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FUNCTIONS VANISHING MODULO SINGULAR
INNER FUNCTIONS

A. R.LUBIN

Let H* and H? denote the standard Hardy spaces of functions analytic in the
unit disc D that are bounded and have square summable power series coefficients
respectively. Let o be a positive Borel measure on the unit circle 7', which we iden-
tify with [0, 27], singular with respect to Lebesgue measure and let s = s, be the
associated singular inner function

1 [l 4z
S(Z) = exp {—Ef(fg——zdo’(g)] .

T

For a given s(z),S; = S will denote the restricted shift defined on (sH?)* by Sf =
= Pzf, where P denotes the orthogonal projection of H? onto (sH2)1. We will
assurne much of the basic theory of Hardy spaces and inner functions which can be
found for example in [3, 4, 13].

In this paper we are concerned with solutions ¢ of the system of equations
(%) o(2) = (2 — E)he(2) + s(2)ke(z) forallé ez

subject to the condition ({|hel|c + |[k¢]lco) < M < 00, 1. we require the bound M to
be uniform for £ € Z, where Z C T is some fixed set such that 6(Z) = ¢(T). We say
such a solution ¢ vanishes on Z modulo s(z). Clearly, any such ¢ must be bounded,
in fact ||¢}lcc < 2M, and any ¢ € sH™ is always a trivial solution. C. Foiag proved
[2] that if Z = T and w(t) = O(¢ log t~1), then every solution of () must be trivial;
here w denotes the modulus of continuity w,(t) = sup{ec(a,b): (b —a) < t}.
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In section 2, we extend the result of Foiag first to the case of an arbitrary Z of full
o-measure and then to inner functions corresponding to a larger class of measures,
which we refer to as almost almost smooth (a.a.s.) as explained below. We show that
these a.a.s. measures must give zero measure to every Carleson set C ¢ T.

In section 3, as our main result, we show that if & gives positive measure to some
Carleson set, then (*) does have non-trivial solutions. We interpret this in section 4
as a multiplicity condition and apply it to give an unusual approximation result.

It would be of interest to know whether the condition ¢(C) > 0 for some Carleson
set is also necessary for (*) to have non-trivial solutions, but we have been unable to
establish this.

Suppose now that ¢ is so smooth that w,(f) = O(t log ¢~1); this condition is
equivalent to the existence of constants C, N such that

ls(z)| 2 C(1 = |z|)V forall z€ D

where s is the inner function corresponding to & [15]. Let ¢ vanish on Z modulo s
where 0(Z) = o(T), so ¢(E) = 0(Z N E) for all E C T, and let d be the greatest
commoninner divisor of ¢ and s, i.e. ¢ = %d and s = pd with % and p having no
common divisor in H*. As in [2}, we infer from (x) that for all £ € Z, there exist
he(z) and ke(z) with (|lhef|co + [Heelloo) € M) such that

Y(2) = (2 — Ohe(2) +p(2)ke(z), €€ 2.
Since clearly |p(2)| 2 C(1 — |z|)¥, we have
¥V(2) = (2 = YV He(2) + pl2)Ke(2), €€ 2
with (|| Helloo + || K¢lloo) € M2 and for 2 = |z|¢ with £ € Z,
[ (@) < Ma((1 = 12N + Ip(2)]) € Ma(CHp2)] + 1p(2)]) = Mp(2)), ie.

PN (2)
p(2)

Since ¢V is also relatively prime to p and the singular measure corresponding to p(z)

<M forallz=|z[§, €€ 2, |2|< 1.

also has its full measure on Z, Lemma 2.2 below implies p(z) is constant and hence
% € sH>. We have thus proved the following generalization of Foiag’ theorem (2].

PROPOSITION 2.1. Ifw,(t) = O(t log t~1) and ¢ vanishes on Z modulo s, where
0(Z) = o(T), then ¢ is trivial, i.e. ¢ € sH®,
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LEMMA 2.2. Let h(2) = f(z)s(z)~! with f € H*® and s inner having associated
measure ¢ carried on some Zy C T. Suppose s relatively prime to f and there exists
M < oo such that for all € € Zy and |z| < 1, [M(|2|€)] € M1. Then s(z) is constant.

