FUNCTIONS VANISHING MODULO SINGULAR INNER FUNCTIONS

A. R. LUBIN

1.

Let H^{∞} and H^2 denote the standard Hardy spaces of functions analytic in the unit disc D that are bounded and have square summable power series coefficients respectively. Let σ be a positive Borel measure on the unit circle T, which we identify with $[0, 2\pi]$, singular with respect to Lebesgue measure and let $s = s_{\sigma}$ be the associated singular inner function

$$s(z) = \exp \left[-\frac{1}{2\pi} \int_{T} \frac{\mathrm{e}^{\mathrm{i}\theta} + z}{\mathrm{e}^{\mathrm{i}\theta} - z} \mathrm{d}\sigma(\theta) \right].$$

For a given s(z), $S_s = S$ will denote the restricted shift defined on $(sH^2)^{\perp}$ by Sf = Pzf, where P denotes the orthogonal projection of H^2 onto $(sH^2)^{\perp}$. We will assume much of the basic theory of Hardy spaces and inner functions which can be found for example in [3, 4, 13].

In this paper we are concerned with solutions φ of the system of equations

(*)
$$\varphi(z) = (z - \xi)h_{\xi}(z) + s(z)k_{\xi}(z) \quad \text{for all } \xi \in \mathbb{Z}$$

subject to the condition $(\|h_{\xi}\|_{\infty} + \|k_{\xi}\|_{\infty}) \leq M < \infty$, i.e. we require the bound M to be uniform for $\xi \in Z$, where $Z \subset T$ is some fixed set such that $\sigma(Z) = \sigma(T)$. We say such a solution φ vanishes on Z modulo s(z). Clearly, any such φ must be bounded, in fact $\|\varphi\|_{\infty} \leq 2M$, and any $\varphi \in sH^{\infty}$ is always a trivial solution. C. Foiaş proved [2] that if Z = T and $\omega(t) = O(t \log t^{-1})$, then every solution of (*) must be trivial; here ω denotes the modulus of continuity $\omega_{\sigma}(t) = \sup\{\sigma(a,b) : (b-a) \leq t\}$.

In section 2, we extend the result of Foiaş first to the case of an arbitrary Z of full σ -measure and then to inner functions corresponding to a larger class of measures, which we refer to as almost almost smooth (a.a.s.) as explained below. We show that these a.a.s. measures must give zero measure to every Carleson set $C \subset T$.

In section 3, as our main result, we show that if σ gives positive measure to some Carleson set, then (*) does have non-trivial solutions. We interpret this in section 4 as a multiplicity condition and apply it to give an unusual approximation result.

It would be of interest to know whether the condition $\sigma(C) > 0$ for some Carleson set is also necessary for (*) to have non-trivial solutions, but we have been unable to establish this.

2.

Suppose now that σ is so smooth that $\omega_{\sigma}(t) = O(t \log t^{-1})$; this condition is equivalent to the existence of constants C, N such that

$$|s(z)| \ge C(1-|z|)^N$$
 for all $z \in D$

where s is the inner function corresponding to σ [15]. Let φ vanish on Z modulo s where $\sigma(Z) = \sigma(T)$, so $\sigma(E) = \sigma(Z \cap E)$ for all $E \subset T$, and let d be the greatest commoninner divisor of φ and s, i.e. $\varphi = \psi d$ and s = pd with ψ and p having no common divisor in H^{∞} . As in [2], we infer from (*) that for all $\xi \in Z$, there exist $h_{\xi}(z)$ and $k_{\xi}(z)$ with $(\|h_{\xi}\|_{\infty} + \|k_{\xi}\|_{\infty}) \leq M_1$ such that

$$\psi(z) = (z - \xi)h_{\xi}(z) + p(z)k_{\xi}(z), \quad \xi \in Z.$$

Since clearly $|p(z)| \ge C(1-|z|)^N$, we have

$$\psi^{N}(z) = (z - \xi)^{N} H_{\xi}(z) + p(z) K_{\xi}(z), \quad \xi \in Z$$

with $(||H_{\xi}||_{\infty} + ||K_{\xi}||_{\infty}) \leq M_2$ and for $z = |z|\xi$ with $\xi \in Z_1$

$$|\psi^N(z)| \le M_2((1-|z|)^N + |p(z)|) \le M_2(C^{-1}|p(z)| + |p(z)|) = M|p(z)|$$
, i.e.

$$\left|\frac{\psi^N(z)}{p(z)}\right| \leqslant M$$
 for all $z = |z|\xi, \ \xi \in Z, \ |z| < 1$.

