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CHARACTERS AND FACTOR REPRESENTATIONS
OF THE UNITARY GROUP OF THE CAR-ALGEBRA

ROBERT P. BOYER

1. INTRODUCTION

Let A be the C*-algebra given by the infinite tensor product of (2 x 2)-matrix
algebras. A is the UHF algebra with invariant 2*° and is also known as the CAR
(canonical anticommutation relation) algebra. In principle, the methods developed for
the study of inductive limit groups in [4, 5, 9, 16, 17] are applicable to the investigation
of the representation theory of the unitary group of A. Let us see what this means in
the framework given by Voiculescu [17] for the classification of the finite characters.
Let U{2%°) be the inductive limit of the unitary groups of the finite tensor products:
§ My(C). The conjugacy classes of U(2°°) admit a natural binary operation since

any conjugacy class in é M3{C) by an 2"-tuple v = (z1, %2, ..., 22n), with || = 1.
G:r‘iven two suczln classes:s—'y1 and v/, we take their product to be the natural class in
gMz(C)®gM2(C)-

A finite character x of U(2%) is multiplicative relative to this binary operation.
Now, if 7 is the restriction of the trace A to U(2%), then 7 is multiplicative because
the trace on a tensor product is the product of the traces on the factors. Hence, we
have by a theorem of Voiculescu that 7P7? are also finite characters. This is very
different from the behavior of tensoring the fundamental trace of U(N) with itself
which is highly reducible. This initial result provided the original motivation for this
paper.

The primitive ideal space of U(2%°) is parametrized by {0,1,...,00} x Z and
the ideal corresponding to 7#7¢ is (p,p — ¢). Also, unlike U{c0), the usual inductive
limit unitary group, C*(U(2°)) possesses no faithful factor representations. If 7 is a
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factor representation whose kernel does not have an infinite invariant, the 7 is norm
continuous and so extends to give a representation of the full unitary group of A. We
note that U(2°°) has a much smaller primitive ideal space than I/(N) which is a full
rank integral cone in Z%.

A particularly pretty result was obtained on the spectral analysis of the branching
matrix M for a primitive quotient A with positive signatures. It is easy to show
that A is a stationary AF-algebra, so A has a unique trace that corresponds to the
largest eigenvalue (Perron eigenvalue) of M. The associated eigenvector gives the
dimensions of the irreducible representations of the appropriate size symmetric group.
The order structure of Kg(A) can be computed if M can be fully diagonalized {7,10)].
Surprinsingly, this can be done, especially since the entries of M are computed by a
repeated application of the Littlewood-Richardson rule. The eigenvectors of M are
given by the columns of the character table of the symmetric group with all eigenvalues
being positive powers of 2. Low rank examples are given in an appendix.

In some loose sense, the representation theory of U(oo) is an additive theory
while that of U(2°) is multiplicative and rigid.

We identified the unimodular subgroup SU(2%) whose Lie algebra consists of all
skew-adjoint elements with trace zero. For more general algebras, it would be inter-
esting to compare this definition of the unimodular subgroup with the commutator
subgroup, say. Now, we have shown that any factor representation of SU(2%) is norm
continuous and factorizable in the sense of Arveson [1]. The notion of factorizable
representation is defined in the terms of the exponential e# of a C*-algebra A. The
states of e# correspond to holomorphic non-linear states of A. In particular, SU(2%)
behaves very much like a compact group.

Finally, we examined the product of two gauge-invariant quasi-free states w, of
U(2%). We showed it is factorial provided Tr[A(f — A)] = co. This trace condition
has appeared many times as a factor condition. Its importance was first shown by
Stritild and Voiculescu [16] and by Baker [2]. We note that these representations of
U(2%) can be viewed as nonlinear quasi-free representations in the sense of [1].

