, in this situation, the sum £ + K is || - ||-closed. This proves (ii).

To show that D + K is not || - ||-dense in A + K, it clearly suffices to assume
generic position, hence to let A = Ap where B is not invertible. Suppose then that
Dp + K is || - ||-dense in .Ap + K. By (ii), this means that Ap + K = £p + K, hence
I € £g + K. But for every compact perturbation D of B, we have D +K =Dp +K
by 4.4, and thus £ + K = £p + K. Hence I € £p + K, which shows, since £p is an
ideal of Ap, that £p + KX = Ap + K. We conclude that Ap + K = Ap + K for every
compact perturbation D of B. Since B is not invertible, this contradicts 4.3.ii.

The same argument proves that D is not || - [-dense in A. L

ReMARK. Clearly, ultraweak density of the rank one subalgebra of any algebra
implies density in the strong operator topology. In fact, it implies that the unit ball
of the rank one subalgebra is strongly dense in the unit ball of the algebra. This fact
may be known by now to many people; in fact, (14¢)-ball density (for any € > 0) may
be proved from results in [7]. For the reader’s convenience, we include a direct proof
that in fact one may achieve ¢ = 0 for subspaces (not only subalgebras) of B(H):
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PROPOSITION 4.6. Let X be an ultraweakly closed subspace of B(H) whose
rank-one subspace [R(X)] (namely, the linear span of the rank one operators in X')
is ultraweakly dense in X. Then X is (isometrically isomorphic to) the second dual
K(X)** of the compact operators in X. Moreover, the unit ball [R(X)]; of the finite
rank subspace [R(X))] is dense in the unit ball X; in any of the strong, ultrastrong,
weak or ultraweak operator topologies.

Proof. The restriction of the ultraweak topology o(B(H),(1) to K is o(K,C1),
namely the weak topology of the Banach space K. By assumption, then, [R(&X)] is
weakly dense in K(X). Hence, by the Hahn-Banach theorem, [R(&)] is norm-dense
in K(X). It follows that the annihilator K(X)+ of K(X) in C; coincides with the
annihilator of [R(X)], namely

K(X)* = {T € C: TH(KT*) = 0 VK € K(X)} = {T € Ci: T(RT") = 0 VR € R(X))}.

But this last set is L.X, by the assumed ultraweak density of [R(X)] in X. Now
the Banach space dual K(X)* of K(X) is isometrically isomorphic to C; /(K(X)1),
thus to C;/*X. Therefore the second dual of K(X) is isometrically isomorphic to
(C1/*X)*, which in turn is isometrically isomorphic to (*X')* = X. This proves the
first assertion.

Using Goldstine’s Theorem [5], one may now check that the unit ball of X({X)
is ultraweakly dense in the unit ball of X. But the strong, weak, ultrastrong and
ultraweak closures of a convex bounded subset of B(H) coincide, so K(X'); is strong-
operator dense in X;.

Thus, for any A € X with ||A]| < 1, any € > 0 and any finite number of unit vec-
tors 1, 29,...,2, in H, there is a K in K(X') with || K| < 1 such that [|[(K — A)z;| <
<egfori=1,...,n. By the norm density of [R(X)] in K(X), we may choose R in
[R(X)] with ||R — K|| < . But then, if Ry = R/(1 + ¢), we have ||Ry|| < 1 and
[|[R: — K|| < 2¢. It follows that

Ry — A)z:i| < (K = A)azil| + [|[(R1 — K)asll S (K — A)asl] + [|Ry = K| - |}l < 3¢

for i = 1,...,n, which shows that [R(X)];, is dense in X; in the strong operator
topology, hence also in the other three topologies. n

REMARK. The results of this paragraph have direct analogues for the subspace
& and its compact perturbations.
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5. THE ESSENTIAL COMMUTANT

The essential commutant of a subset X of B(H) is
CAX)={TeBH):AT-TAecKkVAe X}

Observe that X'+ K C C(X). When A is a type I von Neumann algebra, the Johnson-
Parrott Theorem [14] implies that C(A) = A’ 4+ K. In this section, we calculate the
essential commutant of A = Alg{L, M} and of the ideal D of the decomposable
operators of A. When L + M = H, A is similar to a type I von Neumann algebra,
hence C(A) = A’ + K. We will show that this situation persists when L+ M # H. By
contrast, the essential commutant of D is then strictly larger than D’ + K. This gives
another proof of the fact that D + K cannot be || - ||-dense in A + K unless D = A,
that is, unless L+ M = H.

