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WEAK CONVERGENCE IN NON-COMMUTATIVE
SYMMETRIC SPACES

V. I. CHILIN and F. A. SUKOCHEV

1. INTRODUCTION

Let E be a separable symmetric sequece space, let Cg be the norm ideal of com-
pact operators associated with E, i.e. Cg is the Banach space of all compact operators
z in I3 such that s(z) € E, where s(z) = (s4(z)) is the sequence of s-numbers of z.
J. Arazy showed in (1] that if z,, z € Cg, then ||z, — 2||c, — 0 if and only if 2, — 2
weakly and {|s(z,) — s(z)||z — 0.

Let M be a von Neumann algebra, let u be a faithful normal semifinite trace on
M. The purpose of this paper is to obtain the same result for the symmetric space
E(M, it) associated with a separable symmetric space E of measurable functions on
[0,00). E(M, pu) is the Banach space of all y-measurable operators z affiliated with
M such that ps(z) € E, where py(z) is the rearrangement (generalized s-numbers) of
z, with the norm (||| gear,uy = || (2)l| 2.

Non-commutative symmetric spaces of y-measurable operators associated with
a von Neumann algebra, which differed from a factor of type I, were considered
for the first time by V. L. Ovchinnikov [10, 11]. Some properties of these spaces
were examined in [3, 4, 8, 14, 15, 18, 19]. In the case of I,~factor the class of non-
commutative symmetric spaces coincides with the class of norm ideals of compact
operators. The most important examples of non-commutative symmetric spaces are
non-commutative Ly-spaces, Orlicz, Lorentz and Marcinkiewicz spaces.

The main rezult of this paper is the following.

THEOREM. Let E be a separable symmetric space of measurable functions on
[0,00), zn, 2 € E(M,u). Then ||z, — zllgm,u) — 0 if and only if ., — = weakly
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and ||pi(zn) — pe(2)jle — 0.

This paper consists of six paragraphs. In Section 1, the necessary informa-
tion about p-measurable operators is cited. In particular, some properties of re-
arrangements of such operators are established. In Section 2, symmetric spaces of
p-measurable operators are introduced and the construction of such spaces with the
help of functional spaces is defined. Besides, the class of regular non-commutative
symmetric spaces is distinguished, and some properties of these spaces are established.
In Section 3, some useful criteria for describing convergent sequences in regular non-
commutative symmetric spaces using convergence in measure are obtained. In Section
4, the main theorem of this paper is proved for non-commutative Lorentz spaces and
then, in Section 5, it is established for any non-commutative symmetric space asso-
ciated with separable symmetric space of measurable functions on [0, 00). In the last
paragraph, the variant of J. Arazy’s theorem for norm ideals Cg of compact operators,
acting in an arbitrary (not necessarily separable) Hilbert space is obtained making
use of the main theorem.

We use the terminology and notation of the theory of von Neumann algebras
from [16], the theory of non-commutative integration from [9, 4] and the theory of
symmetric spaces from [10, 11, 19, 7].

1. PRELIMINARIES

Let M be a semifinite von Neumann algebra acting in a Hilbert space H, let iz be
a faithful normal semifinite trace on M, let P(M) be the lattice of all projections in
M. A densely-defined closed operator z, affiliated with M, is called u-measurable [9],
if for each € > 0 there exists p € P(M) such that p(H) C D(z) and u(pt) < €, where
p* =1-p, 1 is the unit in M. The set K(M,u) of all y-measurable operators is a
*-algebra with respect to the strong sum, the strong product, and the adjoint opera-
tion [9]. For any subset E C K(M, ) we shall denote by E), (respectively by E.) the
set of all self-adjoint (respectively positive self-adjoint) elements from E. We shall
denote by ” < “ the partial order in s (M, i) generated by the proper cone K4 (M, u).
The rearrangement yu,(z) of an operator z € K(M, p) is the function defined by

#i(z) = inf{|jzpllar : p € P(M), p(p™) <1}, 20,

where || - [|ar is the C*-norm on M. The function ¢ — p;(z) from (0, 00) to [0, o0)
is non-incréasing, continuous from the right and 1:ilrgut(x) = |lz|jas forz € M. It

is known (see for example [4]), that u,(z) = inf{s > 0 : u(|z] > s) < t} where
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{|z| > s} is the spectral projection of |z| = (z*a:)‘:li corresponding to the interval
(5,00). In the commutative case, when M = Loo(22, Z, p) and u(f) = /fd,u,

where (£2, Z, ) is a localizable measure space, the algebra K(M, p) coincid; with
the algebra of all measurable complex functions f on (2, X, ) which are bounded
everywhere, excepting a set of finite measure. In addition, the rearrangement pe(f)
coincides with the non-increasing rearrangement f of function f. The detailed account
of many properties of the rearrangements may be found in [4]. We cite below two
useful additional properties of rearrangements which will be necessary in the sequel.