COMMENT. The unitary group of a general UHF algebra behaves much the same
way as for U(2%°). We chose the 2° case to simplify notation and to be able to an-
alyze the branching matrices. It would be interesting to work out the representation
theory of the universal covering group U (’2_;”) Recall that the fundamental group
m{U(2%)) = Ko(UHF(2%)) ~ Z[1], the group of 2-adic integers. U (E;) has addi-
tional characters, since the determinant A can be defined on it as follows. We first
remark though that if we use the classical definition of the determinant relative to a

trace in a type II; factor, then the determinant of any invertible element is 1. Now,
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we imbedd U(2") into U(2"*!) by z ++ (: 2) Let An be the 2" root of the usual
determinant function on U(2"). Then the family of determinants forms a consistent
system on the limits of the universal covering groups of U (2™). We conjecture that
the characters for U(2°°) are given by AFrPF,

We shall parametrize the unitary dual U (2N ) by pairs of Young diagrams {fz; A},
where 7 and A have no more than 2V rows. We need to consider the decomposmon
of representations of U(2V+1) restricted to U(2V). Let {fi;A} € U(2N+1) Then, the
results of King [11], {; A} restricted to U(2V) x U(2") becomes

(0.1) ( S {aTnf Moo} x 5 <P})
9,47

Next, we consider the restriction of

u@V)x @) 1u@Y),
0
Vv

tensor products in (0.1). We recall the tensor product decomposition:

where V € U(2V) is identified with (Z ) € U(2V+1). This will amount to taking

(710} Qs 2o} = 32 {Ga /@) - (B (/B) - (/) }
a8

Hence, (0.1) becomes on its restriction to U(2V):

(0.2) ) (Z (Z{(“‘“—u/poa) OTB); (M peP) - (so/a)})) :
P a,B

8,0

For positive signatures 7 = 0, and we write {)} for {0; A}. Here, (0.2) becomes
(0.3) {21/ Rle}-
@

We note that all the skew Schur functions and tensor products that occur can be com-
puted by the Littlewood-Richardson rule {12]. Several applications may be required.
Let A be the CAR-algebra which is the C*-inductive limit of the complex matrix

0 .
algebras M(2V) where z € M(2") is mapped to the 2 x 2 matrix (; a:) which

can be naturally identified as an element of M{2V*!). So, A is the UHF-algebra with
invariant 2°°. We let U(A) denote the full unitary group of A. Following Stratild
and Voiculescu [15], we can introduce an AF C*-algebra that supports the unitary
representation theory of the inductive limit of compact groups limU (2V), which we



318 ROBERT P. BOYER

denote by U(2%°). We let C*(I/(2%°)) denote this group algebra. Note that U(2%) is
a norm dense subgroup of U(A).

ProprosiTION 1. Prim(U(2%)) ~ {0,1,2,...,00} x Z.

Proof. We shall classify the primitive ideals J of C*(2%°) by using the Stratila-
Voiculescu dynamical system (Q,T) associated to this AF-algebra. The primitive
ideals are classified by the orbit closures: T - v, € Q. Now, elements v in Q are given
by a sequence or path v,, where v € U_("T27'), such that 7,-1 is a summand of ¥ or
is a finite sequence which terminates. We write v, = {fI,; An}. It follows from (0.2)
that the quantit); IAn] — [B,| is independent of n. So, the integer m = |An| — [H,] is
an invariant of the orbit closure of y. An elementary calculation shows that m is a
complete invariant for orbit closures for paths such that either p, = 0, for all n or
An = 0, for all n. Moreover, in this case, either |A,| or |u| is the constant m. We now

" drop this assumption. If either |A,| or |uy| is eventually constant, then they are both
constant. Hence, in the remaining case to be checked, both |An| and |z, | are increasing
sequences tending to oo, such that |A\,] — |us] is the constant m. Moreover, it can
be shown that the representations {,; As} on restriction will eventually contain all
summands such that [A] - (| = (Al = [Tl and el < [Aal, 17l < lial, for k< m,
because of the presence of the p factor in (0.2). a

For the sequence {Ji,,,; An} or the corresponding primitive ideal J € Prim(U{2%)),
we have the invariants:

7] = sup{|An] : n > 1} and my = [Anl = |G,

Note that: 0 < |J| € oo and my € Z. We write J as J, with m = m;. We call J
positive if it is the orbit closure of a path with only positive signatures. For a positive
primitive ideal J, we have that |J| = m;.‘

Unlike the C*-algebra for U(co) [4], we have:

COROLLARY 2. C*(U(2%)) has no faithful factor representations.
Proof. The zero ideal (0) is not a primitive ideal. L

ProPoSITION 3.

(i) Every primitive quotient of C*(U (2%°)) by a positive primitive ideal J is
simple; in particular, the point {J} is closed in Prim(U(2%)).