A more general result of {19] implies that when L+ M # H then A’ =CI. In
fact, the proof shows more: D’ = CI.

We will show that (D) = CI + G, where G is the set defined below. We will
need a characterization of G in terms of graph subspaces. Recall (1.1) that, up to a
unitary, we may decompose H as a direct sum

H=HoHio(M*nLe(MnL*Y)
and write L = Gr(B) @ (M+ N L) and M = Gr(~B) @ (M N L+), where B € B(H,)
is a suitable positive injective operator.
ProrosiTION 5.1. Let,
G={X e B(H):X|M,X|L,X*|ML, X*|LL are compact}.

Then an operator X is in G if and only if there is a K in KC(H) such that, with
respect to the above decomposition,

0Y 00
(0 0 0 0
= K
X 00007

6 0 0O
where Y B and BY are compact operators on Hy.

Proof. It is not difficult to see that an operator of the above form is in G. Indeed,
it clearly suffices to consider its compression to the generic part of the space. Then,
since (Gr(B))* = {(—Bz,z):z € Ho} and (Gr(—B))* = {(Bz,z):z € Ho}, one only
needs to observe that the mappings

(z,+Bz) — (+Y Bz,0)
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and
(£Bz,z) — (£Y*Bz,0)

are compact.

Conversely, consider an operator X in G as a 4 x 4 operator matrix (X;;) with
respect to the above decomposition. Since XP(M*+ N L) and P((M* N L)1)X are
compact operators, it follows that X;3 and Xg; are compact for i = 1,2,3,4. Similarly,
the compactness of all X;4 and Xy follows from the fact that XP(L+ N M) and
P((Lt N M)*)X are compact.

Consider finally the compression, say T, of X to the generic part Ho ® Hp of the
space, that is the 2 x 2 upper left-hand corner of X. The fact that T acts compactly
on Gr(B) shows that the mapping

(:C, Bﬁ:) — (an + X12Bz, Xo12 4+ ngB.’t)
is compact, hence so are the mappings
z — X1z + X12Bz

and
z ~+ X912+ X2 Bz.

Similarly, the fact that T acts compactly on Gr(—B) shows that the mappings
T - Xni! - XmB:!!

and
. L - le.’L‘ - XzzB:L‘

are compact. Combining the above, we see that X1, X1, X128 and X33 B are
compact operators. Finally, since T* acts compactly on (Gr(B))* and (Gr(—B))*
we similarly find that X}, B, X3;, X{,B and X3, are compact. We conclude that
X11, Xa21, Xo9, X1oB and BX)» are compact operators, as required. B

REMARK. Observe that the set G2 consists of compact operators. However,
whenever L + M # H, G always contains non-compact operators (thus justifying (in
view of 5.2 below) our earlier assertion that the essential commutant of D is strictly
larger than D' + K).

Indeed, if B is not invertible, there is an infinite orthonormal sequence {y»} in
Hy such that ||Bys|| — 0. If Y denotes the orthogonal projection onto [y,:n € NJ,
then Y is not compact but both ¥ B and BY are. (Incidentally, if B happens to be
compact, then any bounded operator Y on Hy will give an element of G.)
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THEOREM 5.2. If L + M # H, then the essential commutant of the ideal D of
decomposable operators is G + CI. )

Proof. (i) Suppose that T is in G. If A € D satisfies A(L) = 0, then T4 =
= (T|M)A is compact. Also, since A*(H) ¢ L*, T*A* = (T*|L+)A* is also compact,
hence so is AT. Thus AT — T'A is compact. The same is true when A € D satisfies
A(M) = 0. Since any element of D decomposes as a sum of two operators of the
above forms, we have shown that T essentially commutes with D. It follows that
G+ CI CC(D).