PROPOSITION 1.1. If M is non-atomic von Neumann algebra, z, y € K(M, ),
then

t t
/ pr(zy)dr / pr(z)pr(y)dr
0 0
for allt > 0.

1
Proof. 1f / ur(z)pr (y)dr = 00, then the statement of the proposition is ob-
0

t
vious. Let /p,(x)p,(y)d'r < 00, p € K(M), u(p) < t and let zy = ulxy| be the

polar decomoposition of zy. Since |z*up| € K(pMp, 1), then the function p(z*up) is
identically equal to zero outside the interval (0, u(p)), i.e. pr(z*up) = pir (z*up)x(0,t)
where x(o,r) is the characteristic function of the interval (0,t). Therefore, r(putz) =
= pr(pu*z)X(0,¢) and since ||pu*||sr < 1, we have

oo ¢ t
/ pr (pu” ) pr (y)dr = / pr (pu” ) pr (y)dr < f pr ()7 (y)dr < 0.
0 0 0
By Theorem 3.3 [18] we have
[=o] 1
u(plzyl) < / pr(pu™ ), (y)dT < / pir (z)pr (w)d.
0 0
It follows from ([4], Lemma 4.1) that if M has no atoms then

/yf(a:)dr = sup{u(p|z|p) : p € P(M), u(p) <t}
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for all z € K(M, p), t > 0. Therefore,

[ mtz)ir = suplutolents) - p € POM), ) <1) < [ -
0 0

PROPOSITION 1.2. Let z € Ka(M, p), y € K+ (M, p), and let —y < z < y. Then
t

t

/y,(z)df £ /pf(y)d'r for all t > 0.

0 0
H

Proof. If / br(y)dr = oo for some ¢ >, 0 then, since u.(y) is non-increasing,
0

H
/ Kr(y)dT = oo for all £ > 0, and the statement of the proposition is evident in
0

t
this case. So we assume, that //.t,-(y)d'i‘ < ooforallt > 0. Since -y <z <y,
0

1 i

¢
then 0 < 2 + y £ 2y and therefore [4], /,uT(a:)dr £ ]pq- (z+ y)dr + /p.t(y)dr <
0 0 0

1
< 3/y1(y)dr < oo for all ¢ > 0. Let e(z4), e(z.) be the support projections of
0

positive z4 and negative x_ parts of = respectively. Denote by {z}’ the commutant
of the element z in K(M, z). Since a projection p € {z}' commutes also with e(z.)
and e(z_), then q = pe(zy) € P(M), r = pe(z_} € P(M). As —y < z < y, we have

#(gz) = p(gzq) < payg) = p(gy), and analogously —u(rz) < u(ry).
Hence

(1) u(plz|) = plgz) — p(re) < u((a +7)y) < wlpy).

It follows from the proof of Lemma 4.1. [4] that if M is a non-atomic von Neumann
algebra then

1

/ ur(@)dr = sup{a(ple)) : p € P(M) 1 {2}, ulp) < 1).
0

From this and from (1) the statement of proposition follows immediately for
a non-atomic algebra M. Let now M be not a non-atomic algebra. Consider the

1
commutative W*-algebra Lo, (0,1) with the trace v(f) = /fdm, where m is the
0
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Lebesgue measure on [0,1]. Suppose that N acts in F = Ly(0,1). Let A = M®N

be the tensor product of von Neumann algebras M and N, let A = p ® v be the

tensor product of traces p and ». It is clear that the algebra A has no atoms. Let

a € K(M, i) and D be a linear subspace in H&F generated by all vectors of the form
n N

£®n, £ € D(a), n€ F. For each { = z&@m €D weput (a®1) ({) = Za{; ®n;.

1=l

The linear operator @ @ 1 with the (‘iz;nain of definition D is a preclosed operator
and its closure a®1 belongs to L£(A, M) [13], in particular &1, y®@1 € K(4,}). In
addition, —~y®@1 £ 2@ 1 < y®1 and u(z) = M\ (2@1) for all ¢ > 0, where A (2®1) is
the rearrangement of operator z®1 calculated with respect to the trace A. Therefore,
the required inequality follows from the first part of the proof.

For each z € K(M, u) we put poo(2) = 113.%10 #:(z). The set Ko(M,p) = {z €
€ K(M,p) : poo(x) = 0} is a #-subalgebra in K{M,u) and it coincides with the
closure in the measure topology of the two-sided ideal of elementary operators in M
(i.e. z € M such that p(I(z)) < oo, where I(z) is the left support of z). The measure
topology 7 is determined by fundamental system {U(e, ) : €, § > 0} of neighborhoods
of zero [9] where

U(e,6) = {2 € K(M, ) : [epllnr < &, u(p") < 6 for some p € PO,

Note that (K(M, pu), ) is a complete topological *-algebra, moreover, M is dense in
K(M, 1) [9]. We shall denote by z, % z the convergence of the sequence {z,} to z in
measure topology generated by the trace p.