Proof. By the standard representation for functions in H*, which would yield

the result immediately if Z; = T, we have

h(z) = exp (/ g—:—t—id#(g)> ;

where du(8) = k(6)d8 + do1(8) — doo(8) with k € L=°(T) and oy and oz mutually
singular positive measures each singular with respect to Lebesgue measure. Hence,
we may assume o; is carried on Z; of Lebesgue measure 0, i.e. {Z;| = 0 and Z1NZ; =
p, 1=1,2,....

We suppose o; # 0. By a classical theorem of Fatou, it suffices to show p'(t) =
= +o0 for some t € Z; to contradict the boundedness hypothesis of the Lemma {4,
p.17]. Although this seems intuitively obvious, we require the followjng argument
which essentially appears in [13, Theorem. 8.10].

Let V C T be an open set with Z; C V and |V] < ¢, where € > 0 is arbitrary,
and let K be a compact subset of E, = {t € Z; : the lower derivative y'(t} < n}.
For each t € K, there exists an interval I; C V with ¢ € I; and u(l;) < n|l¢|. Taking
a finite subcover of {I;} such that each t € K is contained in at most two elements,
we have

H(K) < p (UL,) <Y on(l) <nd Ll <2n |U Iz;] < 2n|V] < 2ne.
J

Thus, u#(K) < 0, which by regularity implies p(E,) < 0 for all n. Since y = o1 on
Zy, we have y/(t) = 400 a.e. [51] on Z; and the lemma is proved. [ ]

DEFINITION 2.3. We say a positive singular measure o is almost almost smooth
(a.a.s.) if and only if there exists a sequence {c,} of positive singular measures such
that

(i) (on41 —on) =0 for all n,

(ii) wo, (t) = O log 1),

(iii) o(F) = lime,(E) for all Borel & C 7.

We note that the apparent redundancy of the nomenclature is motivated by the

terminology of [18, p. 42] in which measures with w(t) = O(t logt~?) are called almost
smooth.

By a standard continuity we now establish.
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THEOREM 2.4. Let o be almost almost smooth and s(z) be the corresponding
inner function. If p vanishes on Z modulo s, where 0(Z) = o(T), then © € sH™.

Proof. Let {on} be as in 2.3 with associated inner functions {s,}, and ¢ be a
solution of (*). For é € Z,

e(2) = (2 = )he(2) + s(2)ke(2) = (2 — Ehe(2) + sn(2)(5n () s(2)ke(2))-

Since 04(2) = 00(T) and ||5716]joc = 1, We have ¢ € 5, H* by Theorem 2.1. Since
& is the least common multiple of {s,}, it follows that ¢ € sH*, |

By a aimilar continuity argument, we can replace the boundedness condition in
(+) by a technical measurability condition as follows.

CoROLLARY 2.5. Let o be almost almost smooth, s(z) the corresponding inner
function, and o(Z) = o(T). Suppose ¢(z) = (2 — €)he(z) + s(z)ke(z) for all € € Z
where he, ke € H® for all £ € Z and there exists nj — oo such that E; = {£ € Z -
(llhelloo + llkelico) < mj} is Borel measurable for all j. Then ¢ € sH™.

Almost smooth measures have been relevant to the study of cyclic inner func-
tions in Bergman spaces and some related function-theoretic problems, ([5], [6], [7],
(12], {15), [17]). A characterization of cyclic inner functions by B. Korenblum and
J. Roberts uses the concept of a Carleson set.

DEFINITION 2.6. A subset F C T is called a Carleson set if and only if

(i) F is closed,

(ii) F has Lebesgue measure 9, i.e. |F| =0,

(iit) Z [Ii1log |I;]™ < oo where {I;} are the complementary arcs of F.
]

Korenblum and Roberts have shown that for H the standard Bergman space of
functions analytic in D that are square-integrable with respect to area measure, i.e.