Since ψ^N is also relatively prime to p and the singular measure corresponding to p(z) also has its full measure on Z, Lemma 2.2 below implies p(z) is constant and hence $\varphi \in sH^{\infty}$. We have thus proved the following generalization of Foiaş' theorem [2].

PROPOSITION 2.1. If $\omega_{\sigma}(t) = O(t \log t^{-1})$ and φ vanishes on Z modulo s, where $\sigma(Z) = \sigma(T)$, then φ is trivial, i.e. $\varphi \in sH^{\infty}$.

LEMMA 2.2. Let $h(z) = f(z)s(z)^{-1}$ with $f \in H^{\infty}$ and s inner having associated measure σ_1 carried on some $Z_1 \subset T$. Suppose s relatively prime to f and there exists $M < \infty$ such that for all $\xi \in Z_1$ and |z| < 1, $|M(|z|\xi)| \leq M_1$. Then s(z) is constant.

Proof. By the standard representation for functions in H^{∞} , which would yield the result immediately if $Z_1 = T$, we have

$$h(z) = \exp \left(\int \frac{e^{i\theta} + z}{e^{i\theta} - z} d\mu(\theta) \right),$$

where $d\mu(\theta) = k(\theta)d\theta + d\sigma_1(\theta) - d\sigma_2(\theta)$ with $k \in L^{\infty}(T)$ and σ_1 and σ_2 mutually singular positive measures each singular with respect to Lebesgue measure. Hence, we may assume σ_i is carried on Z_i of Lebesgue measure 0, i.e. $|Z_i| = 0$ and $Z_1 \cap Z_2 = \varphi$, $i = 1, 2, \ldots$

We suppose $\sigma_1 \neq 0$. By a classical theorem of Fatou, it suffices to show $\mu'(t) = +\infty$ for some $t \in Z_1$ to contradict the boundedness hypothesis of the Lemma [4, p.17]. Although this seems intuitively obvious, we require the following argument which essentially appears in [13, Theorem. 8.10].

Let $V \subset T$ be an open set with $Z_1 \subset V$ and $|V| < \varepsilon$, where $\varepsilon > 0$ is arbitrary, and let K be a compact subset of $E_n = \{t \in Z_1 : \text{ the lower derivative } \underline{\mu}'(t) < n\}$. For each $t \in K$, there exists an interval $I_t \subset V$ with $t \in I_t$ and $\mu(I_t) \leqslant n|I_t|$. Taking a finite subcover of $\{I_t\}$ such that each $t \in K$ is contained in at most two elements, we have

$$\mu(K) \leqslant \mu\left(\bigcup_{j} I_{t_{j}}\right) \leqslant \sum \mu\left(I_{t_{j}}\right) \leqslant n \sum |I_{t_{j}}| \leqslant 2n \left|\bigcup I_{t_{j}}\right| \leqslant 2n|V| \leqslant 2n\varepsilon.$$

Thus, $\mu(K) \leq 0$, which by regularity implies $\mu(E_n) \leq 0$ for all n. Since $\mu = \sigma_1$ on Z_1 , we have $\mu'(t) = +\infty$ a.e. $[\sigma_1]$ on Z_1 and the lemma is proved.

DEFINITION 2.3. We say a positive singular measure σ is almost almost smooth (a.a.s.) if and only if there exists a sequence $\{\sigma_n\}$ of positive singular measures such that

- (i) $(\sigma_{n+1} \sigma_n) \geqslant 0$ for all n,
- (ii) $\omega_{\sigma_n}(t) = O(t \log t^{-1}),$
- (iii) $\sigma(E) = \lim \sigma_n(E)$ for all Borel $E \subset T$.