(ii) In general, the closure of the point {J} in Prim(U(2%)) consists of all

J’ € Prim(U(2%))

such that 0 < my < my and 0 < |J7| < |J).
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(iii) If |J| is finite, then the primitive quotient of C*(U(2°°)) is a stationary
AF-algebra of finite rank. '

Proof. Let M be the branching matrix for this primitive quotient. It is sufficient
to show that there is some power, say M7, of M which has only positive entries {7,10].
It is an immediate consequence of the simplicity of the quotient that {J} is a closed
point. To show that the desired power of M exists we can use the branching rule
(0.3) where the tensor product is replaced with the Cartan product for convenience
of computation and choose |¢| = 1 there. We then can modify the Young diagram
by any choice of one cell. With succesive applications of this rule, we can change
any diagram to any other of the same weight. In particular, we have that M2"| has
strictly positive entries. So, (i) holds.

Statement (ii) follows by the last observation in the proof of Proposition 1, while
(iii) is an immediate consequence of the definition [7]. [

COROLLARY 4. Let 7 be a strongly continuous factor representation of U(2%).
If J = ker(w) € Prim(U(2%)) such that |J| < oo, then « is norm continuous. In
particular, if J is a positive primitive ideal, then 7 is norm continuous.

Proof. We follow the reasoning of Stratild and Voiculescu [16, p.99] or [3]. Now,
7 is norm continuous on U/(2%) if it is norm continuous on the corresponding maximal
torus since the norm of 7(z) is invariant under conjugation. By assumption, #|U(2V)
decomposes into irreducibles whose signature eniries are uniformly bounded in N and
whose number of non-zero parts is also bounded independently of N. It follows easily
from this observation that = is norm continuous. [ |

PROPOSITION 5. Let T denote the canonical trace of A, so T{U(2%) is a finite
character. Then 7779 is a finite character of U(2%°), where p,q = 0,1,2,. ... Moreover,
the primitive ideal J corresponding to the character r?7{ has invariants: mjy = p—g
and IJ | =p.

Proof. Since the canonical trace of A is a norm continuous factor trace and since
every element of A is a finite linear combination of unitaries, we must have that:

{rr (A} = {m: (U(A)}" = {7 (V)V},

where , is the representation associated to . In particular, 7 is a finite character of
U(2%). Note that T is a positive definite central function since r is positive definite
and 7(g~1) = (g), for g € U(2%).

By a theorem of Voiculescu [17], to show that 7P7? is a finite character, it suf-
fices to introduce a binary operation on the conjugacy classes of U(2%°). We have
described this operation already in the Introduction so we only give a quick review
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here. The analogue of the product used for U(co) works here as well [17]. A conju-
gacy class in U(2%) is given by a finite sequence (21, ..., z2») of complex numbers of
modulus 1. The binary operation consists of taking the tensor product of these two
finite sequences.

The calculation of the primitive ideal J associated to 7°7? follows easily from
the decomposition of the tensor product: w@p ® '73"5® ? where 7, is the natural rep-
resentation of U/(2") on C2". From the rules for decomposing a tensor product (see
[11] for example), we have that |J| = p. (Note that if ¢ = 0, this is the only invari-
ant). Moreover, the difference invariant rny is given by p — ¢, since every irreducible

component of w@p has weight p, while 'ﬁ@q has weight —¢. "

ProPOSITION 6. Let J € Prim(U(2%)) with |J| < co. Then the primitive
quotient A = C*(U(2%))/J has a unique finite character and no infinite characters.

Proof. By Proposition 3(c), the primitive quotient A is a stationary AF- algebra
of finite rank. But, for such algebras, we know that they have the desired properties
{7, 10]. [ |

ProroSITION 7. Every finite character t of U(2°°) has the form: #7!. In
particular, every finite character of U{A) has this form as well.

Proof. By Proposition 6, we may assume that J € Prim(U(2%°)) with |J| = co.
Without loss of generality, we may assume that J = Jq, so |J| = 00 and my = 0.
To see this, suppose § is a finite character with kernel J,,,. Then the kernel of 7" is
Jo, for m > 0, while for 7§ is Jo, for m < 0. In other words, if any ideal J,, with
[Jm| = oo is the kernel of a character, all are.

