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CONTRACTIVE AND COMPLETELY CONTRACTIVE MODULES,
MATRICIAL TANGENT VECTORS AND
DISTANCE DECREASING METRICS

GADADHAR MISRA and VISHWAMBHAR, PATI

1. INTRODUCTION

The notion of a Hilbert module over a function algebra was introduced recently
by R. G. Douglas (cf. [3]). In this paper we study a class of finite dimensional Hilbert
modules over the algebra of bounded analytic functions on a domain 2 C C™. The
class of modules we study here have been investigated in a series of papers [1], [7], [8],
{9], and [10]. Our main objective is to determine when these modules are contractive,
and among the contractive modules, which ones are completely contractive. Recent
examples of contractive modules over A(D3) due to Parrot and over A(B?) cf. [8] and
[9]) which are not completely contractive are in this class.

We show that each tangent vector v € T,, 2 gives rise to a certain two dimensional
module over the algebra H(£2). Further, these modules are contractive if and only
if they are completely contractive. This is an immediate consequence of the distance
decreasing property of the Carathéodory metric. Subsequently, we introduce the
notion of a matricial tangent vector, that is an element of 7., 2 ® M, and show that
each matricial tangent vector gives rise to a module of dimension 2n. However, while
the Carathéodory metric on the To(My); is just the operator norm, the analogue of
the Carathéodory metric on the matricial tangent space To(M} )1 ® M, is smaller than
the usual operator norm (see. Example 2.1). For this reason, contractive modules are
not necessarily completely contractive. ,

It turns out that the module determined by a matricial tangent vector V =
= (V1,..-,Vim) at w € £ is contractive if and only if, the induced linear map
p: HO(2) = My, p(f) = Vf(w)(V) is a contraction. There is a norm on C™
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[10, Proposition 3.1] such that the set {Vf(w) : f € H®(2),]|fllo < 1} is a unit
ball with respect to this norm. Thus, the contractivity of the module is equiva-
lent to the contractivity of p : €™ — M,. Similarly, the complete contractivity
of such a module is equivalent to contractivity of p*) : H®(2) @ Mg — Mny,
pP*N(FY = DF(w)(V) for all k. There is a norm on C™* [10, Proposition 3.1] such
that the set {DF(w) : F € H®(2) ® My, [|F|lo < 1} C €™ is a unit ball with
respect to this norm. Thus, complete contractivity of the module is equivalent to
contractivity of p(¥) : C™% _, M, for all k. An explicit description of these norms
was a question raised by Paulsen [loc. cit.]. As a consequence of our duality lemma
this norm is explicitly defined for a domain 2 C C™: In the particular case when 2
is a product domain §2; x 25, for example, the norm is

(€™, C @M, |- llop)

on T502 Q@ M.

In Section 2, we provide a functorial frame work for dealing with distance decreas-
ing norms and introduce the notion of a pullback and pushforward of a given norm
with respect to a fixed family of linear maps, which obey a universal norm decreasing
property with respect to that family. Indeed, the usual Carahéodory and Kobayashi
norms are the classical prototypes of these constructions. These constructions enable
us to define norms on matricial (co)tangent vectors (see Sections 2.1 and 2.3). The
pullback and the pushforward norms are dual notions, as we establish in our duality
Lemma 2.1.

The issue of when contractive modules of our class are completely contractive
now gets formulated as follows.

For a matricial tangent vector V € T, @ M, we define the injective tensor
product norm

(Tw-Q ® Mn: Cﬂ,w dé{ (Cm1 Cﬂ.w)®(Mﬂ! H ) ”C‘P)

as pullback norm. The contractivity of the Hilbert module determined by V is equiv-
alent to Cpp (V) < 1 (see Theorem 2.2).

The unit ball (M} ); with respect to operator norm is a homogeneous domain and
has a transitive family of bi-holomorphic automorphisms acting on it. Thus, putting
the operator norm on the matrix tangent space at the origin uniquely determines a
norm on the matrix tangent bundle of (M});, by requiring these automorphisms to
be isometries. Let us call this norm §. We define the pullback norm 8¢, where £ is
the family D2*)(w) (see 2.10), on the matrix tangent space T, ® M,. It follows
from the Corollary 2.5 that complete contractivity of the module is equivalent to the



CONTRACTIVE AND COMPLETELY CONTRACTIVE MODULES 355

condition
bc(V) < C‘n,w(V).

In other words, the question of contractivity implying complete contractivity “lin-
earises” for our class of modules, that is, depends only on derivatives of functions
in H®(f) ® My. More precisely, complete contractivity follows it for all F' €
€ Hol, (£, (M4)1), the map

DF(w) : (T2 ® Mg, Cow) = (Tu(Mi) @ Ma, ),

(see 2.16) is norm decreasing.

We would like to view this as generalised Schwarz lemma. A result due to Yau [14]
provides a fairly general Schwarz lemma under curvature hypotheses on the domain
and target manifolds. In analogy with this result, one should seek geometric conditions
on the various different norms on the matricial tangent spaces of the domain and
target. We note here that, as opposed to the situation in [14], our tangent spaces are
matricial and the norms involved are not necessarily Hermitian, Kahler etc., and so,
for example, a suitable notion of curvature would have to be found for such Schwarz
lemma. For instance, the evidence in support of such lemma is Ando’s theorem stating
that contractive modules over A(D?) are completely contractive.

In Section 2.6, we introduce the notion of a norm decreasing metric for matricial
tangent vectors. Let Kp ., and Cp,. be the Kobayashi and Carathéodory metric
respectively. It is shown that among all such metrics, the injective tensor product

norm
((Tw‘Qn Cﬂ.w)@’(Mm OP)):

is the smallest while the projective tensor product norm
((Tw £, I{n,w)é(Mna OP))a

is the largest such distance decreasing metric. In a recent paper [1], J. Agler has
reproved Lempert’s theorem, which states that the Carathéodory and the Kobayashi
distances are the same for a convex domain £2. However, using Parrott’s example,
it is easy to see that for the tri-disk, the two extremal metrics for matricial tangent
vectors we have obtained do not agree (see Remark 2.4).

1.1. Tangent vectors

Let £ be a bounded region in C™ and w = (w1,...,wm) in 2 be an arbitrary
but fixed point. In what follows, it will be useful to think of a vector » in C™ as an
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element of the tangent space T,, 2. For any pair of complex scalars & and 3, let

(1.1) N(B,a) = [a ﬁ] € My(C),

0 e
and given a tangent vector v = (vy,...,%m) in T, 12, define the commuting m-tuple
(1.2) N(v,w) = (N(v1,w01), .- ., N(vm, wm)).