H = {f : f analytic in D} A L*(dzdy),

an inner function s is cyclic, i.e. {p(2)s(2) : p a polynomial } is dense in H, if and
only if o, the measure of s, gives zero mass to every Carleson set ([7], [12], [17]).

Also, V. V. Kapustin has recently shown that the condition ¢(C) = 0 for every
Carleson set is necessary and sufficient for the restricted shift § associated with o to
be reflexive [19].

If o is almost almost amooth, it follows immediately from the definition that
o(C) = 0 for all C such that h(C) = 0, where h is the Hausdorff measure corre-
sponding to the O(tlogt~1) condition. Since it is well-known that h(C) = 0 for every
Catleson set C, we have
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COROLLARY 2.7. If o is almost almost smooth, then o(C) = 0 for every Carleson
set.

The converse of 2.7 is false. We give a counterexample and describe a.a.s. mea-
sures in terms of Hausdorff measure in [10].

Suppose ¢ is a positive singular Borel measure supported on a Carleson set
F C T. It is:well-known that the Carleson sets coincide with the null sets for the
classes A(®) = {f : f(*) € A}, where A denotes the disc algebra (H* N C(D)), and
further there exists an outer function ¢(z) such that F = {€ € T : p(")(¢) = 0, n > 0}
and for each n > 0, |@(€)| = O(p(€)"*) as € — F where p(£) is the distance from £ to
F [5or17).

For fixed £ € F, we set

he(2) = p(2)(z — ).
By the mean value theorem, [h¢(2)| = |¢/(w)| for some w € D, and hence hg € H*®
and [|A¢|loo < ||¢}|oo uniformly in £ € F'. Setting k¢(z) = 0, we have

ProProsITION 3.1. Suppose ¢ is supported on a Carleson set F' C T and s is the
corresponding inner function. There exists a non-trivial ¢ vanishing on F modulo

s(z).
For £ ¢ F,(S — ¢) has a bounded inverse given by (S — £)™! = a¢(S) where
aeta) = { GO = SCNOE =01, =7
()50, Sy

and a¢(S)f = Pagf. We note that a; € H* since s(z) has analytic continuation
across all§ € T\ F.

LEMMA 3.2. There exists M < oo such that |[pa¢|lcc < M for all§ € T\ F.

Proof. For § € T'\ F fixed, pae € H* and hence ||pagjoo = |lo(w)ae(w)]|co where
w denotes a point on T and the latter norm is in L®(T). Since [p(w){ = O(p(w)?), it
follows that ¢(w)s(w) € C}T) and p(w)s’'(w) extends to an element of C(T). Since
[s(€)] = 1, we have that for w # ¢ there exist wy,wy € T such that

lp(w)ag ()] < l(p(w)s(w) = e(€)s())w = &) +{(#(€) — p(W)w — )7 =

= () (wi)] + 19" (@2)] < [l(28) (@) lleo + [1¢ ()]0 -
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Since |@(€)as (€)] = |s'(€)| < ||¢||oo, the lemma follows. |

ProposITION 3.3. If o is supported on a Carleson set F, there exists a non-trivial
@ vanishing on T modulo 5(z).

Proof. For £ € F, take h; and k¢ as in 3.1; for £ € T\ F, let he = pag. Since

P = (S —&)ag(8)Py = P(z — €)ag(z)p(z),

we have

P(2) = (2 = E)he(2) + s(2)ke(2)
for some k¢ € H?. Since ¢ € H* and ||h¢llos < M, we have {||k¢][oo} are uniformly
bounded and the theorem follows. n

More generally, suppose o is a positive singular Borel measure on T' and there
exists a Carleson set F' with ¢(F) > 0. Then o = o) + o where 0 # o4 is supported
on F' and hence the corresponding inner functions satify s = 5;5,. By 3.3, there exists
©1 ¢ 53 H® such that

p1(2) = (2 — E)he(2) + 51(2)ke(2) forallé €T

with (|[helleo + ||kelloo) € M. Letting ¢ = s2¢;, we finally have

THEOREM 3.4. If o(F) > 0 for some Carleson set F C T, there exists ¢ ¢ (sH™)
such that ¢ vanishes on T modulo s(z).