Denote by (L1 (M, ), || - ||zy(s1,u)) the Banach space of all u-integrable operators
from K(M, p). The spaces (Li(M,p) O M, || - ||n) and (L1(M, g) + M, ]| - ||+), where
1

llzlln = max{||l2|{z,(r,u) lzllne}s 2]+ = /p.t(.r)dt, are Banach spaces. Besides, z €

0
€ Li(M,p) N M (respectively € Li(M, x) + M) if and only if u.(z) € L1(0,00) N
Loo(0,00) (respectively py(z) € L1(0,00) + L(0,00)), where L;(0,00) is the space
of all integrable and L (0,00) is the space of all bounded measurable functions on

((0,00), m), where m is Lebesgue measure on (0, co).
1 t

Let z,y € K(M, 11). The notation z < y means /p, (z)dr < /p,(y)d‘r for all

0 0
1>0. Ifa,ye€ Li(M,p)+ M then p(z) = pi(y) forallt > 0if and only if z < y
and y < z. It is clear that z < y is equivalent to u(z) < pe(y). It was established in
(3] that pe(2) — pe(y) < pi(z — y) for any z,y € K(M, ).
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2. SYMMETRIC SPACES ON A VON NEUMANN ALGEBRA.

A linear subspace E in K(M, u) with a Banach norm || - || is called a symmetric
space on (M, p) if it follows from z € E, y € K(M, u) and g (y) € pu(z) forallt > 0
that y € £ and ||y||lz < ||z||e- A norm || - ||z on E is called a symmetric norm, if it
follows from z,y € E, y < z that ||y||z < ||z]|z. All the noncommutative L,-spaces,
Orlicz, Lorentz and Marcinkiewich spaces are symmetric spaces with fully symmetric
norms. Any symmetric spaces E on (M, y) is continuously embedded into (K(M, u), 7)
(3, 11), i.e. from &, 2 € E, ||zn — 2||z — 0 it follows that ¢, 2> z. Besides, for any
r € E, a € M we have 2%, az € E and ||z||g = ||2*]|&, llex|le < |lo]|mllzlle. If
M is a non-atomic von Neumann algebra, then for £ the following embeddings are
continuous [10, 11].

(L1(M, ) A M, |- |ln) C (B, |- lle) C (Lo(M, 1) + M, || - [l4)-

In the comrnutative case when M = Lo (2, X, ¢) and u(f) = /fd/,a, the

a
symmetric space E on (M, p) and its self-adjoint part E, are symmetric spaces

of complex and real mesurable function on (2, I, u) respectively. In particular, if
M = £y = Loo(N, Z, ), where N is the set of all natural numbers, £ is the o-algebra
of all subsets in N, p(n) = 1, n = 1,2,..., then the notion of symmetric space on
(£, ) coicides with the notion of symmetric spaces of complex sequences.

The norm || - ||g on a symmetric space E is called order continuous if for any
sequence {z,} in E, decreasing to zero we have ||z,||g — O when n — oco. A

symmetric space with order continuous norm is called a regular space.

ProrosiTiON 2.1. If (E,|| - ||g) Is a regular symmetric space on (M, ), then
E CKo(M,p).

Proof. It is enough to consider the case, when p(1) = 0o. If pio(z) > 0 for some
z € E, then 1 € E. Choosing a sequence of projections p, | 0 such that u(p,) = oo,
we get ||pal|lz = |[p1||e for all n which contradicts with regularity of E. [ |

Consider the half-interval [0,e), @ = p(1) with the Lebesgue measure m. For
a symmetric space E on (M, p) denote by E(0, ) the set of all real measurable
functions f on [0, &) for which there exists z; € E such that p(z;) = f(t), t > 0.
Put || fllz(o,e) = llzs |-

PROPOSITION 2.2. Let M be a non-atomic von Neumann algebra. Then

(B0, a),|| - |lE(o,e)) is & symmetric function space. Moreover, if E is regular, then
E(0, o) is regular too.
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The proof uses the folowing two lemmas.

LEMMA 2.1. Let M be a non-atomic von Neumann algebra, z € K4 (M, p), p =
= {& > powo(z)}, N = pMp. Then there exists in N a non-atomic abelian von
Neumannn subalgebra U containing all the projections {& > A}, A > pio(%), and the
restriction of p onto U is o-finite (i.e. p = suppn, pn € PU), p(pn) < o0, n =
=1,2,...).