Let ¥(w) be the germs of holomorphic functions at w. As usual a tangent vector v in
T., 82 acts on any f in #(w) by the rule :

o(f) = (Vf(w),v)-

It is not hard to see that the map pn : #(w) — M3 (C) defined by

(14) (D E AW (v,0) = N(o(f), f())

is a continuous algebra homomorphism coinciding with the evaluation map on
Clz,...,2m] (cf. [7, Proposition 2.2.3]). We can think of C? as a module over
¥(w) via the action m : §(w) x C? — C?

(15) m(f,v) = pu(f)-v, fE€9(w) and veC?,

We will write C?\T(u,w) for this module. Thus, each tangent vector v in 7,12 determines
a module Cf\,(”,w) over $(w). In particular, C,Zv(v,w) is also a module over H*(1),
the algebra of holomorphic functions on 2. We wish to determine, when the module
C2i(o,w) I8 contractive over H* (1), that is, to determine the set .

Tow={v € Lu®:[Im(f,v)lle < fllellvlles} =
(1.6)
’ ={v e T2 :|lon(llop < 1, f: 2 — 1D holomorphic},

where ¢l D is the closed unit disk in C.

REMARK 1.1 Note that, by the maximum modulus principle, I'g,, does not
change, if we use the open unit disk D as the target space in 1.6.

We wil consider later more general modules determined by what we call matricial
tangent vectors.

The following notation will be very convenient. For fixed w in £2 and any domain
4 containing 0, we let,

(1.7) Hol, (2, 4) = {f : 2 — A is holomorphic and f(w) = 0},
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(1.8) Hol”(4, 2) = {f : 4 — 2 is holomorphic and f(0) = w},

and for a normed linear space X, we let (X); be the closed unit ball in X. Note
that, any holomorphic function f : £2 — A induces a linear map fi : T, 2 — Ty, 4,
defined by

(19) f*(v) =(v(f1),‘..,v(f'")),

where (f1,..., f™) = f. In particular, fu(v) = v(f) is in ToD for any £ in Hol,(£2,0)
and v in T, £2. It is not hard to see that [7, Lemma 3.2], Ci.(u,w) is contractive if and
only if

(1.10) sup{[|N (£ (v), f@))llop : f € Hol,(2,D)} £ 1.

For any f in Hol,(#2,D),

6 flv
(1) WGk = [ *O] =m0
: op
The Carathéodory length Cp ,(v) of a tangent vector v in 7,12 is defined by the
formula
(1.12) Caw(v) = sup{|fu(v)| : f € Holu(£2,D)},

and is a norm for any bounded domain £ in C™. It follows that, if Cfv(u‘w) is
contractive, then the Carathéodory norm of the tangent vector v in T, £2 is at most 1.
The indicatrix of £ at w is the closed unit ball in T}, Z with respect to suitable length
function on T, 2. We will write the indicatrix with respect to the Carathéodory norm
as I'(Cp ). Note that,

(1.13) I'aw = I'(Caw).
For our purposes, it will be necessary to introduce the dual object
(L14) Dw) LV f(w) : f € Hol,(2,D)}

However, the fact that Df2(w) = I'(Cy ) will be established in Section 2.6.

We refer the reader to the survey article [5] for details on the Carathéodory norm
and the indicatrix. _

There are some natural modules that can be constructed from C?\r(u,w) as follows.
Let H*(£2) ® My, be the algebraic tensor product of H* () and the linear space
of k X k matrices, M. We think of an element of H®°(£2) ® M} as a My-valued
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holomorphic function and declare its norm to be the supremum norm on £2. Unless,
we specify to the contrary, My is to be thought of as a normed linear space with
respect to the operator norm The homomorphism py ® I : H®(2) @ M — Moy,
which we shall denote by pN , makes the k-fold direct sum, C3 N ® " ® 3 Nvw) &
module over H*®(2) @ My via the action

(1.15) (F,v) = (BOWF) v, v €Chumy® 8 Chpwy:

where the dot on the right indicates usual matrix multiplication. If F is in H*(2)®
@M then F = [F¥']: 2 — My, and we have

(1.16) (o “)([Fﬂ]) = [N(F) = [N(Fi'(v), F/' ()]

We say that the module C2 Nv.w) is completely contractive if for each k, the map p( )

is a contraction. It will be useful to think of C N(vw) @ -oC3 Niow) 35 module with
respect to a different but equivalent action. For any pair of linear transformations T
and A In Mg, let

(L.17) vaa=[5 7]

By applying suitable row and column operations, we can write
(8)F) = NP (o), 7)) =

(1.18) ' F(w) (Fi'(w))
o~ i = N(Fy(v), F{w)),
SN B TCIOR®)
where Fy : T, 82 — Tp(,y My is the induced map.
Note that if we write F' in Hol, (92, (My)1) as

(1.19) F(z):(zl—wl)F1+-'-+(Zm—wm)Fm+"" Fre My
then
(1.20) F..(‘U) = F 4o+ o Fn.

The module structure on €%, ,1® - ® Chiowy OVer HO(2) @ M determined by
the action

(1.21) m® ; (F,v) = N(F.(v), F(w)) - v

is isomorphic to the original one, via a unitary module map. Thus, the contractivity
pgs,“) is equivalent to that of m{*), Once again, it can be shown [8, Lemma 1.6] that
2% (or, for that matter m(¥)) is a contraction if and only if

(1.22) sup{|| N (Fu(v), F@))llop : F € Holu(2, (Mi)1)} < 1
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However, for F' in Hol, (12, (My)1)

0 F ('z:)]
0 0

(1.29) IV, F el = | | = IR

The following is a version of Schwarz lemma.

LEmMMA 1.1. If 2 in C™ is the unit ball with respect to some norm || |la on C™,
then the indicatrix I'(Cgq,0) Is £2.

Proof. Recall that, the indicatrix I'(Cpn,0) is
F(Cn,o) = {'U eTpi2: Cn,g(v) < 1} =

= {‘U eT82: !(Vf(O), b‘)l < 1, f € HOIQ(Q,D)};

Here, we think of V £(0) as a co-tangent vector in T5 £2. One form of Schwarz lemma
[12, p.161], implies that V f(0) is a linear function in Holg(42,B), that is, Vf(0) is a
linear functional of norm at most 1 on (C™,|| - |ja). On the other hand, any linear
functional of norm at most 1 on (C™, || - ||a), is in Holo(£2, D). Thus,

DR(0) = {V£(0) : f € Holo(£2,D)} = (€™, || - )1

It now follows that Cpp o(V) < 1if and only if v is in (C™, [{-||57)1. Since, (C™, ||-|fa)**
and (C™,|| - ||a) are isometrically isomorphic, the proof is complete. [ ]

While the proof of the following theorem is not difficult, we wish to emphasize
that the statement of the theorem is equivalent to the distance decreasing property
of the Carathéodory metric.