We note that the apparent redundancy of the nomenclature is motivated by the terminology of [18, p. 42] in which measures with $\omega(t) = O(t \log t^{-1})$ are called almost smooth.

By a standard continuity we now establish.

THEOREM 2.4. Let σ be almost almost smooth and s(z) be the corresponding inner function. If φ vanishes on Z modulo s, where $\sigma(Z) = \sigma(T)$, then $\varphi \in sH^{\infty}$.

Proof. Let $\{\sigma_n\}$ be as in 2.3 with associated inner functions $\{s_n\}$, and φ be a solution of (*). For $\xi \in \mathbb{Z}$,

$$\varphi(z) = (z - \xi)h_{\xi}(z) + s(z)k_{\xi}(z) = (z - \xi)h_{\xi}(z) + s_{n}(z)(s_{n}(z)^{-1}s(z)k_{\xi}(z)).$$

Since $\sigma_n(Z) = \sigma_n(T)$ and $||s_n^{-1}s||_{\infty} = 1$, we have $\varphi \in s_n H^{\infty}$ by Theorem 2.1. Since s is the least common multiple of $\{s_n\}$, it follows that $\varphi \in sH^{\infty}$.

By a similar continuity argument, we can replace the boundedness condition in (*) by a technical measurability condition as follows.

COROLLARY 2.5. Let σ be almost almost smooth, s(z) the corresponding inner function, and $\sigma(Z) = \sigma(T)$. Suppose $\varphi(z) = (z - \xi)h_{\xi}(z) + s(z)k_{\xi}(z)$ for all $\xi \in Z$ where $h_{\xi}, k_{\xi} \in H^{\infty}$ for all $\xi \in Z$ and there exists $n_{j} \to \infty$ such that $E_{j} = \{\xi \in Z : (\|h_{\xi}\|_{\infty} + \|k_{\xi}\|_{\infty}) \leq n_{j}\}$ is Borel measurable for all j. Then $\varphi \in sH^{\infty}$.

Almost smooth measures have been relevant to the study of cyclic inner functions in Bergman spaces and some related function-theoretic problems, ([5], [6], [7], [12], [15], [17]). A characterization of cyclic inner functions by B. Korenblum and J. Roberts uses the concept of a Carleson set.

DEFINITION 2.6. A subset $F \subset T$ is called a Carleson set if and only if

- (i) F is closed,
- (ii) F has Lebesgue measure 0, i.e. |F| = 0,
- (iii) $\sum_{j} |I_j| \log |I_j|^{-1} < \infty$ where $\{I_j\}$ are the complementary arcs of F.

Korenblum and Roberts have shown that for H the standard Bergman space of functions analytic in D that are square-integrable with respect to area measure, i.e.

$$H = \{f : f \text{ analytic in } D\} \cap L^2(\mathrm{d}x\mathrm{d}y),$$

an inner function s is cyclic, i.e. $\{p(z)s(z): p \text{ a polynomial }\}$ is dense in H, if and only if σ , the measure of s, gives zero mass to every Carleson set ([7], [12], [17]).

Also, V. V. Kapustin has recently shown that the condition $\sigma(C) = 0$ for every Carleson set is necessary and sufficient for the restricted shift S associated with σ to be reflexive [19].

If σ is almost almost smooth, it follows immediately from the definition that $\sigma(C) = 0$ for all C such that h(C) = 0, where h is the Hausdorff measure corresponding to the $O(t \log t^{-1})$ condition. Since it is well-known that h(C) = 0 for every Carleson set C, we have

COROLLARY 2.7. If σ is almost almost smooth, then $\sigma(C)=0$ for every Carleson set.

The converse of 2.7 is false. We give a counterexample and describe a.a.s. measures in terms of Hausdorff measure in [10].

3.

Suppose σ is a positive singular Borel measure supported on a Carleson set $F \subset T$. It is well-known that the Carleson sets coincide with the null sets for the classes $A^{(n)} = \{f : f^{(n)} \in A\}$, where A denotes the disc algebra $(H^{\infty} \cap C(\overline{D}))$, and further there exists an outer function $\varphi(z)$ such that $F = \{\xi \in T : \varphi^{(n)}(\xi) = 0, n \ge 0\}$ and for each $n \ge 0$, $|\varphi(\xi)| = O(\rho(\xi)^n)$ as $\xi \to F$ where $\rho(\xi)$ is the distance from ξ to F [5 or 17].