Let A be the corresponding primitive quotient. Now, A naturally contains prim-
itive ideals Ii that correspond to the primitive ideals of C*(U(2°°)) with arbitrarily
large finite invariants. In particular, let M denote the branching matrix for A. So
its entries are labeled by pairs of Young diagrams {f; A}, with [g] — || = m(= 0},
by assumption. The nodes of the Bratteli diagram are labeled by Young diagrams.
The ideal I; is specified by requiring that {ff; A} € Iy if |A| > k. The traces of A
are given by the eigenvectors v of M. If the {&; A}-entries of v are 0 for [A| > &,
then v is an eigenvector with eigenvalue 4* and corresponds to the character 757,
Hence, a faithful character would have to correspond to an eigenvector with an infinite
eigenvalue. [ ]

ProrosITION 8. U(2%) has no infinite characters.

Proof. We use to introduce a ring multiplication between representations so
we can apply the results of Wassermann [18, 3, Appendix]. Given the unitary groups
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U(2M) and U(2"V), there is a natural subgroup G of U (2M +) formed by the subgroup
generated in the tensor product matrix algebra ® Mz(C) ® ® M,(C). Note that

the unitary group of this full tensor is U (2M+N) kGrlwen representa.tlons 7y and wg of
U(2M) and U(2V), respectively, they naturally give a representation w3 of G [11, p.

444]. We can then form their product by inducing the representation =3 from G up
to U(2M+N), This multiplication will induce a multlphcatxon on a certain algebraic
completion of Ko-groups of the primitive quotients A of C*(U(2%)), just as in the
U(oo) case, to make a ring (see the Appendix to [3]). If the product of two non-zero
positive elements-of this ring is non-zero, then we know that A admits no faithful
infinite character. Now, let A be a primitive quotient by an ideal J,, with |J| = oo

since we know the result already when |Jp,| < co. Let 71 be given by the diagrams
{7i;, 21} and 72 by {fi,, A2}. By assumption, we know |f;| — |[Xs| = m, for ¢ = 1,2.
We can avoid the use of the difficult decomposition sum with alternating terms in [11,
6.10] for mixed tensor representations by multiplying by an appropriate power of the
determinant. We can make a further simplifying assumption by assuming that 7; and
7g are representations of the same unitary group U(2V), say, since we are working
not with representations themselves by their images in the completed Kg-group of A.
In this case, the appropriate power of the determinant to multiply either =y or w3 is
2N which is the maximal number of columns for a U(2V) irreducible representation.
By Frobenius reciprocity, to show that the product is non-zero it suffices to verify
that there is a representation = of U(2¥+!) whose restriction to G contains 3. If we
were working just with representations in the postive signatures, this follows at once
by the identity (6.1) in [11]. The mixed tensor case now follows from identity (6.8)
in [11] since the determinant of U(2N+1) restricts to give the 2V- th power of the
determinant on each I7(2V). =

CoMMENTS. 1.The ring multiplication on Ko(4) where A is a primitve quo-
tient in the positive signatures can be explicitly computed in low rank cases since
the evaluation of (6.2) in [11] requires the decomposition of the tensor product of
irreducible representations of the symmetric group. Extensive tables tabulating this
decomposition exist.

2. The asymptotic methods of Kerov and Vershik [9] can also be applied to
U(2%°). For U(co), we consider a normalized character restricted to elements of the
form (z,1,1,...). In other words, we restrict a character to the canonical copy of
U(1) in U(oo). For U(2%), the corresponding elements are (2, z,...). In particular,

{An}an(z,2,...,2) = Al
dim(An) ’

Hence, for the sequence of normalized characters in positive signatures to possess a
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limit, we must have that the size of the diagrams eventually stabilizes. This reasoning
can be extended to arbitrary sequences of characters by using the recent notion of
rational Schur functions. This gives a statistical interpretation of the difference in-
variant m; of a primitive ideal. Further, if we restrict the character to the canonical
copy of U(2) in U(2"), there appears a more complicated asymptotic behavior which
we hope to investigate in the future.

We would also like to mention what happens if we consider t* as k — co. The
limit exists in the sense that it converges to the trivial character 8o of U/(2°) which is
zero everywhere except taking the value 1 at the identity. But & is not a continuous
character. '

We now show that the branching matrices M for the primitive quotients by pos-
itive primitive ideals can be completely analyzed spectrally. With this information, it
is possible to completely describe the order structure on the Ko-group of the quotient.
What is particularly surprising is that the eigenvectors for M are given by the columns
of the character table for the symmetric group while the eigenvalues are powers of 2.
These matrices fail to be symmetric already when |J| 2 6. We discovered this result
empirically by analyzing the table of branching matrices given below. Subsequently,
D. Zeilberger kindly provided the proof given below. In the following Proposition,
we use the notation from MacDonald [12]. Note that s\ denotes the Schur function
associated to the Young diagram M.