Proof. Since p = sup{{z > A}, A > po(2)} and p({z > A}) < c0 if X >
> poo(Z), We may take as I any maximal abelian »-subalgebra in N, containing all
the projections {z > A}, A > peo(z). [ ]

We shall identify &/ with the x-algebra Lo (2, X, p), where (2, Z, p) is a mea-
sure space with a complete non-atomic o-finite measure. The space L1(92, X, p) +
+Loo (2, T, p) we shall write in the form Ly(§2) + Loo(£2). Let £ € L1(£2) + Loo(£2)
and Ei(z) = {w € 2 : |z(w)] > £(00)}, Ea2(z) = {w € 2 : [z(w)] = £(c0)}. Put
E(z) = Ei(z) if p(E1(z)) = oo and E(z) = E;(z) U Eq(z) if u(Ei(z)) < oo. Tt is
known ([2], p.49), that in case p(§2) < oo, for every & € L1(f2) there exists a measure
preserving transformation ¢ from 2 onto [0, 2(£2)] such that [z(w)| = #(é(w)), w € 2.

Using this result one can easily establish the following:

LEMMA 2.2. If u(2) = oo, then for any £ € L1(2) + Lo (§2) with pu(E(z)) = o0
there exists a measure preserving transformation ¢ from E(z) onto [0, o), for which
jz(w)| = Z(¢(w)) for all w € E(z).

Pass now to the proof of Proposition 2.2.

Let U be the commutative von Neumannn algebra from Lemma 2.1., constructed
for z € E such that z > poo(z) # 0 and p(E(z)) = «. Identify the algebra U
with Lo (£2, X, ) and consider the measure-preserving map ¢ of E(z) = 2 onto
[0,) (see Lemma 2.2.). For every f € E(0,a) put zy = f(é(w)), w € 2. Then
27 € L1(2) + Loo(2) C K(M, p) and py(z;) = F(2); whence z; € E. It is clear that
Zpr4g = Py + z, for all functions f,g € E and all numbers 8. Hence E(0,a) is a
subspace of L;(0,a) + Lo (0, @).

It is similarly established that || - {| z(0,a) is the norm on E(0, @) and in addition,
if f € E(0,a), ¢ € L1(0,@) + Loo(0,a), §(t) < f(t), t > 0, then g € E(0,) and
llglleco,ey < IIfllE(0,@)- Let {fn} be an increasing Cauchy sequence of non-negative
functions from (E£(0, @), || -1||z(c,a)). Then f, converges in the measure topology to
the measurable function f = sup f, (see {6], p-139), and therefore f, — f almost
everywhere ([4], p.93). Since {z;,} is a Cauchy sequence in (E,|| - ||g), there exists
o € E such that ||zf, —2||g — 0 asn — oco. Hence 2, = 2, converges to z in measure
[11], and therefore ps(z,) — pi(z) almost everywhere (see [4], Lemma 3.4). Using
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the equality p:(2zn) = fa, n=1,2,..., we obtain that s () = F almost everywhere.
This means that f € E(0,a), and therefore || - || g(0,q) is the Banach norm (see [6], p.
378). Thus E(0, «) is a symmetric functional space on (0, ).

Suppose now that E is regular, f, € E(0, ) and f, | 0. Using Proposition 2.1
we obtain that the sequence f, converges to zero in measure, and so f, — 0 almost
everywhere. The sequence {2y, } decreases to some element z € E, and since the
norm || - || is order continuous, ||z;, — ]|z — 0. Repeating the previous arguments,
we obtain, that z = 0, i.e. ||full(0,0) = ll21.]l2 — 0 as 7 — 0. |

Let (F,[|-|ir) be a symmetric functional space on (0, @). Denote by F(M, ) the
set of all z € K(M, p), for which p(z) € F. Put ||z|[rear,u) = {|pe(2)l|F. It is clear
that if M is a non-atomic von Neumann algebra and F = E(0, @), then F(M,p) = E
and [z]|g = [|2{|Fear, ) for all z € E.

ProrosiTioN 2.3. (cf [3], Theorems 4.2 and 4.5). Let (F,[] ||r) be a symmetric
functional space on [0,«) with a symmetric norm. Then (F(M,p), |- ||r,u) is a
symmetric space on (M, p) with a symmetric norm. In addition, if F is regular, then
F(M, p) is also regular.

Proof. Since || - [|p is a symmetric norm we get using the properties of rear-
' rangements that I'(M, u) is a subspace in K(M,p) and || - ||r(ar,x) is a symmetric
norm on F(M, p). Thus, it is necessary to show only that the norm || - || eas,uy is
Banach. Let {z,} be an increasing Cauchy sequence from Fy(M,u). Then {z,}
is a Cauchy sequence in the measure topology [3, 11], and since K(M, ) is com-
plete in this topology, there exists ¢ € K(M,yu) such that z, T z, z,->z and
so pi(zn) — pu(x) almost everywhere on [0,a)¢ On the other hand, pi(z,) —
—pi(zr) < pe(zn — zi) [3]. Hence ee(zn) — paze)l|lF < izn — zi||p(ar,p), i-e. the
sequence {j;(2n)} is Cauchy in F, and so j;{z,) converges in F to the function
f(t) = sup pa(=,). Thus f(t) = yy(x) almost everywhere, whence z € F(M, ) and
s0 there 2>:ists Sup n, = z in Fj(M, ). Repeating the proof of Theorem 2 from ([6],
p. 378) we obtai,?n that Fy(M, p) is complete, and since |[flr(ar, 0y = l|12* ||p(az,4) for
all £ € F(M, p), the space F(M, u) is complete too.