TueorREM 1.1. Every contractive module C?\T(u,w} is completely contractive.

Proof. We have to show that for any v in I'n o = I'(Cp,w)
IRl <1, F € Holy(R2,(Mi)1).

The Carathéodory metric is distance decreasing, that is, for any holomorphic map
f: 80— 180

Cﬁ,f(w)(f* (v)) € Caw(®).
In particular, we have

Ciatuyn o(Fu(v)) € Caw(v)-

A trivial consequence of the previous lemma is that, Cg o(v) = ||v||a for any ball
((C™, | - ll2))1. In particular, Ca4,),,0(V) = ||Vllop, and for v in I'(Cp »), we have

IFs()lop = Ciate)s, o Fu(v)) € Caw(v) £ 1.
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The proof is now complete. n

Let K be a compact subset of C™ and A(Int K), be the algebra of holomor-
phic functions on Int K, which extend continuously to K. Contractive modules over
A(Int K) correspond in a one to one manner to m-tuples of Hilbert space operators,
which admit K as a spectral set (cf. [3]). Recently, J. Agler has introduced the no-
tion of a spectral domain for an m-tuple operators. Contractive Hilbert modules over
H®(£2) correspond in a one to one manner to m-tuples, which admit §2 as a spectral
domain. Thus Theorem 1.1 is the limiting case of Theorem 1.9 of [1]. While, Agler
suggests that a proof can be obtained by limiting arguments, we have included a di-
rect proof of Theorem 1.1, both to introduce some basic techniques and to emphasize
the complex geometric language.

2. MATRICIAL TANGENT VECTORS

In this section, we consider modules determined by matricial tangent vectors,
that is, an element V of T,,Z ® M,,. Note that, we may write V € T, 2 ® M, either
as

¢
(2.1) v=Y i eE; el
i,i=1
where, E;; is the usual matrix unit, or by setting V? = [v}’], we have

m
(22) V=) aeV, VieM,

i=1
where, ¢; is the standard basis vector in C™. If f : £2 — 2 is holomorphic, then the
induced map £, ® I, : T, 2 @ My, — T, 2 @ My, is defined by

(f oLV =(foh) (Yae V)=
=Y AoV =3V W), e))f) OV
¥h= (-a%f) (w), then

(2.9) (f8L)V)=)_ fiaV.

For V in T,2 ® M,, we will write f.(V) instead of (f. ® I,)(V). The map
AN : 9(w) — M3,(C), defined by (see, 1.2 and 1.17)

(D E FNV, w1, 1), .., NV, wmIy)) =
= N(fu(V), f(@)I.), [ € dw),

(2.3)

(2.5)
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is a continuous algebra homomorphism [9, Proposition 2.3], coinciding with the eval-
uation map on polynomials. Let C3% N(v.w) be the module over H*(§2) determined by
this action. As before the k-fold direct sum, C}:}"(V,w) &---B C?‘?(V,w) is a module over
H>(§2) ® My, via the action determined by

EV(F) = [FHN(V,011)), .., N(V,wmIn)] =
= [N(FI(V), FF (w)L)),

where, F' = [F/Y] is in H*®(2) ® M;. However, after suitable row and column
operations, we find that

(2.6)

FOV(F) = INFV), PP (w)a)] =

(27) L®Fw) Fi'(V) : .
N [ Je F(w)] = N(Fu(V), In ® F(w));

FV)=Fi®Vi+ -+ Fn®Vm, where F;= (;;F"') (w) (see 2.4).

Thus, for Fin H*®(£2) ® M and v in C Nevy @+ - ® CRiy,y, the module structure
on the k-fold direct sum of C27? N(V.w) determined by either of the actions 2.6, or 2.8,
are isomorphic. We will without loss of generality, consider the k-fold direct sum of
CXv,w) 88 amodule over H®(2)® M}, via the action induced by N(F.(V), In®F (w)),
and set

(2.8) (PONF) = N(F(V), In ® F(w)).

Even in this generality, it can be shown that [9, Lemma 3.3], pﬁ') is contractive for
any k > 1, if and only if
sup{[|N(Fu(V),0)llop : ' € Holy (2, (M)} =

2.9)
sup{||Fu(V)lop : F € Holu (2, (Mi)1)} < 1

QUESTION 2.1. When is a contractive module C37 N(vw) over H ® (42}, completely
contractive? :

REMARK 2.1. To answer this question it would be helpful to define
(2.10) DR® (W) EYDF(w) : F € Hol, (2, (Mi)1)}.

It turns out that D2(*)(w) is a unit ball with respect to some norm (ef. [10, Propo-
sition 3.1]). We will later determine this norm explicitly (see Corollary 2.1 and 2.2).
For a fixed but arbitrary matricial tangent vector V' € T, 2 @ M, set

A £.(v), end pSBI(FYE Fu(V),
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for f € H*(R2), and F € H*(£2) ® M, respectively. Question 2.1 is answered by
determining the norm

(2.11) [1p®]] = sup{||p*)(F)ljop : F € Holo (2, (Mr)1)H].
First, we consider the case k = 1 and try to describe the set (recall 1.6)

w={VEeT.20 M, :|lon(Hllop €1, f: 2 — D is holomorphic} =

(2.12)
={VeT,R®M,: HJ&(V)Hop <1, f € Holw(.rz D)}.

To imitate the proof of Theorem 1.1, it would then seem natural to define
(2.13) Cau(V) = sup{{|fe(V)llop : f € Holu(12,B)}.

It turns out (see proposition 2.2), Cq (V) is distance-decreasing. However, the
following simple example, shows that ¢ ri)n,o{V), is not always equal to |[V|[ep-

ExamrLE 2.1. Let

10 0 1

Vﬂ_[Vu sz]ﬂ_ 00 0
Var Voo 00 0090

g 0 0 0

Note that, ||V]lop = +/2, while

Z ai; Vij

ij=1,2

: |tr[a,-j]"“ £ 1} .