PROPOSITION 9. Let may = (Y 53/usy, ), where |A| = |v| = N, then
Vo Aot
Zm)\,vXp - Xp2 (p)
1’4

where r(p) is the number of rows of p.

Proof. We need several identites from [12]:

(8.1) Z sA/“(xjsﬂ(y) = sa(z,y)
(8.2) P = ZX;SU
(8.3) . s =32, X

P

Also, we note that relative to the inner product (:,-), we have: (sx,s,) = &np
(Pr. 27 pu) = 63 4.
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Now, we let

(8'4) SA(Z) = SA(.’L’;L, T1,%2,T2,.. ) = zz;lx;pp(zl) L1, %9,%2,. - ‘)'
?
But ppn(z1, 21, T2, 22,...) = &P + 2P + 2P + 22, + - - = 20m (21,22, %3, .. .)- In par-
ticular, we have: p,(z1,21,T2,Z2,...) = Pp, (%1, 21, .- )P (1,21, = 27()p,.
Now, we observe that if Zé;,#s,‘ = 5y, then we have that ma, = (8x,sv). By (8.1)
I
with y = z, we see that:
§X(mly L2,X3,.,- ) =8,\($_,??) =
= SA(xla Z9,%3,...,%&1,%3,%3,.. ) = sk(z:ls T1,22,%2,.- )

So, we obtain
(85) 5:\(2311 sz“-) = 8,\((31,131,172,3?2,---)-

Now, we get:
ka,u = Z(Ex,su)xz = (§A,ZX;su) = (gh’pp)'
v v ¥

So,
3\ = 2 2;12"(")}(:,‘1),,.
)

Hence, {(5x,p,) = 27(")x}, by the orthogonality of p,. But Zm,\,uxi = (5x,p,). O
I

COMMENT. An important special case is given by the classical Weyl duality be-
tween unitary and symmetric representations. By decoraposing powers of the canon-
ical trace of I/(2V), we find the entries of the Perron eigenvector must be given by
the dimensions of the irreducible representations of the symmetric group S(k), where
k is the power of the trace.

Let D be a diagonal operator on a separable Hilbert space H relative to an
orthonormal basis {e;}52, such that 0 € D < I. Let wp be the associated gauge-
invariant quasi-free state on the CAR-algebra A.

PROPOSITION 10. Let p(V) = wp(V), where V € U (2%°). If Tx[D(I — D})] = o0,
then [p(V)]? is factorial.

Proof. It is a little surprising that the same factor condition arises here as in [2)
or [16]. Now, we begin by recalling our version of the factor condition relative to the
dynamical system (X, G, ps) attached to certain AF-algebras {4, 15]:

r
Aim > s, my(Ds) = sy (Di)f = 0.

il
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In particular, we assume that X = limX(3 »), where X(; ;)1 < j,is the (j — i+ 1)-
-product of some fixed finite set F. Let p, be a probability measure on F. Then

N
Br,N) = @ pn be a measure on X(it1,N) and we let u denote the limit measure
n=k+1
on X. Choose a partition of F into = subsets Fi,..., F,. We introduce the group

of path permutations by having two paths ¥ and 7' being able to be permuted one
onto the other if there exists an index n such that ¥(n) and 7/(n) belong to the same
subset F, say, and they agree for all larger indicies. By p(x+41,~)(Di) we mean the
measure of the set of finite paths that originate at index k + 1 and whose terminal
node at index N lies in the subset Fj.

In our case, |F| = 4,7 = 2 and the indices are identified with the partitions of 2:
(12) and (2). The Bratteli diagram is determined by the decompositions: AXC?™y |
3A2(C?") @ $3(C?") and S2(C*™*) | A2(C?") @ 352(C?").