For fixed $\xi \in F$, we set

$$h_{\xi}(z) = \varphi(z)(z - \xi)^{-1}.$$

By the mean value theorem, $|h_{\xi}(z)| = |\varphi'(\omega)|$ for some $\omega \in \overline{D}$, and hence $h_{\xi} \in H^{\infty}$ and $||h_{\xi}||_{\infty} \leq ||\varphi'||_{\infty}$ uniformly in $\xi \in F$. Setting $k_{\xi}(z) \equiv 0$, we have

PROPOSITION 3.1. Suppose σ is supported on a Carleson set $F \subset T$ and s is the corresponding inner function. There exists a non-trivial φ vanishing on F modulo s(z).

For $\xi \notin F$, $(S - \xi)$ has a bounded inverse given by $(S - \xi)^{-1} = a_{\xi}(S)$ where

$$a_{\xi}(z) = \begin{cases} (s(\xi) - s(z))[s(\xi)(z - \xi)]^{-1}, & z \neq \xi \\ s'(\xi)s(\xi)^{-1}, & z = \xi \end{cases}$$

and $a_{\xi}(S)f = \operatorname{Pa}_{\xi}f$. We note that $a_{\xi} \in H^{\infty}$ since s(z) has analytic continuation across all $\xi \in T \setminus F$.

LEMMA 3.2. There exists $M < \infty$ such that $||\varphi a_{\xi}||_{\infty} \leq M$ for all $\xi \in T \setminus F$.

Proof. For $\xi \in T \setminus F$ fixed, $\varphi a_{\xi} \in H^{\infty}$ and hence $||\varphi a_{\xi}||_{\infty} = ||\varphi(\omega)a_{\xi}(\omega)||_{\infty}$ where ω denotes a point on T and the latter norm is in $L^{\infty}(T)$. Since $|\varphi(\omega)| = O(\rho(\omega)^2)$, it follows that $\varphi(\omega)s(\omega) \in C^1(T)$ and $\varphi(\omega)s'(\omega)$ extends to an element of C(T). Since $|s(\xi)| = 1$, we have that for $\omega \neq \xi$ there exist $\omega_1, \omega_2 \in T$ such that

$$\begin{aligned} |\varphi(\omega)a_{\xi}(\omega)| &\leq |(\varphi(\omega)s(\omega) - \varphi(\xi)s(\xi))(\omega - \xi)^{-1}| + |(\varphi(\xi) - \varphi(\omega))(\omega - \xi)^{-1}| = \\ &= |(\varphi s)'(\omega_1)| + |\varphi'(\omega_2)| \leq ||(\varphi s)'(\omega)||_{\infty} + ||\varphi'(\omega)||_{\infty}. \end{aligned}$$

Since $|\varphi(\xi)a_{\xi}(\xi)| = |\varphi s'(\xi)| \le ||\varphi s'||_{\infty}$, the lemma follows.

PROPOSITION 3.3. If σ is supported on a Carleson set F, there exists a non-trivial φ vanishing on T modulo s(z).

Proof. For $\xi \in F$, take h_{ξ} and k_{ξ} as in 3.1; for $\xi \in T \setminus F$, let $h_{\xi} = \varphi a_{\xi}$. Since

$$P\varphi = (S - \xi)a_{\xi}(S)P\varphi = P(z - \xi)a_{\xi}(z)\varphi(z),$$

we have

$$\varphi(z) = (z - \xi)h_{\xi}(z) + s(z)k_{\xi}(z)$$

for some $k_{\xi} \in H^2$. Since $\varphi \in H^{\infty}$ and $||h_{\xi}||_{\infty} \leq M$, we have $\{||k_{\xi}||_{\infty}\}$ are uniformly bounded and the theorem follows.