Suppose now that the space F' is regular. Let z, € F(M,u) and z, | 0. For
arbitrary ¢ > 0 put ¢ = {z; > ¢}, p = 1 —¢. It is clear that {|pzap|ly < € for
all n. Since 21 € Ko(M, p), then p(g) < oo and so gzng-50. Hence p,(¢Tng) — 0
almost everywhere. Using the inequality , < 2{(pzsp + g2ag) and properties of the
rearrangements we get ‘

He(2n) < 2ue(p2np + 9Tnq) < 2(pes2(P2np) + p1272(a2na)) < 26 + 2pse/2(92n0).
Then we have py(2,) | 0 and so ||zallp(ar,uy = ll1e(zna)|lr — 0. [ ]
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REMARK 2.1. If, under the hypothesis of Proposition 2.3, a von Neumann algebra
is non-atomic, then it follows from the proof of Proposition 2.2 that F(M, p)(0,a) =
=F.

REMARK 2.2. If (F,|| - ||F) is a separable symmetric functional space on [0, @),
then F is regular and its norm || - ||F is symmetric (see [7], p. 142). By virtue of
Proposition 2.3 the space F(M, p) is a symmetric space with order continuous norm.

Let M be a non-atomic von Neumann algebra, let F be a symmetric space on
(M, ). We shall denote by ¢g(¢) the fundamental function of £ [10, 11}, which is
defined by ¢g(t) = ||pl|s, where p € P(M), u(p) = t. It is evident that ¢p(t) =
= ¢500,0(t)-

PrOPOSITION 2.4. ( cf. [7], Theorem 4.8, p. 170). A symmetric space E on a
continuous von Neumann algebra is regular if and only if the fundamental function
#£(t) is non-atomic at zero and Li(M, u) N M Is dense in (E,|| - ||&).

Proof. Obviously, continuity of ¢g(t) at zero follows from regularity of E. For
every z € E and ¢ > s > oo (2) the operator |2[{s < || < t} belongs to Ly (M, u)NM,
where {s < |z| < ¢} is the spectral projection of |z|, corresponding to the interval (s,t).
So, if E is regular, the subspace Li(M,u) N M is dense in E. Conversely, let ¢g(t)
be continuous at zero and let Ly (M, ) N M be dense in £. Denote by F the closure
of (L1(0,@) N Las(0,@))n in (E(D,a),|| - ||5@,e))- Since the fundamental function
$E(t) = ¢B0,0)(t) = ¢r(t) is continuous at zero, then (F,[| - [|g(o,q)) is a regular
symmetric functional space on [0,¢) ([7], p. 140). By Remark 2.2, G = F(M,u)
is a regular symmetric space on (M, u). In addition, Li(M,u) "M C G C E,
llz|le = ||z||e for all z € G. Since Li(M, )N M is dense in E, wehave G=FE. M

COROLLARY 2.1. Let E be a symmetric space on a non-atomic von Neumann
algebra (M, 1), let $£(t) be continuous at zero, let Eg be the closure of Li(M, u)N M
in E and let F be the closure of (L1(0, )N L(0, @))s in E(0,&). Then (Ey,||-||r) is
a regular symmetric space on (M, p) and Ey = F(M, g).

COROLLARY 2.2. Let E be a symmetric space on a non-atomic algebra (M, u)
with u(1) < oo and let E # M. Then F is regular if and only if M is dense in E.

Proof. Since E # M and pu(1) < oo, there exist z € E; and a sequence {pn} of

non-zero projections from M such that z > zp, = pnz 2 np, £ 0, n=1,2,..., and
p(pn) — 0. As |lpn||le € nY|z||g — O, then ¢g(¢) is continuous at zero. Thus, the
statement of Corollary 2.2 follows directly from Proposition 2.4. . |

One more useful property of regular symmetric spaces now follows.
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ProrosiTioN 2.5. Let (E,||-{|g) be a regular symmetric space on a non-atomic
von Neumann algebra (M, ), let pn € P(M), pn | 0. Then ||zps|lg — 0 as n — 0.

We shall use in the proof of this proposition the following lemma.

LemMMmA 2.3. If E is a regular symmetric space on a non-atomic von Neumann
algebra (M, p), z,y € K(M, ) and z°z,y’y € E, then z*y € E and |jz"yllp <
1/2
< Nl ally ol

Proof. We may assume that ||z*z||g = ||y*y|le = 1. By Proposition 1.2. we have

pe(zy) < pe(z")pe(y) = pe()pe(y) < 271 (=" 2) + pe(y"y)-

The space (E(0, @), [|||5(0,«)) is regular (see Propostion 2.2), so it is an interpo-
lation space between L;(0,a) and Lo (0, @) with the interpolation constant one [7].
Therefore the function p(z*y) belongs to £(0, «) and

(2" WllE0,0) € 27 Il (2* 2l 200,00 + N (¥ M B0,0)) = 1-
Thus, z*y € E and |jz*yl|z < 1.