COROLLARY 3.5. If o(F) > 0 for some Carleson set F C T there exists ¢ ¢ sH®
such that

P(2) = (2 — &) he n(2) + s(2)ke n(2) forall € €T,

where ([|h¢,nlleo + [1kg nlloo) < M.

The proof of the corollary is analogous to the theorem since ™€) =0on F
and [o(€)] = O(p(€)") for all n.



FUNCTIONS VANISHING MODULO SINGULAR INNER FUNCTIONS 29

Our applications are based on the heuristic interpretation of condition () as a
multiplicity condition on the zero set of s(z), or perhaps alternatively as a spectral
multiplicity condition on the associated restricted shift S. Note that if the inner
function s(z) is a Blaschke product with zero set Z, then

o(2) = (z — E)he(2) + 5(2)ke(2) forall{ € Z

has a non-trivial solution if and only if s has some multiple zero and the multiplicity of
each zero corresponds to the multiplicity of the corresponding generalized eigenspace.
Since the density points of the measure ¢ form the ”zero set” of the singular function
s(z), our result seems to say that the zeros of s are simple if and only if the measure &
is almost almost smooth. However, we clearly have s(z) = sn(2)", where s,, the inner
function corresponding to the measure —o, has the same zero set as s, so In another
sense the zero set of s always has infinite multiplicity. Our results below give two
other interpretations in which inner functions whose measures give mass to Carleson
sets have infinite multiplicity.
For an interval (a,b) C T and ¢ non-atomic, we denote

b
1 [ef+z
5(ap)(2) = exp —z—wf"eﬁ-:;da(a)

We have (s(a3)H?)* C (sH?)* is an invariant subspace for S*, where S is the re-
stricted shift corresponding to s = sp.

LEMMA 4.1. Let £ = ¢ € T and € > 0. There exists § > 0 such that if
a<é<band (b—a)<§é,

T P

Proof. We first consider the special case where ¢ = 1 and I = (0, §). By {1,8], S*
is unitarily equivalent to (M — K acting on L2(c) where

(Mc)(t) = e~ e(2),

27
(Xe)(@) = 2e'”e°(°")/e""(c”\)c(/\)da()\),
¢
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and L?(a|(o,n)) corresponds to (s0,0)H?*)*. For ¢ € L? supported on (0,6), i.e.
c(t) =0ae. ift > 6,

2 2
/ 7NN do(X)| do(t) <

4

2% 5
kel = [ 1(k0)@)Pdo() = [ 4270
0 0

&
oD [ o0, )Ie(IPAo(3) < Mo(0, )l
¢

2
and hence ”KIIﬂ(al(o o) € Ma(0,6), where M is a constant depending only on &.
Thus, when restricted to (se sy H2)*,

15" = ED s araye | < N =ED g0t oyl + 1K 0,00 €

< 6+ (Ma(0,8)%.

The general case now follows by the same reasoning since by [9], for any 6 € T, s* is
unitarily equivalent to (My — Ky) acting on £%(os) where

(Myc)(t) = e_’.(He)c(t)

2m
(Koe)(t) = 2e™40er005) [ o=e@00e(2)dry(3),
i

6(0,3) = o(8,8 + A),

and
Lg(a'gl(o’)\)) corresponds to (Sgp,642) H2)L.
We now assume that ¢ is a non-atomic measure such that a(F) > 0 for some

Carleson set F' C T, s is the associated inner function, and ¢(z) € H®\ sH® vanishes
on T modulo s(z) as in Theorem 3.4. Recall that @(8)f = Pof for f € (sH?)*.
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THEOREM 4.2. For any € > 0, there exists § > 0 such that ”go(S)“|(s(a H) “ <
<ecif(b—a) <é.