Caw(V) = sup {

If £ and y are unit vectors in C2 then

<( )y ai.jVs',j) my> = tr([ai;][(Vijz, )]")-

£,5=1,2

Since [[{Vijz, ¥)]*[lop < 1, it follows that Cg o, (V) €
2.1, Pullbacks

Let V be a finite dimensional vector space and W be a finite dimensional normed
linear space. Let £ C Hom(V, W) be some family of linear maps. Define a function
Il-lle: vV — Ry by

(2.14) lllle = sup{flZof : L € £}
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It is clear that
llaevlie = lellivlle, «€C,

and
llo1 + va||le = sup{||Lv1 + Luo|| : L € £} £

< sup{f|Lusf + [[Lozl : L € £} < [lwalle + lfvzlle,

since
|Lve]| < llvelle fork=1,2and L€ L.

It is easy to see that (WkerL: L € £} = {0} if and only if || - || is a norm.
PROPOSITION 2.1. Let us assume that || - ||¢ is a norm. Then
{v:lolle <1}= AL w: lll < D},
Lec
where {w : {|w|| < 1} is the unit ball in W.

Proof.

lle <1 |[iv]|<lforall Le L&
slve{w:{ju]|gl}forallLe L &
ovel Yw:|lw|g1}forall Le £ &

S vE ﬂ L™ Hw: Ju|| < 1} "
LecL

2.2. Examples of £, where |- |2 is a norm

ExaMmpLE 2.2, Let
W = To(Mp) = (My), op,
V=7T,(82), and
£ ={DF(w): F € Hol,(£2, (Mx)1)} € Hom(V, W).
Then || - ||c is a norm.

It is enough to show that for some v € T,f2, v # 0, there exists F in
Hol, (2, (My)1) such that DF(w)(v) = F.(v) # 0.

So take a linear functional A : T,,(2) — C such that A(v) # 0. Say X =
= (A1...Am). Then the linear map

R:T(0) > My = To(Mp)y),  A(v) = Aw)Id.
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satisfies X(v) # 0. If we define F by
F2) = MN(z - )] = (21 = w)MId + - - + (2 = W) Am]d,

then F € Hol,(C™, My), and clearly DF(w) = X. However, F does not necessarily
map §2 into (My);. Since £2 is bounded, we can take C = me%xlf’(z)[ < oo, and

F= %I:‘ satisfies DF(w)v = %Dﬁ‘(w)v = %X(v) # 0. So we are done.

Let X and Y be finite dimensional normed vector spaces. It is possible to con-
struct various norms on the algebraic tensor product X ® ¥ using the norms on X
and Y. One way is to introduce a norm, which is independent of the representation

of the equivalence class is to assign to Z z; ® y; the norm it receives when regarded

=1
as an operator from X* to Y, that is

N n i n
(2.15) 2 z®u| = S“P{ Y el e e X, ol = 1} ~
i=1 =1
The rorm || - ﬂ is called the injective tensor product norm.

EXAMPLE 2.3. Let

W=To(Mp) ® (Mn) =2 (Mgn,0p),
V=T,(2)®M, and
L={DF(w)®Id: F € Hol, (2, (Mx)1)}

For any bounded domain £2, || - || is a norm as well.
The following is true for vector-spaces of finite domension. Suppose L: VY — W
then for a fixed vector space X, consider

(Led): VX -WeX

and note that
O—kerL - VEW

is exact and ®X is an exact functor
0—(ker)@X = VX" *Wwe x
is also exact. So ker(L ® Idx) = (ker L) ® X. Thus,

(Yker{DF ® Idx : ¥ € Hol, (%2, (Mi)1)} =
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= ({ker DF : F € Hol,(£2,(Mi)1)} ® X = 0.
by the preceeding example.

REMARK 2.2. This example suggests the following definition. For V € V, let
(2.16) Ch Y= IVlle,

where £ is the same set of linear maps as in the preceding example. Note that for
m 2 2 we can not apply the maximum principle to conclude that: the norm C’ﬁ.w
does not change if we use only those holomorphic function on {2 which take their
values in the-open unit ball of k£ x k matrices (recall Remark 1.1). However, given
any r > 1, we observe that,

Hol, (2, (M)}) € Hol, (2, (My)1) € Hol, (82, r(M)?).
If we call these families £°, £ and r£° then the corresponding norms satisfy
H-lleo <l -lle <N Hlree = rif - lleo,

for all » > 1 and we have equality everywhere, by letting » — 1. Thus, C‘n,w is the
same whether we use an open or closed matrix ball as the target. The above family
L gives a sort of Carathéodory norm with respect to Hol,(§2, (My)1) for matricial
tangent vectors as || - || (compare 2.13). We obtain the usual Carathéodory norm by
takingn=k = 1.

The next proposition about || - [|¢ is a universal functorial property that charac-

terises || - ||2.

DEFINITION 2.1. We say some arbitrary norm ||-||s on V is £-distance decreasing
if £ C (LY, W))1, that is

Lol € llolla forall Le £.

ProprosiTION 2.2. || - || is the smallest L-distance decreasing norm on V.

Proof. It is trivial to check that || - {|¢ is £-distance decreasing by definition.
The norm || - || is £-distance decresing if and only if

lLv]] € ||v]le forall Le LveV.

Equivalently, sup{||Lv}] : L € £} < |v|la, that is, ||v]l2 < [|v/la- |

The least distance decreasing property of various Carathéodory norms (Examples
2.2 and 2.3) follows for holomorphic maps (see 2.22 and 2.24).
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2.3. Pushforwards

There is a dual notion to || - ||¢, namely || - ||*, which is defined as follows.
As before, let V and W be finite dimesional vector spaces with a norm on W

with the only difference that £ C Hom(W, V). Define a function || - || : V — Ry by
(217 [IM[© = inf{{|u|l : Lp = X for some L€ L, p € W} =

2.17
inf{[fl : 1 € £71(A)}, where £72(3) E( (LN : L€ £},

for A € V.- If no L with Lu = ), exists, define [|A|[* = 0 note ||0||* = 0, and also for
c#0,

lleA]|* = inf{||g|| : Lyt = e) for some p € W and L € L} =

= inf{[cl %p" : L (%‘#) for some L € L, %p € W} =

= Ic[inf{ -:;-11" L Gp) for some L € £, -}:-,a e w} =
= Jelinf{Ju] - () = A, o €W, L €L} = el I

EXAMPLE 2.4. Let W = To(D), V = T,,(22), and
L= {Df(0): f € Hol*(D, 2)}.

Note that the norm || - ||¢ is the Kobayashi norm Kg,, on T, (£2) (cf. [5]).
We now find sufficient conditions on £ so that || - ||~ is a norm.