More generally, suppose σ is a positive singular Borel measure on T and there exists a Carleson set F with $\sigma(F) > 0$. Then $\sigma = \sigma_1 + \sigma_2$ where $0 \neq \sigma_1$ is supported on F and hence the corresponding inner functions satisfy $s = s_1 s_2$. By 3.3, there exists $\varphi_1 \notin s_1 H^{\infty}$ such that

$$arphi_1(z) = (z - \xi)h_\xi(z) + s_1(z)k_\xi(z) \quad \text{for all } \xi \in T$$

with $(||h_{\xi}||_{\infty} + ||k_{\xi}||_{\infty}) \leqslant M$. Letting $\varphi = s_2 \varphi_1$, we finally have

THEOREM 3.4. If $\sigma(F) > 0$ for some Carleson set $F \subset T$, there exists $\varphi \notin (sH^{\infty})$ such that φ vanishes on T modulo s(z).

COROLLARY 3.5. If $\sigma(F) > 0$ for some Carleson set $F \subset T$ there exists $\varphi \notin sH^{\infty}$ such that

$$\varphi(z) = (z - \xi)^n h_{\xi,n}(z) + s(z) k_{\xi,n}(z) \quad \text{for all } \xi \in T,$$

where $(\|h_{\xi,n}\|_{\infty} + \|k_{\xi,n}\|_{\infty}) \leq M_n$.

The proof of the corollary is analogous to the theorem since $\varphi^{(n)}(\xi) = 0$ on F and $|\varphi(\xi)| = O(\rho(\xi)^n)$ for all n.

4.

Our applications are based on the heuristic interpretation of condition (*) as a multiplicity condition on the zero set of s(z), or perhaps alternatively as a spectral multiplicity condition on the associated restricted shift S. Note that if the inner function s(z) is a Blaschke product with zero set Z, then

$$\varphi(z) = (z - \xi)h_{\xi}(z) + s(z)k_{\xi}(z)$$
 for all $\xi \in Z$

has a non-trivial solution if and only if s has some multiple zero and the multiplicity of each zero corresponds to the multiplicity of the corresponding generalized eigenspace. Since the density points of the measure σ form the "zero set" of the singular function s(z), our result seems to say that the zeros of s are simple if and only if the measure σ is almost almost smooth. However, we clearly have $s(z) = s_n(z)^n$, where s_n , the inner function corresponding to the measure $\frac{1}{n}\sigma$, has the same zero set as s, so in another sense the zero set of s always has infinite multiplicity. Our results below give two other interpretations in which inner functions whose measures give mass to Carleson sets have infinite multiplicity.

For an interval $(a, b) \subset T$ and σ non-atomic, we denote

$$s_{(a,b)}(z) = \exp \left[-\frac{1}{2\pi} \int_a^b \frac{\mathrm{e}^{\mathrm{i}\theta} + z}{\mathrm{e}^{\mathrm{i}\theta} - z} \mathrm{d}\sigma(\theta) \right].$$

We have $(s_{(a,b)}H^2)^{\perp} \subset (sH^2)^{\perp}$ is an invariant subspace for S^* , where S is the restricted shift corresponding to $s = s_T$.

LEMMA 4.1. Let $\xi = e^{i\theta_0} \in T$ and $\varepsilon > 0$. There exists $\delta > 0$ such that if $a < \xi < b$ and $(b-a) < \delta$,

$$\left\| (S^* - \overline{\xi}I) \right|_{(s_{(a,b)}H^2)^{\perp}} \right\| < \varepsilon.$$

Proof. We first consider the special case where $\xi = 1$ and $I = (0, \delta)$. By [1,8], S^* is unitarily equivalent to (M - K) acting on $L^2(\sigma)$ where

$$(Mc)(t) = e^{-it}c(t),$$

$$(\mathrm{Kc})(t) = 2\mathrm{e}^{-\mathrm{i}t}\mathrm{e}^{\sigma(0,t)}\int_{-\infty}^{2\pi}\mathrm{e}^{-\sigma(0,\lambda)}c(\lambda)\mathrm{d}\sigma(\lambda),$$