Proof. For any § € T, ¢(S) = (§ — £)he(S) and [l < llhelles < M. By
Lemma 4.2., take (b — a) < 6 and for any £ € (a,b)

|2

u()o(s)*l(s(a,b)HZ).L <€ H(S* “E)l(,(a,b)ﬂz)J.
so the theorem follows. [ ]

As a direct consequence of this theorem and the famous theorem of D. Sarason

[14], we have the following ” approximation” result.

COROLLARY 4.3. For any ¢ > 0, there exists & > 0 such that [+ s(g,046)H || <
< € for all § € T, where the norm is the coset norm in L™ [ H™.

If o is actually supported on a Carleson set, by partitioning T into | ) J; where I;
are small intervals whose end points are disjoint from F, we can decompose (sH?)*
into the non-orthogonal direct sum

st)J' Z(s;, H2

COROLLARY 4.4. With the above notation, for any € > 0, there exists § > 0,
such that if |I;| < é for all §,

< ¢ forallj,

AS) = SOy e i[4S

(5:,-:-:2 >

i.e. we can diagonalize p(S*) with diagonal entries all of arbitrarily small norm.

We also point out that all the above results can be dualized to (5 — £) and ¢(S)
either directly from [1] and [7] or by using the well-known duality between S, and S%,
where 5(2) = s(z) [3). Also, Lemma 4.1 clearly gives quantitative results concerning
6(e), which can be improved using the fact that (S) = (S — €)"he n(S) for all n.
It would be of interest to know if any non-trivial ¢ could satisfy the conditions of
Theorem 4.2. for an almost almost smooth measure. We now give a final multiplicity
interpretation which is internal to the Ahern-Clark-Kriete model theory.

DEFINITION 4.5. For g a non-atomic measure on T and ¢ € L*(u), we say
}in% c(A) = £if

']
1
im ——— | |o(A) = £]2 = 0.
al_l.ré‘w(o,a)/lc() F=0
o]
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Given f € (sH?)" and the measures {o; : § € T} as above, let ¢; € L?(04) be the
element corresponding to f under the unitary map V3 implementing the equivalence
between S and (Mp — Kj). Let

9= {f e (sH})* : for ae. O[c], hm cg(A) = £y exists }

and
do={f €V 4y =0aec 8c]}

Although it is very difficult to compute any ¢s, from another ¢g,, it follows from
[9] that the Szegd kernel (1 —3(w)s(2))(1 ~@z)~ € 9 for all w € ¥, and also Pz" € ¥
for all » > 0, so ¥ is dense in (s H?)L.

THEOREM 4.6. If 0(F) > 0 for some Carleson set, then ¥q is dense in (sH?)t.

Proof. We show that ¢(S5)*9 C ¥¢ which suffices since ¢ is relatively prime to s.
Let f € ¥ correspond to ¢y = ¢ for § € T with £ = e*¢. Then

é ')
J 168" = EnamIPaon) = [ 1165 - En(elg o) Pa0s () =
(¢} 0

']
= (108" = ED)(e] g s)II” < €(B)lle] g 4lI* = 6(5)f [e(M)1*dos(2).

Since f € ¥, the integral is O(c¢(0, 6)) and thus, since ¢(8) — 0, we have llm [(S‘
—€I)cs](X) = 0. By a similar argument, A(S)*9, C o for all h € H® and hence
he(S)* (8* — €I) = ¢(S*) maps ¥ into ¥q. u

It would also be of interest to know if ¥ is dense for almost almost smooth
measures. More particularily, is it ever the case that ¥ = {0}; if 9o = {0} , it
is not hard to show that the associated restricted shift is reflexive and that it has
a natural ”diagonalization” in terms of generalized eigenvalues and rigged Hilbert
spaces. Finally, we note that 4.6. translates to

COROLLARY 4.7.If ¢(F) > 0 for some Carleson set F,

{f € (sH*)* : }if(l)a|P(s(o,o+6)H=)Lf“)(”Pcs(a,oH)Hﬂ)-L1“)_1 =0forall§ € T}

is dense in (sH?)L.
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