HypoTHEsIS 2.1. We list, for £ € Hom(W, V) the following conditions
(i) there exists a distinguished vector J € W with ||J|| = 1 such that for each
i € W with ||p|l = 1, there exists a linear endomorphism (of W) R, which is of
operator norm 1 and R,(J) = pu.
(i) If L € £ and R, asin (i) then Lo R, € L.
(iii) For any X € V, there exists L € £, u € W such that

Lu=X and A€ = ul

(iv) L is convex, that is, for ¢1,¢co € Ry, Iy, Ly € £ we have

L
e1Ly + ¢epLy cr
1+ 2

PRrOPOSITION 2.3. If £ satisfies Hypothesis 2.1 and J € W be the distinguished
unit vector guaranteed by (i), thereof, then
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(a) for any X € V, there exists an L € £ with L(cJ) = X, where ¢ = |[A][*.
®) || - I is a norm.

Proof. (a) By (iii), there exists p such that [|g|| = ¢ = ||A|]|£ and Lp = A. But
oH is a unit vector, so K= R,(J) by (i). So g = ¢R,J = Ry(eJ). But then
p=(LoR,)(eJ) and by (ii) Lo R, € £. So we are done. By definition ¢ = [[A[|%.

(b) By part (a), there exists L € £ such that

L(cJ) =X and e = fleJ|| = [IA]|“.

So ||A]|* = 0, which implies ¢ = 0 and in turn A = 0. Thus | - ||¢ is positive definite.
To prove triangle-inequality, again by Proposition 2.3 for Ay, Az € V, there exists
€1,¢2 € Ry with
Li(e;J) =X and o = ||A][€ >0

But then
e Li(J) = (er Ly + caL2)(J) - AL+ A
e (e1+¢2) (e1+e2)
But L = aaly + eals € L by (iv) of Hypothesis 2.1. This means
¢+ o
A+ Aolf©
ek 711 = 1= [ A1+ Xell® < ex + ez = [ Ml + |22}
ci + C2
This completes the proof. ]

PROPOSITION 2.4. Let £ satisfy Hypothesis 2.1. Then the unit ball of || - ||* is
described by

PeviINE <1} =Lluew : ull < 11E | L))
LeL

Proof. If ||A|[* £ 1, then
X =Ly for p € W and [|ul} = [|]M]° <1

by (iii) of Hypothesis 2.1. Thus, X € U L({(W)1).
Conversely, if A € U L{(Wh), then

A=LuforsomepeW, |luf<land Le L,

which implies
inf{{lull : Lu =), p€W, LeL}<lull <1



368 GADADHAR MISRA and VISHWAMBHAR PATI

Thus, [|A|F € 1. n
2.4, Examples of £ satisfying Hyypothesis 2.1

ExaMPLE 2.5. Let £2 C €™ be a bounded domain, w € 2. Let

W = T3 (D) = C (usual cotangent spaces),
Y =T;(R2), and
L = {(Df(w))* : where f € Hol,(£2,D)}.
On W put the obvious norm |- |. The family £ satisfies Hypothesis 2.1.
(i) of Hypothesis 2.1 is satisfied (for the distinguished vector 1 € C), since the

unitary group of S* acts transitively on $* = {a: |a| = 1}.
Note (Df(w))*(u) = A implies

A(v) = p((Df(@))wv) = 4 (Z -gg;(w)va) =2 #g:(w)vs'
So that (Df(w))* is the linear functional

p— (”a—zf{""%”?iéjt;) onT (2)=V

by definition.
(ii) is clearly satisfied, for if o € Iso(W), « € C, and |a] = 1, then

(Df(w))* oo = D{af(w))* for f € Hol,(2,D),

and clearly, af € Hol, (12, D).
(iv) is satisfied since

c1(Df1(w))* + 02(Df2(w))* - (Df(w))*,

¢1 + ¢2

c1fi+eafo

where f = rqrps

, ¢ 2 0. But

(er + Cz)g% | fil

Ifl < =1

¢+

So f € Hol,(£2,D).
It only remains to prove (iii). We have to use a normal family argument, which
applies to any bounded region 2 C C™.
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Let r = ||A]|€. Then it is not hard to show that there exists a linear map £ : C™ —
—C, f(w)=0and z — Z(zk — wi ) such that A = £*(1). By choosing « satisfying

af: 2 — D, we get A= (af)* ( ) so that A = (D(af))* ( ) This shows that the

set £71(}) is non-empty. So suppose given fi € Hol, (2, D) with (Dfi(w))*(sx) = A
and gl = r + e, €5 — 0. By extracting subsequence, since Hol,(2,D) is a
normal family, fi — f uniformly on compact sets for some f € Hol.,(£2,D) and so
Dfi — Df by Montel’s Theorem. Similarly, y; is a bounded sequence, so px — p by
taking subsequence. Now,

X = (Dfe(w))" (us) = (DF) (1)
and ||p}| = lim||ux|| = r + limeg = r. This proves (iii) and we are done. |
CoroLLARY 2.1. {A € T(2) : ||Al[* €1} = {Vf(w) : f € Hol,(£2,D)}.
Proof. For any f € Hol, (£, D), using Proposition 2.4, we have
{4 € TH(Q) : |AIF <1} = L(w: lwl )=
= AP : 1 <13 = { (Wil @) ngl ) <1}
={(Zwn@n- 2 wnw) i<
= {V(pf)w) : |u| < 1},
which is clearly equal to {V f(w) : f € Hol, (£2, D)}. =
We note that for A =Y Ei; ® Aij € Mi ® My, = Hom(My, M.,), we have

i3

]

(DF(w)" @ Id)(A) = ( 3F., (w)A,_,, z: OF; ((-U)Aij) =

A

=A ODF(L«J) ®1d.
We will in analogy with 2.8, write (DF(w)* ® Id) as F*.
EXAMPLE 2.6. Let

W = Hom((Mj, op), (Mg, op)) = (Mg, tr)&(My, op),
V=T5(2)® (M_k,op) & Hom(7.,($2), M), and
L= {(DF(w))* : F € Holu(£2, (Mr)1)}.

Then L satisfies Hypothesis 2.1.
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Since DF(w) is in Hom(T,,(£2), M), and A is in Hom(My, M,); we see that,
Ao DF(w) belongs to Hom(T,, 2, M) = V. Further, if {2 is a bounded domain and
4 is a bounded set in C* then Hol, (2, A) is an equi-continuous family of maps.
Furthermore, if every bounded subset of A is relatively compact then Hol,($2, 4) is a
normal family (cf. [13, Lemma 1.1(iii) and Lemma 1.4]). In view of Remark 2.2 and
the preceding comments, it follows that Hol, (2, (Mi)1) is a normal family.

Proof. (i) If p € Hom(My, M) = W is an operator of norm 1, R,(Id) = p,
where R, : Hom(M;y, M) — Hom(My, M;) is right multiplication by g, so the
distinguished element J can be taken as Id € Hom(My, My).