Let {eqa} be the standard orthonormal basis for the full exterior algebra A(CM)
relative to the basis vectors {e;}/.,. Here, o is identified with a finite strictly in-
creasing sequence: 1 € 4; < i3 < --- < N. Suppose De; = pje;. Then wp(V) =
Te[DNIV], where D) is the induced operator on the exterior algebra. So, we have:

p(V)=wp (E zaea) = Mz,

where t&N) = PiyPig - Pi; - II{(I - P:) 1 # e 'sij: 1€ig N} {16}
Now, the difference, for fixed k, |p41,5)(D13) — pa (D)l = ZtS,N)th),

&
where either @ or § contains an index from the set {1,2,...,k}. We shall denote the
set of all indices o that have an index < k by Iy. Since Tr[D(I — D)} = oo, we know
that
: Ny
Jim Z M =0,
vElNn

‘We next make the estimate:
2
NV D N
S < [T ) vz 3w
a,feln YEIN yeln
This follows because if we restrict both « and 3 to belong to Iy, then
2
NY (W) ]
T < (S um)
o,Beln yEIn

In the other case, we restrict o to belong to Ixy while 3 does not. Then, for fixed «,
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PR RET N I R LTG
Beln Beln

Moreover, this argument extends to the difference: |px41,n)(Di2) — 1,0y (D2l

since we never made use of the restriction that @ # B that holds for the case (1%)

case. n

We shall define the gpecial unitary group SU(A). If we try to define the deter-
minant A on U{A) by an inductive limit, we find that consistency forces A on U(2")
to be the 2"-th root of the usual determinant on—£/(2%). In particular, A cannot
be defined on U({A) by only on its universal covering group. On the other hand, if
we require that the determinant be 1, this value is consistent with the imbeddings
giving U(2%), so can construct SU(2*°) and define SU(A) as the closure of SU(2%)
in U(A).

An alternative definition is to define SU(A) in terms of its Lie algebra. Let su(4)
denote the Lie algebra of all skew-adjoint elements in A with trace zero. Then let
SU(A) be the subgroup of U(A) generated by the exponentiation of su(A) (compare
with Cuntz [6]). This definition allows us to consider the analogues of the other
classical groups [8]. In any case, SU(A) is a natural group associated to .A. The
techniques of proof of Corollary 4 immediately yield the result:

ProposITION 11. Every factor representation of SU(A) is norm-continuous.

CoMMENT. It would be interesting to use the technique of Pickrell [14] to attempt
to classify the characters or representations realized on a separable Hilbert space of
the unitary group of the finite hyperfinite factor. We also note that a general results
about norm continuous representations of the unitary groups of C*-algebras are given
in [13]. .

In [1], Arveson introduced the exponential e of a C*-algebra A. Note that the
elements of A are finite linear combinations of unitaries. Now, e# is the direct sum of
C*-algebras A(™), where A(™) is the subalgebra of AQn generated by the elementary
tensors a@a®a®---®a,a € A. It is easy to see that the unitary group of A
corresponds to the n-th fold tensor product of the canonical self-representation of
U(A) in the algebra A. These observations have immediate application to the UHF
algebra A.

We now state:

PROPOSITION 12. The components A() of the exponential of the algebra
UHF(2%) are isomorphic to the primitive quotients of C*(U(2%)) by the ideal J,
in positive signatures.
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41
32
312
221
213
15

Table of Branching Matrices

3
21
13

eigenvalues: 8, 4, 2

4
4 5
31 |3
22 11
212 [0
1 \¢

Appendix

2

dl

eigenvalues: 4, 2

3
4
2
0

2 12

3
1

1
3

)

21 18

2
6
2

31 22
3 1
9 3
3 6
4 3
0 1

0
2
4

212

W O W O

DW= OO

eigenvalues: 16, 8, 42, 2

eigenvalues: 32, 16, 82, 42, 2

5 41 32 312
/6 4 2 0
4 12 6 6
2 6 12 6
0 6 6 14
0 2 6 6
00 2 6
\0 0 0 0

221 218
0 0
2 0
6 2
6 6
12 6
6 12
2 4

15

ROBERT P. BOYER
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10.

11.

12.

13.

6 51 42 412 37 321 2% 31% 2212 29%1? IS

6 (7 5 3 1 0 6 0 0 0 0 0)
51 |4 15 8 9 3 4 0 0 0 0 0
42 13 9 18 9 6 12 3 3 1 0 O
412 10 8 9 19 3 12 1 9 3 0 0
32 13 6 3 10 8 1 1 3 0 0
321 [0 4 12 12 8 28 8 12 12 4 0
28 0 0 3 1 1 8 10 3 6 3 1
31 0o 0 3 9 1 12 3 19 9 & 0
221210 0 1 3 3 12 6 9§ 18 9 3
214 [0 0 0 0 0 4 38 9 8 15 4
* \o0 0 0 0 0 0 0 1 3 5 7)

eigenvalues: 64, 32, 162, 82, 43, 2
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