(it) For the converse, we first assume that L and M are in generic position. As

mentioned earlier, an operator A of the form

CB Q
A= (BQB BC)

is in D for all bounded operators @ and C. If

(3 )
\zZ W
is in C(D), we must have

(1) (XCB - CBX)+(YBQB-QZ)eK

@ (XQ - QW)+ (YBC—-CBY)€eK

for all bounded operators @ and C.

Setting C' = 0 in (2) gives (XQ — QW) € X for all Q and this implies (as first
proved by Calkin [4]) that there exists a € C such that X = al+ K1 and W = al+ K>
where K; and K, are compact.

~ Similarly, setting @ = 0 in (2) gives (Y B)C — C(BY) € K for all C so that
YB = bl + K3 and BY = bI + K, for some scalar b and compact operators K3,
Ky4. If b # 0, this means that B must be Fredholm, hence by Atkinson’s Theorem
([5], X1.2.10) Ran(B) must be closed; since it is also dense, B would be onto, hence
invertible, contradicting the fact that L + M # H. Thus b = 0, hence Y B and BY
are compact. '

On the other hand, setting C = 0 and Q = I in (1) gives YB? — Z € K which
now shows that Z must also be compact.
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T:(”£ Y)+K
0 a

where K, Y B and BY are compact operators. By Proposition 5.1, T is therefore in
G+CI.
(iii) For the general case, decompose the space # = LV M in an orthogonal

We have shown that

direct sum
H=(I VMo M nL) o ML)

where Ly = L& (M* N L) and My = M © (M N L) are the generic parts of L and
M. Since Ly + M; # Ly V My, the space L, V M; must be infinite dimensional. We
assume that M+ N L and M N Lt are also infinite dimensional, the other cases being
similar and in fact simpler.

With respect to this decomposition, any A € D corresponds to a 3 X 3 operator
matrix A = (Amn), where the A, are operators between the appropriate spaces,
Aj; is decomposable in Alg{L,, M1} and Az3 = Aaz = 0. Let T = (Tinn) be the
corresponding decomposition of an operator T € C(D).

(a) Since T must essentially commute with all diagonal operators with scalar diag-
onal entries, it follows that the off-diagonal entries of T' must be compact. We may
therefore assume that 7T is block-diagonal.

(b) Since the (2,2) and (3, 3) entries of A are arbitrary operators on the appropriate
spaces, the corresponding entries of T° must be scalar plus compact, and we may
therefore assume that they are (possibly different) scalars.

(c) The (1,1) entry Ty; of T is an operator in the essential commutant of the decom-
posable operators in Alg(L;, M;). Since L; and M are in generic position in their
span, part (i1) above implies that 7T3; can be taken to be of the form al + W, where
a is a scalar and W is the compression of an element of G.

(d) Thus T can be taken to be of the form

0
T= b + G,
0

[T e B <
o O o

where a, b, ¢ € C and G € G. It remains to prove that a = b = ¢. Since we have
shown in part (i) that G C C(D), it follows that

W

H
o o 8
o o o
I =)
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is also in C(D). But if A is any non-compact operator of the form

where X(M1 N L) C L, (for example, X might be a unitary mapping M+ N L onto
L;), then A € D and the fact that AS ~ SA must be compact forces a = b. Similarly,
if we choose A’ € A of the form

00Y
A=100 0
00 0

for a suitable Y, we obtain @ = ¢. Therefore T € CI + G and the proof is complete. B
THEOREM 5.3. The essential commutant of A is A’ + K.

Proof. As pointed out in the introductory remarks, if L + M = H the result
follows from the Johnson-Parrott Theorem. Assume therefore that L + M # H,
in which case, as observed earlier, A’ = CI. If T is in £(A), then a fortiori T is
in C(D) = G + CI. Hence, by Proposition 5.1, we may assume that L = Gr(B),
M = Gr(—B) and T is of the form

T = a Y)
T\0 a
where a € C and Y B, BY are compact. It remains to prove that Y itself must be

is in A whenever BP = RB, we must have YR — PY € K whenever BP = RB.