(ii) Suppose R, € Hom{ My, My} with ||Ryullop,op < |[#llop € 1 then

(F* 0 Ru)(A) = (Rud) o DF(w) = Ao o DF(w) =
= Ao D(uo F)w) = Ao DF'(w) = (F(4),
where F' = po F. But F : 2 — (My); and |0 Fllop < lpllop, so [|F'l} < [|F]], and
F’ : 2 = (M;);. This implies (ii).

(iii) Normal family argument, we won’t repeat the proof.
1 FY +cal'y  (c1Fy -+ cola)*

¢+ ¢ ¢+ ¢
= aFfi+ ek,
€1+ ¢C2

(iv) Since
that

, same proof as previous example shows

€ Hol, {2, (Mz)1). [
CoROLLARY 2.2. Let W,V and L be as in Example 2.6. Then

{A:]|A|* € 1} = {DF(w) : F € Hol, {2, (Mi)1}.

Proof. Exactly as in Corollary 2.1, with the identity map in Hom(M;, My)
replacing 1 as the distinguished element J. Note that

¥ oF oF
F*(1d) = (5;1-,,3—2-’;:) .

DEFINITION 2.2. An arbitrary norm || - ||* on V is called £-distance decreasing
if for all L € £ we have

[Luli® < [lufl  forall pew.

PROPOSITION 2.5. The norm || -||¢ is the Jargest L-distance decreasing norm on
V. (This proposition is dual to Proposition 2.2.)
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Proof. Again, || - ||¢ is L-distance decreasing by definition. Suppose A € W
and Ly = X for L € £ then ||Al|® = ||Lg||® < |lull. So [|A|* < inf{|lg]] : Lp =
= ) for some L € £}, and [|]A]|* < |I]I©. n

It is easy to check that the largest distance decreasing property of the Kobayashi
norm (see 2.22) follows from the above.
For any z = X ® Y define the projective tensor product norm as

n n
(2.18) |z]] = inf {Z”z," Il ;2 € X, % €Y, 2= z-’ri ®yi} .

=1 i=1
The next example is that of a family resulting from tensoring a family satisfying
Hypothesis 2.1 with the Id operator.
ExaMPLE 2.7. Let
W - TO(D)@(M'-“ Op) = (Mﬂ,Op)
V=T, M,
L={Df(0)®Id: f € Hol“(D, 2)}
and assume that the family G = {Df(0) : f € Hol”(D, £2)} satisfies Hypothesis 2.1
(see Example 2.4), and that || - || is a pseudonorm. Then || - ||¢ is a norm and equal
to the projective tensor product norm IA{n,w (i=efKn,w®|| - |lop on the matrix tangent
space V. (Note that Kpn ., is defined in Example 2.4).
First let v® X be an indecomposable tensor in V. Since G is asumed to satisfy Hy-

pothesis 2.1, we have a scalar 4 € Tp(D) = C such that K .(v) = |p| and DF(0)(g) =
= v. Thus (Df(0) @ Id)(#X) = v® X, and since

14X llop = 81X lop = Kaw(@)lIXllop

we have that

llv® X|I* < Kaw@®)IXllop
which implies that if ¥ € V with ¥ = ) v ® X; we have, because || - [|* is a
pseudonorm, that ’

Y1 <D Kaw(®)liXillop

i
so that
IY1* < Kaw(Y)

because of the definition of projective tensor norm. On the other hand, it is trivially
checked that the norm I"{n,w is L-distance-decreasing, so that by Proposition 2.5
above, we have this norm majorised by || - |[€. The latter is thus a norm.
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2.5. Duality principle

Let W be a normed linear space and W* be the dual linear space with the dual
norm. Let

(2.19) £ C Hom(V, W), so that £* C Hom(W*,V*),

where £* = (dual of £), V* = dual of V.
THEOREM 2.1 (Basic duality principle). Assume that ||-||c and || |I¢* are norms.
Then (|| -[lc)* = || -[I".

Proof. First we claim (I| - [l2)* < |- ||€".

We recall Proposition 2.5 which says ||- || is the largest £*-distance decreasing
norm on V*. So it is just enough to show that (|| - [c)* is L*-distance decreasing.

Let L* € £* (so L € £). Then for p &€ W*

.y de L*p, v)| I(a, Zv)|
ey ¥ awp W g L 20]
UWEsllel= S TWolle  woika ole

but || - |c is £-distance decreasing, so [|v]|z > ||Lo]f. So

S < sup L LU
(2*alle) anlfil (IZelf

Now, if |Jv]lz € 1, {|Lv]} € 1, then {LZv: |lv]lc € 1} C {w € W : |luw|| £ 1}. So that,

(1L plle) < "sup Kps, L il (as an element of wH).

wigr  [lwl]

This proves what we wanted.
Next, we claim

I-le < Q-1E7)
(This would show || - ||% > || - ||¢”, the other inequality we need). We will show that
(] - lI%)* is L-distance decreasing, and since || - ||¢ is least L-distance decreasing by

Proposition 2.2, we would be done.
Use Proposition 2.4, to observe that {||A||¢” € 1} = £*{p : ||u|l € 1}

"y A, ) {L* s, )]
€y = sup KMOU_ o, KEmuly
et < IAE 7 gt zeess [1L*IE
I{g, Lv)|

~

2 z AT because [|L*u|l¢” < -
feilgt, zee Ml ( L™ il ey

= ||Lo|[** = ||Lv]| for all L € £
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Thus, ||Lo|| < ||v]|£™ for all L € L.
This shows || - ||*" is £-distance decreasing and the proof is complete. n

REMARK 2.3. This theorem generalises to any arbitrary family £. In this situ-
ation || - ||¢ and || - ||* are quasi pseudo norms respectively. This theorem therefore
contains Proposition 6 of [6] as a special case.

2.6. Distance decreasing metrics

Following Royden {11, p. 397], a hyperbolic infinitesimal metric of order n is an
asignment of a norm g on the matricial tangent space Tp @ M, £2 C C™ such that

(2.20) p(w,V) = 1~ [wl*)"Vllop
and for any holomorphic function f : 2 — £2,
(2.21) 65(f(w), fu(V)) € ba(w, V).