and $L^2(\sigma|_{(0,\lambda)})$ corresponds to $(s_{(0,\lambda)}H^2)^{\perp}$. For $c \in L^2$ supported on $(0,\delta)$, i.e. c(t) = 0 a.e. if $t > \delta$,

$$||\mathrm{Kc}||^2 = \int\limits_0^{2\pi} |(\mathrm{Kc})(t)|^2 \mathrm{d}\sigma(t) = \int\limits_0^{\delta} 4\mathrm{e}^{2\sigma(0,t)} \bigg| \int\limits_t^{2\pi} \mathrm{e}^{-\sigma(0,\lambda)} c(\lambda) \mathrm{d}\sigma(\lambda) \bigg|^2 \mathrm{d}\sigma(t) \leqslant$$

$$\leqslant 4\sigma(T)e^{2\sigma(T)}\int\limits_0^\delta\sigma(0,\lambda)|c(\lambda)|^2\mathrm{d}\sigma(\lambda)\leqslant M\sigma(0,\delta)||c||^2,$$

and hence $\|K|_{L^2(\sigma|_{(0,\delta)})}\|^2 \leq M\sigma(0,\delta)$, where M is a constant depending only on σ . Thus, when restricted to $(s_{(0,\delta)}H^2)^{\perp}$,

$$\left\|(S^*-\overline{\xi}I)\right|_{(s_{(0,\delta)}H^2)^{\perp}}\right\|\leqslant \|(M-\overline{\xi}I)_{L^2(\sigma|_{(0,\delta)})}\|+\|K|_{(0,\delta)}\|\leqslant$$

$$\leq \delta + (M\sigma(0,\delta))^{\frac{1}{2}}$$
.

The general case now follows by the same reasoning since by [9], for any $\theta \in T$, s^* is unitarily equivalent to $(M_{\theta} - K_{\theta})$ acting on $L^2(\sigma_{\theta})$ where

$$(M_{\theta}c)(t) = e^{-i(t+\theta)}c(t)$$

$$(\mathrm{K}_{\theta}\mathrm{c})(t) = 2\mathrm{e}^{-i(t+\theta)}\mathrm{e}^{\sigma(\theta,\theta+t)}\int\limits_{t}^{2\pi}\mathrm{e}^{-\sigma(\theta,\theta+\lambda)}c(\lambda)\mathrm{d}\sigma_{\theta}(\lambda),$$

$$\sigma_{\theta}(0,\lambda) = \sigma(\theta,\theta+\lambda),$$

and

$$L^2(\sigma_{\theta}|_{(0,\lambda)})$$
 corresponds to $(S_{(\theta,\theta+\lambda)}H^2)^{\perp}$.

We now assume that σ is a non-atomic measure such that $\sigma(F) > 0$ for some Carleson set $F \subset T$, s is the associated inner function, and $\varphi(z) \in H^{\infty} \setminus sH^{\infty}$ vanishes on T modulo s(z) as in Theorem 3.4. Recall that $\varphi(S)f = P\varphi f$ for $f \in (sH^2)^{\perp}$.

THEOREM 4.2. For any $\varepsilon > 0$, there exists $\delta > 0$ such that $\left\| \varphi(S)^* \right\|_{(S_{(a,b)}H^2)^{\perp}} < \varepsilon$ if $(b-a) < \delta$.

Proof. For any $\xi \in T$, $\varphi(S) = (S - \xi)h_{\xi}(S)$ and $||h_{\xi}(S)|| \leq ||h_{\xi}||_{\infty} \leq M$. By Lemma 4.2., take $(b - a) < \delta$ and for any $\xi \in (a, b)$

$$\left\|\varphi(S)^*\right|_{(s_{(a,b)}H^2)^{\perp}}\right\| \leqslant \left\|(S^* - \overline{\xi})\right|_{(s_{(a,b)}H^2)^{\perp}}\right\| \cdot M$$

so the theorem follows.

As a direct consequence of this theorem and the famous theorem of D. Sarason [14], we have the following "approximation" result.

COROLLARY 4.3. For any $\varepsilon > 0$, there exists $\delta > 0$ such that $||\varphi + s_{(\theta,\theta+\delta)}H^{\infty}|| < \varepsilon$ for all $\theta \in T$, where the norm is the coset norm in L^{∞}/H^{∞} .