Proof of Proposition 2.5. It is sufficient to show, that ||jzps||z — 0 for every
z € Ep. Put yo = paz/2. We have yoy}, = pn2ps € B, n = 1,2,.... Since
pe(vndl) = pe(¥ya) [18], we have z'/2pz/? = 4y, € E. Since 2¥/%p,z'/2 | 0, we

get |[pnzpnlle = ||z} 2paz!/?||p — 0 as n — co. Owing to Lemma 2.3, we obtain
that [lzpalls = [l2*/*(*/pa)llz < lle]§”IpnzpallE” — 0, as 7 — co. g
CoroLLARY 2.3. Let (E,| - |[g) be a symmetric space on a non-atomic von

Neumann algebra (M, u). The following conditions are equivalent:

1. E is regular;

2. |lzpn|le — 0 for every z € E and any sequence {pn} C P(M) decreasing to
zero;

3. llpnzpnllg — O for every z € E and any sequence {p.} C P(M) decreasing to
zero.

Proof. The implication 1 = 2 is obtained in Proposition 2.5. The part 2 => 3 is
obvious. Let us establish the statement 3 = 1. Assume that the condition 3 holds.
Using the method of the proof of Proposition 1.2, we obtain that |[fza,||E(0,a) — 0
for any f € E(0,«) and for any decreasing sequence {An} of mesurable sets from

[0, @) with m ( ﬁo Ay, ) = @. This means that the functional space (E, || - || E(Q,a)) is
regular. Hence,ntzhze space (E,]| - ||) is regular too (see Proposition 2.3 and Remark
2.2). : ]

A symmetric space E on {M, p) is said to be fully symmetric, if fromy <z, ¢ €
€ E, y € K(M, p) it follows that y € F and ||yl|z < ||z||e. It is clear that if under the
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conditions of Proposition 2.3 (F, || -||r) is a fully symmetric functional space on [0, @)
(i.e. F is the interpolation space between L1(0,00) and Leo(0, 00) with interpolation
constant one), then F(M, ) is a fully symmetric space. If M is a non-atomic von
Neumann algebra, then the symmetric space £ on (M, p) is fully symmetric if and
only if E(0, ¢) is fully symmetric.

ProPOSITION 2.68. A regular symmetric space on a non-atomic von Neumann
algebra 1s fully symmetric.

The proof immediately follows from Proposition 2.2 and Theorem 4.10 (cf. [7],
p. 142). n

3. THE CRITERION OF CONVERGENCE IN REGULAR SYMMETRIC SPACES

We shall say, that a sequence {z,} from a symmetric space E on (M, p) has
absolutely equicontinuous norms (a.e.n.) if lim sup [jzmpal|g = 0 for any sequence
ﬂ—‘ocle

of projections {p,} from M, which decreases to zero.

PROPOSITION 3.1 Let E be a regular symmetric space on a non-atomic von
Neumann algebra (M, p); let z,,, ¢ € E, n=1,2,.... The following conditions are
equivalent:

L |lzn — 2lle = 0;

2. &n L2 and {z,} has a.e.n.

Proof. 1=> 2. Let |jzn — z|lg — 0, pn € P(M), pn 1 0, € > 0. Then z, 5z
(3,11] and ||z, — 2|l < €, n > no for some ng. By virtue of Proposition 2.5 there
exists ny such that |[zp,fl < €, ||Zmpnl|le € £ for n 2 nyand m=1,2,...,n0. Since

lzmpalle < [l(2m — 2)pnlle + llzpa|l < 26

for m > ng, n > ny, we have lim sup ||2mpn|[e =0, i.e. 2, has a.en.
n—o0 m>1

2= 1. Let z, & ¢ and {z,,} has a.e.n. Using Proposition 2.5 and the continuity of
the modulus in the measure topology [17], we may assume that z, 2 0 and zn € Ey,

n=1,2,.... Put e = supsup{z, > A}. It is clear, that z,e = z, for all n. Owing to
R31A>0