Note that if £L*) = {DF(w)®1d : F € Hol, (£, (Myx)1)} and § is hyperbolic infinites-
imal metric then § is £(})-distance decreasing, that is, for all f € Hol, ({2, D) we have
[l£+(Wllop < (V). Similarly, if Ly = {DF(w) @ Id : F € Hol“((My)1, 2)}, then
6 1s L(;y-distance decreasing. Thus, in view of Proposition 2.5 and 2.2, we have the
inequalities

(2.22) CawlV) < 8(V) < Raw(V).
Further, if we define as in Example 2.3 (compare 2.16)
(2.23) RY (V) E|V][Ee,

where
W= (TQ((Mk)l)@(Mﬂt OP))

V =T,(2) ® (M,)
Ly = {DF(0)®1Id : F € Hol*(My)1, 2)}

then we have the following inequalities at the level of matricial tangent vectors

(2.24) c"'n’wg...g"g,wg...gf"{}')’wg\...gknw,
Note that the maps Dé(Mk)h defined by
T

zirdiag(z, oyz) and (zje) 5 211
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satisfy 7 0¢ = Id. For f &€ Hol,(£2,D), define F = io f € Hol,(£2,(Mz);). Since
7o F = f, the map f — F is injective. Similarly, for ¢ € Hol“(D, 2), define
G = gor € Hol“((M)1, 2). Since Goi = g, the map ¢ — G is injective. This
proves the first and the last inequality in 2.24.

To prove the middle inequality, we show that C¥, , is L)-distance decreasing
for all k. Recall that, in this case W = To(My)1®M; and V = T,R29Mpn. Let L€
€ Lgy = {DFQId : F € Hol”((My)1,2)}. Then for W € Wand V = L(W) = g. W,
g € Hol”((My)1, £2) we have

IZW)llewr = Ch (V) = sup{||Fa(V)llop : F € Hol(82, (M;)1)} =
= sup{[|Fugs (W)llop : F € Hol(2, (M;)1)} <
< sup{|[(Fh)s(W)llop : F € Hol(£2,(M;)1), h € Hol"((Mi)1, 2)} <
< sup{||G.Wllop : G € Holo((Mi)1), (Mi)1)} <
< sup{||G. W] : G € Holo((Ma)1), (M;)1)}-
Recall that (see 2.8), G.W = (DG(0) ® I)(W). The Schwarz lemma applied to the
two unit balls (M}); and (M;); says that DG(0) is a contraction. f W = ZA,-@B;

f=1
is any representation of the matricial tangent vector W then we have

IGL (W)l < D IIDG©O) AsloplBillop < D 1Aillepl|Billep
Thus, sup{[|G.W]| : G € Holo{(M4)1, (M;)1)} < ||W]|. This completes the proof of
the inequalities 2.24.
We now go back to our basic question (Question 21)
THEOREM 2.2. I, ¥V e L2 @ My : Cau(V) €1} = T (Caw)

Proof. Note that, Corollary 2.1 identifies the set D§2(w) with the unit ball with
respect to the norm || - ||¢, where £ = D2(w). Next, Theorem 2.1 identifies this
ball as the unit ball in the co-tangent space T3 42 with respect to the dual of the
Carathéodory norm. This completes the proof. n

COROLLARY 2.3. If Ci?(v)w) is contractive then
sup{C'(M,‘),,o(F*(V)) 1 F e Hol, (2, M)} €1,
fork=1,2,....

The proof of this corollary is the same as that of Theorem 1.1, once we note that
Ca, is a LM-distance decreasing metric. In fact, as we have seen, it is least such
metric.



CONTRACTIVE AND COMPLETELY CONTRACTIVE MODULES 375

Note that, Cin (V) is the injective tensor product norm of V as an element of
(T$2,Ca,) ® (Ma,0p). Thus, V & Tow ifand only if V : I'Ch , — (Mi).

COROLLARY 2.4, C%}‘(V,w) is contractive over H*(£2) if and only if

Ve ((Mm Op)@(TwQ, C.O,w)l)-

The proof follows directly from Theorem 2.2.

COROLLARY 2.5. Every contractive module C%?(V,‘w') over H®(£2) is completely
contractive if and only if

F* : F(C’n,w) — ((ToMk ®Mn);op))1 = (Mkn;op)ls
for all k and F in Hol,(£2,(My)1). Or, equivalently, if and only if for all

é}i,wzé.{z?,wz"'zéﬁ,w:—”': kE=1,2,...

This corollary is merely the statement that contractive modules are completely
contractive if and only p(*) is a contraction (in the sense of 2.11}) for k = 1 implies it
remains a contraction for all k& > 1.

CoroLLary 2.6. C¥iy ) is contractive over H*(£2) if and only if v I8

contractive over H*(I'(Cq ).

REMARK 2.4. Note that if Cg, = f{n,w, then every contractive module Ci,(u,w)
is completely contractive over H*(£2). However, there are examles due to Parrott
(cf. [9], in fact Cay # Cv'_?;,w) of contractive modules of this type over the tri-disk,
which are not completely contractive. This shows that the two extremal metrics in
2.24 can not be equal.

3. OPERATOR SPACES

In this section, we relate our discussion on contractive and completely contractive
modules over H®(f2) to that of the theory of abstract operator spaces.

Let X be a vector space over C and let M,,(X) be the vector space of # x n matri-
ces with entries from X. The vector space X is matrix normed if each (M (X)), |[+{ln)
is a normed linear space such that

1. For every B in Mn(X),0in Mpn(X), [|B @ Ollnt+m = [|Blln,
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2. For B in Mn(X),A,C in M, ||ABCY| < 1Al 1Bl-lICII-
Among the matricially normed spaces, there are some matrix norm structures,
which are £°-matricially normed. Such spaces are called operator spaces (cf. [10]).

DeFNITION 3.1. If X and Y are matrix normed spaces and ¢ : X — Y is
linear, then we define, o(*) : M, (X) — Mu(Y) via p®)((2i;)) = (p(zi;)). We say
that, ||y = sup ||¢(*)]| is the eb-norm of . The map ¢ is said to be completely

k

contractive, if p(*) is a contraction for each k.

~ There are-many natural ways in which we may matricially norm a vector space
X (cf [2]) However, we single out one Ea.rticula,r matrix notm structure on a vector
space X. Let (X,]| - ||), be any vector space, declare the norm || - ||, by identifying
M (X) with the injective tensor product (X, || - ||)&(Mn,op).

Let X = (T32,C} ) and DRE)(w) C Mi(X) be the unit ball with respect
to the norm || - ||, where £ = Hol,({2,(M3);1). This gives X an operator space
structure [10, Proposition 3.2]. It is shown in [10] that if £2 = B is the open unit ball
with respect to some norm in C™ then

DBE)(0) = (Ty BS(My, op))1.

If B is homogeneous then this result remains valid for an arbitrary point w € B. We
have a similar result for product domains.

THEOREM 3.1. For any two domains £, C C, let 2 = §2; x {2, be the
product domain and w = (w1,w;) € 2. Then

DRFw) = (T2 02&(My, op));.