If σ is actually supported on a Carleson set, by partitioning T into $\bigcup I_j$ where I_j are small intervals whose end points are disjoint from F, we can decompose $(sH^2)^{\perp}$ into the non-orthogonal direct sum

$$(sH^2)^{\perp} = \sum_j (s_{I_j}H^2)^{\perp}.$$

COROLLARY 4.4. With the above notation, for any $\varepsilon > 0$, there exists $\delta > 0$, such that if $|I_i| < \delta$ for all j,

$$\varphi(S)^* = \sum \varphi(S)^*_{(s_{I_jH^2})^{\perp}} \quad \text{with } \left\| \varphi(S)^* \right|_{(s_{I_iH^2})^{\perp}} \right\| < \varepsilon \quad \text{for all } j,$$

i.e. we can diagonalize $\varphi(S^*)$ with diagonal entries all of arbitrarily small norm.

We also point out that all the above results can be dualized to $(S - \xi)$ and $\varphi(S)$ either directly from [1] and [7] or by using the well-known duality between S_s and S_s^* , where $\tilde{s}(z) = \overline{s(\overline{z})}$ [3]. Also, Lemma 4.1 clearly gives quantitative results concerning $\delta(\varepsilon)$, which can be improved using the fact that $\varphi(S) = (S - \xi)^n h_{\xi,n}(S)$ for all n. It would be of interest to know if any non-trivial φ could satisfy the conditions of Theorem 4.2. for an almost almost smooth measure. We now give a final multiplicity interpretation which is internal to the Ahern-Clark-Kriete model theory.

Definition 4.5. For μ a non-atomic measure on T and $c \in L^2(\mu)$, we say $\lim_{\lambda \to 0} c(\lambda) = \ell$ if

$$\lim_{\delta \to 0^+} \frac{1}{\mu(0,\delta)} \int_0^{\delta} |c(\lambda) - \ell|^2 = 0.$$

Given $f \in (sH^2)^{\perp}$ and the measures $\{\sigma_{\theta} : \theta \in T\}$ as above, let $c_{\theta} \in L^2(\sigma_{\theta})$ be the element corresponding to f under the unitary map V_{θ} implementing the equivalence between S and $(M_{\theta} - K_{\theta})$. Let

$$\vartheta = \{ f \in (sH^2)^{\perp} : \text{ for a.e. } \theta[\sigma], \lim_{\lambda \to 0} c_{\theta}(\lambda) = \ell_{\theta} \text{ exists } \}$$

and

$$\vartheta_0 = \{ f \in \mathcal{V} : \ell_\theta = 0 \text{ a.e. } \theta[\sigma] \}$$

Although it is very difficult to compute any c_{θ_1} from another c_{θ_2} , it follows from [9] that the Szegö kernel $(1-\overline{s}(\omega)s(z))(1-\overline{\omega}z)^{-1} \in \vartheta$ for all $\omega \in \vartheta$, and also $Pz^n \in \vartheta$ for all $n \geq 0$, so ϑ is dense in $(sH^2)^{\perp}$.

THEOREM 4.6. If $\sigma(F) > 0$ for some Carleson set, then ϑ_0 is dense in $(sH^2)^{\perp}$.

Proof. We show that $\varphi(S)^*\vartheta \subset \vartheta_0$ which suffices since φ is relatively prime to s. Let $f \in \vartheta$ correspond to $c_\theta = c$ for $\theta \in T$ with $\overline{\xi} = e^{i\theta}$. Then

$$\int_{0}^{\delta} |[(S^* - \overline{\xi}I)c](\lambda)|^2 d\sigma_{\theta}(\lambda) = \int_{0}^{\delta} |[(S^* - \overline{\xi}I)(c|_{(0,\delta)})(\lambda)]|^2 d\sigma_{\theta}(\lambda) =$$

$$= ||(S^* - \overline{\xi}I)(c\big|_{(0,\delta)})||^2 \leqslant \varepsilon(\delta)||c\big|_{(0,\delta)}||^2 = \varepsilon(\delta) \int_0^\delta |c(\lambda)|^2 d\sigma_\theta(\lambda).$$