Proposition 2.1, u({zn, > A}) < co for all A and n = 1,2,.... So the restriction of g
onto eMe is o-finite. Choose a sequence of projections f,, T € such that u(fs) < oo,
n = 1,2,.... Fix an arbitrary ¢ > 0. Since {x,} has a.e.n., there exists ny such
that {|(e = fno)2m|le = |lzm(e = fa)lle < € for all m = 1,2,.... Thus we get
zmlle < li(e = fao)zmllE + | fagzmlle < &+ ||faszmlle-
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Since Ym = fnoZm — 0, We may suppose, passing to a subsequence, that for some
sequence of projections {g, } we have ymgm € M, ||[ymamllar < 27™, p(1—gm) < 27™.
Put py = ‘i>nf gi- Since u(l — pm) < 2°™%!, we have pm T 1. It is clear also that

izm

lympallpr — 0 as m — co for any fixed n. Further, ympn € L1(M, ) and

ympnllL,(ae,m) = | Fro¥mPnllLicar,my SHFaollL:ar,wllympallae = p(fa Mlympallae — 0

as m — oo, for fixed n. This means that ||ympalln — 0, where || ||n is the norm of
the space L (M, u) N M. By virtue of the continuity of the embedding of this space
into E, we get ||ympnllg — 0 as m — oo, n is fixed. Using the property a.e.n. for the
sequence {z, }, choose the number n; so that |lym(L—pa, )|l < eforallm=1,2,....
Thus, we have

limflzmllz < &+ lmllym|le < €+ Tmllympo, |2 + Emilym (1 — po,)lle < 2. W

CoroLLaRY 3.1. If, under the hypothesis of Proposition 3.1., ||zn — z||g — 0,
then || [zn]| — |z} ||g — 0.

Proof. Owing to Proposition 3.1, we have z, 5z and z, has a.e.n. So |zn| -5 |z
[17] and, using the polar decomposition &, = |z, |, we have that |2,| has a.e.n. too.
Using proposition 3.1 again we get || |z.] — |z|||g — 0. |

We shall find now a conection between the convergence of a sequence {z,} from
a symmetric space and the convergence of the rearrangements p:(x,).

ProPOSITION 3.2. Let E be a regular symmetric space on a non-atomic von
Neumann algebra (M, p), let z,, z€ E, n=1,2,....

The following conditions are equivalent:

L |lza — 2ll5 ~ 0

2. zn 5z and ||pi(zn) — ()] 5(0,0) — 0.

Proof. The implication 1 = 2 follows from [11] and from the relation p(z,) —
~p2(z) = pa(zn — z) [3].

2= 1. Let zo 5z and ||pe(2n) — pe(2)|| 0,09 — 0. Choose an arbitrary € > 0
and put gr = X[r ). Since E{0, ) is regular (see Proposition 3.1), there exists a
number r > 0 such that [|p(zn)gr|lp0,a) < € for all n = 0,1,... (we set xo = ). If
pi(z) = 0 for all { > 0, then the implication 2 => 1 is evident. So we shall assume
that z, # 0, n = 0,1,.... Let p, = {|za| > 0}, Ny = paMp, and let U, be a
non-atomic abelian von Neumann subalgebra of N, containing all the projections
{lza] > A}, X > 0 and such that the restriction s, of p onto U, is o-finite (see
Lemma 2.1). The algebra U, is identified with the algebra Loo(§2n, 5, pin) and the
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space Li(Un, tin) + Un is identified with the space L1(f2.) + Loo(£2,). Obviously,
|zn| € Ly (Un, pn) + Un. By Lemma 2.2, there exists a measure-preserving map ¢,
from E(zn) = 2, onto [0, an), where an = pa({2,), such that |zal(w) = pgnw)(®n),
w € 2y, n=0,1,.... Put faw) = ¢gr(¢n(w)), w € 2. Then fa 15 a projection
from Un and (|25 fn)(@) = Bonw)(@n)gr(dn(w)) for allw € 2y, n=0,1,.... Hence
[Healfalle = llee(2zn)grllE@,0) < &

Using the polar decomposition, we obtain that ||z, falle<eforalln=0,1,...
Put ep = P — fn = (1 — ¢, )(¢n(w)), w € 2. Tt is clear that plen) <r, n=1,2. ...
Let I, = (1 —en) A (1 —eg). Using the equality zp, = zn, we get [[znla]lp = [|za(1l —

—en)nllE = |lznfuln]le <€ n=0,1,.... Since zt 5 2* and sup|len V eollmr = 1,
. nxl

we have (e, V e0)(z} — z*) £,0. Passing onto a subsequence, using the inequality
plen V eg) € 2r and repeating the end of the proof of Proposition 3.1, we find a
sequence of projections ¢m T 1 such that p(1 — gm) < 27" and for any fixed m
ll(en V 0)(zh — 2*)gmllE — 0 as n — co. Since p(a*(1 — gm)) < pe(@n)ps(1 — )
(see Proposition 1.1), then using the symmetricity of the norm || -||g(0,o) (see Remark
2.2) we get

llz5(1 = gm)llE < le(Zn)pe(1 = gm)l|ECo,0)-

Since p(1—gm) = X(0,6(1=gum)) and p(1—qm) | 0, the a.e.n.-property of the sequence
{ut(z,)} implies the existence of mq such that |[u(zn)pt(1 — gmo)|lE(0,a) < € for all
n=0,1,.... Thus, ||(es Veo)(z} —2*)(1 — ¢m,)llg < 2¢ for all n = 0,1,.... Hence,
there exists a number n(g) such that {|(z. —z)(en Veo)lle = |[(enVeo)(z) —2)lle < 3¢
for all n > n(e).