In particular, YR — RY € K for all R € {B} which implies (by the Johnson-
Parrott Theorem, since {B}" is abelian) that ¥ € {B}" + K. We may thus take
Y € {B}”. Then Y B equals BY and is a compact operator in {B}".

If {An} C {B}" is the sequence of spectral projections of B defined in 3.6 and
Yn = Y A,, then since each B, is invertible (if nonzero) and Y, By is compact, each
Y, must be compact.

Suppose that Y is not compact. Then the (strong-operator convergent) sum
Y = ZY,, cannot converge in norm, so there exists § > 0 such that ||Y,|| > 26 for

n
infinitely many n € N. Thus for each » € N there is an m{n) € N such that m(n) > n
and a unit vector z, in Ap(n) with ||[Yz,{| > 6. Define

R=Zzn®z§n,
n
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Since

(B~ 25) ® (Bazn)"l| < 1B~ Amal] - 1B Azmemyl| < A=)
where A € (0, 1), the sum

P=) (B"'z.)® (Bz2n)"

converges in norm. Therefore P is a compact operator, and clearly BP = RB.
However Y R — PY is not compact, since PY is compact and

YR = ZY.‘I:,, ® 23,
n

is not compact because {|Yz,|| > & for all n € N. This contradiction proves that ¥’

must be compact.
Thus T € CI + K as required. ]

6. CONCLUDING REMARKS

REMARK 6.1. If A is a CSL algebra, the behaviour of C;(A) is examined in [1].
It is shown that there exists such an A whose rank one subalgebra is ultraweakly
dense (A is a “CDCSL algebra”), but C,(A) is not a complemented subspace of Cp
for p # 2.

If A= Alg{L, M} and 1 < p < +00, we have exhibited, in some special cases,
an explicit complement of C,(A), namely Cp(S*) (Proposition 3.8). Is C,(S8*) & com-
plement of C,(A) in general?

Using Lemma 3.4 we may reformulate this question as follows:

Given T and S in C, and a positive injective contraction B, does the operator
equation

B?’X + XB?=TB?+ BSB

have a solution X in C,7 By duality, it is enough to consider the case 1 < p < 2 (for
p = 2 the answer is affirmative-see the Remark after Proposition 3.8). Since C; C Cs,
the equation then has a unique solution in (. Is it in Cp?

More generally, is A (resp. K(A), Cp(A)) a complemented subspace of B(H)
(resp. K, Cp)? Note that Theorem 3.3 shows that S* (resp. K(8”), C1(S")) is not a
complement.

ReEMARK 6.2. Given two pairs of subspaces (L, M) and (L3, M), when are the
compact perturbations of the corresponding algebras A4, A; equal? Note that we have
been able to answer this question only in special cases (Proposition 4.3).
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REMARK 6.3. If A C B(H) is a nest algebra, the quasitriangular algebra Q is,
by definition, the set of all T' € B(H) for which the function P — P+TP defined on
the set A of invariant projections is compactly valued and (strong operator-normy)
continuous. It follows from the existence of 2 bounded approximate identity in the
rank one subalgebra of A that the algebra A+ K is norm-closed; this, combined with
the validity of a distance estimate for A, shows that @ = A+ K [9].

In the case of the two-atom algebra A = Alg{L, M}, our B precisely correspon&s
to the quasitriangular algebra, and our Theorem 4.1 shows that the situation is anal-
ogous (although A is in no sense “triangular”).

More generally, let £ be a complete atomic Boolean lattice of subspaces of H,
let 4 = Algl and define Q as above. The algebra A contains an abundance of rank
one operators, but there are examples ([21], [18]) when the rank one subalgebra is
not strong-operator dense. Moreover, distance estimates are not always valid [24].
Thus the investigation of the validity of the equality @ = A + K leads to two distinct
questions:
(a) When is A+ K || - |}-closed?
(b) If A+ K is || - ||-closed and a distance estimate is valid for A, is it the case that
Q=A+K?

The interesting case arises when there ave L, M in £ such that LVM # L+ M.
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Added in proof. V. 8. Shul’man recently informed us that he has independently abtained

a. result related to Corollary 1.4,