Since $f \in \vartheta$, the integral is $O(\sigma_{\theta}(0, \delta))$ and thus, since $\varepsilon(\delta) \to 0$, we have $\lim_{\lambda \to 0} [(S^* - -\overline{\xi}I)c_{\theta}](\lambda) = 0$. By a similar argument, $h(S)^*\vartheta_0 \subset \vartheta_0$ for all $h \in H^{\infty}$ and hence $h_{\xi}(S)^*(S^* - \overline{\xi}I) = \varphi(S^*)$ maps ϑ into ϑ_0 .

It would also be of interest to know if ϑ_0 is dense for almost almost smooth measures. More particularily, is it ever the case that $\vartheta_0=\{0\}$; if $\vartheta_0=\{0\}$, it is not hard to show that the associated restricted shift is reflexive and that it has a natural "diagonalization" in terms of generalized eigenvalues and rigged Hilbert spaces. Finally, we note that 4.6. translates to

Corollary 4.7. If $\sigma(F) > 0$ for some Carleson set F,

$$\left\{ f \in (sH^2)^{\perp} : \lim_{\delta \to 0} (||P_{(s(\theta, \theta + \delta)H^2)^{\perp}} f||) (||P_{cs(\theta, \theta + \delta)H^2)^{\perp}} l||)^{-1} = 0 \text{ for all } \theta \in T \right\}$$

is dense in $(sH^2)^{\perp}$.

REFERENCES

- AHERN, P. R.; CLARK, D. N., Functions orthogonal to invariant subspaces, Acta Math., 124(1970), 191-204.
- FOIAS, C., On the scalar part of a decomposable operator, Rev. Roumanie Math. Pures Appl., 17(1972), 1181-1198.
- 3. FUHRMANN, P., Linear Systems and Operators in Hilbert Space, Mc-Graw Hill, 1981.
- 4. KOOSIS, P., Introduction to Hp Spaces, Cambridge University Press, 1980.
- 5. KORENBLUM, B., Functions holomorphic in the disc and smooth in its closure, Soviet Math. Dokl., 12(1971), 1312-1315.
- 6. KORENBLUM, B., A Beurling-type theorem, Acta Math., 138(1977), 265-293.
- KORENBLUM, B., Cyclic elements in some spaces of analytic functions, Bull. Amer. Math. Soc., 5(1981), 317-318.
- KRIETE, T. L., A generalized Paley-Wiener theorem, J. Math. Anal. Appl., 36(1971), 529-555.
- LUBIN, A. R., Isometries of *-invariant subspaces, Trans. Amer. Math. Soc., 190(1974), 405-415.
- 10. LUBIN, A. R., Almost almost smooth measures (to appear).
- 11. RADJAVI, H.; ROSENTHAL P., Invariant Subspaces, Springer-Verlag, 1973.
- 12. ROBERTS, J., Cyclic inner functions in the Bergman spaces and weak outer function in H^p , 0 , Ilinois J. Math., 29(1985), 25-38.
- 13. RUDIN, W., Real and Complex Analysis, Mc-Graw Hill, 1974.
- 14. SARASON, D., Generalized interpolation in H^{∞} , Trans. Amer. Math. Soc., 127(1967), 179-203.
- 15. SHAPIRO, H. S.. Weakly invertible elements in certain function spaces and generations of ℓ^1 , Michigan Math. J., 11(1964), 161-165.
- SHAPIRO, H. S., Some remarks on weighted polynomial approximation by holomorphic functions, Math. USSR - Sb., 2(1967), 285-294.
- 17. SHAPIRO, J., Cyclic inner functions in Bergman spaces, Unpublished seminar notes.
- 18. ZYGMUND, A., Trigonometric Series, Cambridge University Press, 1959.
- KAPUSTIN, V. V., Reflexivity criterion for restricted shift operators, LOMI, preprint E-2-91.

A. R. LUBIN

Department of Mathematics,
Illinois Institute of Technology,
Chicago, IL 60616,
U.S.A.

Received September 27, 1991; revised January 29, 1993.