Proof. For j = 1,2, let Fg;,,.,; be the Ahlfors functions (cf. [4, Theorem 1.6])

for the domains §2; at the points w; € ;. The indicatrices Ta;w; are disks of
radius r; = DFg;u;(w;). Let G; = Ty an,-,w,-- The G; — T'a;w; and the derivative

DG;(wj) = 1. It is of course, easy to see that
DR®(W) C (Tg,, (21 X 22)&(Mz, 0p))s.

To verify the opposite inclusion, let A4 € (T4, w2)(£1 X $22)@(Mp, 0p))1 be arbitrary.
Since

Cnxxnn.(wx.wn) = ma‘x{cnl.wucﬂa.ws})
the indicatrix

Fn;xﬂ:,(w;,wﬂ - Fnl'wl X Fn:.‘”?!
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and it follows that
G = (G1,G2) : 821 X 25 = I'g %05, (wi wa)*

Note that,
Ao % .Qg-—*(Mk)l; (AOG)(wl,“"?):O‘

The derivative (DG)(w1,w2) = Id, and therefore
D(A 0 G)(wy,ws) = A.

Thus,
4 € DB (W)

This completes the proof. u

4. APPENDIX ON THE QUOTIENT NORM FOR MATRIX TANGENT VECTORS

On §2, we clearly have the holomorphic vector bundles

L{({(Ma,tr), T2) & (Mg, t)* @ T2, and

(4.1)
L(T2,(Mpn,0p)) =T*28® (Mn,op).

where the tensor products and linear maps are fibrewise.
DEFINITION 4.1. We define,
gw,n = E((Mn: tr)) (ngs Cn,w))) = (Twﬂacn,w)®(Mn1 op), and

Eap=]T{(w,V):w €, V€ (Eunh}

Similarly, there is a dual definition,
& o = LU(TuR2,Caw), (Mn,op)) 2 (T52,Ch ,)&(Ma, 0p), and

g.?),n = H{(W’A) wEeR Ae (gc:,n)l}
If f:2— 2, f(w) =0, and f is holomorphic then
(4.2) £ : T(Caw) = I'(Ca yuy)-
and by 4.2, we obtain the map, f. : &, n — Ef(w)n defined by

(4.3) fuV) = Vf(w) o V.
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Similarly, there is a pullback, f* :‘8}“@).“ — &3 n defined by
(4.4) fT(A) = Ao Vf(w).

These maps induce functorially maps f : Eaw — 8{;,,, and fg : 5;3 n £ - Here
the case k = 1 is the standard push forward of tangent vectors or pullback of co-
-tangent vectors. The corresponding bundle diagrams are

fian — Efin fi i éhn — &3,
(4.5) : Tl { and 7w} I
o f:2 - 0 f:2 - £

For notational convenience, we think of a point in £n, as a pair (z,Z). We obtain
the map f: €np — €4, by setting

(4.6) f(2,2) = (f(2), £.(2) 0 ).

We have called an element of &, ,,, a matricial tangent vector at w. There is a way
to view these as ordinary tangent vectors to £ ,. Indeed, 2« £g , and 2 — Eam
as the zero section. Let j be these inclusions.

ProPOSITION 4.1. There is a split exact sequence,
0 —TRETEG A0 — TR (M, tr)* — 0,
which identifies the matricial tangent bundle as the normal bundle to j(2) in Eq .
Proof. If U is a co-ordinate chart around w, we have
To(€an) = Tu(z~1(U)) = T,(U) x Hom(Mp, T.,(2)) =

2 Tw(U) ® Hom(My, T,,(2)) = T,,(2) ® Hom(Mjy, T,,(2))
This completes the proof. n

The map, f, : I'(Ce, 0 (5,2)) = I(Ce,, j(..2)) is obtained by

(4.7) A(@,V) = (fulv), f(2) o V).
Let ((2,.. .,zm),(Z}j, ..y Z1)), be a coordinate system in £p, and f : Egq — D
be holomorphic, with f(w,0) = 0. Write,
m - n m s
(4.8) f2)=) (a-w)f + 3, Yz, 57
1=1 ij=11=1
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ldentifying, (Ewn)1 as the fibre at w of Epn we see that Cgp, (w,0(0,V) <
€ Cey ) (w,0)(0, V) and using the distance-decreasing property, 4.2 of the Carathéo-
dory metric on £g n, we obtain

(4.9) 1£0(0, V)] € Cegnw,0)(0, V) € Cle, s 0(V) = Caw(V)-
Let us put Fy = [F}'], 1=1,...,m. Thus,
(4.10) [u}_jp, : vfl = 1£(0, V)| € Cow(V).2

In particulér, ifVi=ouX =1, ...,n;, (%1, - ,;;r;) € Tﬁ(bn,w) and X € (Mn)1,
then Cp (V) < 1. Observe that,

(4.11) [tr{(v1 Fy + -+ vmFm) - X[ €1, for X € (Mn)1,
that is,
(4~12) ”(UlFl R UmFm)“op < H(”lFl SRR 'UmFm)”tr <L

DEFINITION 4.2. Let ¢ : T€pn — T2 ® M, be the quotient map, that is,
q(v, V) = V. Define, the quotient norm of V as

Wil = inf{anm(“|o)(v, V):iq(v,V)=V}

THEOREM 4.1. The quotient norm and the injective tensor norm for a matricial
tangent vector are the same.

Proof. Let (w, W) be a fixed but arbitrary point in £, and f be in Hol, (2,D).
We obtain, a map (as in 4.7), £n s EN Epn j‘*(Mn)l,

(4.13) 7o f(z2,2) = #(f(2), fa(2) 0 Z) = fu(2) 0 Z.
For (v, V) in Ty, 0)€0,n, we have

(4.14) (7o (v, V) = fulw)(V)

Caw(V) = sup{||£u(V)llop : f € Holu(£2,D)} =
= sup{[[(7 o fa (v, V)llop : f € Holu($2,0)} <
< sup{||Fu(v, V)|lop : F € Holu(Enn, (Ma)1 } =
= SUp{JIFs (v, V)llop : P € Hola (a0, D} < inf G (V) = [Vl
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The last inequality is valid, since every map f : £n,n — D descends to a map F =
=(F,...,Fn): T'(Caw) = (Mn): in view of 4.12. On the other hand,

IV1lg = inf Ce,, , w,03(%: V) € Ce,, aw,0)(0, V) =

= sup{||£.(0, V|| : f € Holy(En.n,D)}, € Caw(V) (recall 4.9).
This completes the proof. o
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