Then

llzn = zlle < l(zn — 2)(en V eo)llE + l(za — 2)lallz < 5¢

for all n > n(e). [ |

COROLLARY 3.2. If, under the hypothesis of Proposition 3.2 pi(zn) = pe(2),
n=1,2,..., then ||z, — z||g — 0 if and only if z, > .

4. WEAK CONVERGENCE IN LORENTZ SPACES

Let o(t) be an increasing continuous concave function on [0,«), & = p(1) and
let ¢(0) = 0. Put

Ap(M, p) = {w €K(M,p): /ﬂt(-’f)d‘P(t) < 00} -

0
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o

The set A,(M, u) with the norm ||z]|4,(a.4) = f we(z)dep(t) is fully symmetric space

o

on (M, u) [11]. If (M, p) is a non-atomic von Neumann algebra then A,(M, u)(0, a)

coincides with the functional Lorentz space Ay(0, @) = Ap(Leo(0, @), m)s of all real
@

measurable functions f on [0, ) for which {|f]|4,(0,e) = / F()de(®). If a < oo then

)
(44(0, @), - |4, (0,a)) is regular and so A,(M, ) is regular too (see Proposition 2.3).
If o = o0, then A, (M, p) is regular if and only if 2lixg, @(t) = oo (see Lemma 5.1 from
[7], p. 150 and Proposition 2.2 and 2.3).

REMARK 4.1. |[zalla,(m,0) = | zlalla, ) for all z € Ay(M, u), a € M. The

proof immediately follows from the polar decomposition z = u|z| for £ and from the

inequality [|bz(|4,(a,s) < lIbllalizlla, (a0, B € M, T € Ap(M, ).
Let I' C Li(M,p) N M = A. For any symmetric space £ on (M, ) the notation
Tn 2T, Tn, T € E means that u(z.y) — p(zy) forally e I

REMARK 4.2. If E is regular symmetric space on a hon-atomic von Neumann
algebra (M, ), 2,2 € E, sup||za||g < 00, p(znp) — p(zp) for all p € P(M) with
#(p) < o0, then 2z, % "2

Proof. By the assumption we have p(zny) — u(zy) for every y € N =
= <a= ih;p,- :pi € P(M), p(pi) < oo, A; are complex numbers, i =1,2,...,n,

=1
n is a natural number}. Let a € A4, € > 0. Choose y € N so that |la — ylln < ¢.

Since (L1(0,a) N Leo(0,@))s is continuously embedded into the functional space
E'(0, @) associated with E(0, @) (see [7]), we have ||u¢(b)|| 5:(0,0) < ¢||blln for all b€ A
and some ¢ > 0. Thus, for some ng and for n > ng we have

l(zna) — p(za)l < [p(zny) — plzy)| + [ulzn(a — ¥ + lu(z(a — )l <
e+ | pe(zn)ula —y)dt + [ p(2)p(a - y)dt <
[ |

S et (lue@n)llze.e) + e (@ll0.allkle ~ Vs (o) < &+ cesup llzallz + [l2ll2)-
nz

It means that p(zna) — p(za). Using the decomposition of any element from E into
the linear combination of four positive elements from E, we obtain the statement of
Remark 4.2. [ |

PRrOPOSITION 4.1. Let E be a regular symmetric space on a non-atomic von
Neumann algebra (M, p), let z,,,z € E, and z,, —z. Then

limlz.|z > ll=(|&-
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Proof. Let # = u|z| be the polar decomposition of 2. Since z, — &, we have
Yn = w2z, — y — |z|. In addition, lim||z,||g > lim|ly.||z. Hence we may suppose that
¢ > 0. Assume first that M is commutative von Neumann algebra and u(1) < oo.
Identify M with Lo (2, X, p) for some measurable space with a complete non-atomic
measure, and L1(M, u) identify with L((£2, X, p). In addition, E has been identified
with some regular symmetric space of complex measurable functions on (§2, Z, u).

Since E is regular, the adjoint space E* coincides with E’ and ||fl|lg =

= sup {/fgdp :g€ E |lgller €17 Fix e > 0 and choose g € E, such that

[lgller € 1 and ]mgd[i > ||lz|lg —€. Put A, = {w € 2: g(w) < n} and g = gxa,-

3
There exists ng such that |z|lz — ¢ < fs:gnodp = hm /a:,,gnod;z <
11—+00
lim||zn||£llgno ||z < limf|2n . Hence hmllmnllE [EIF-2 B

Let now M be an arbitrary non-atomic von Neumann algebra and u be a faithful
normal semi-finite trace on M. Fix an arbitrary € > 0. Using Proposition 2.1 and
the regularity of E, choose a projection p = {2 > A}, A > 0, such that u(p) < co and
lz(1~p)lle < €. Let N be a maximal commutative *-subalgebra of pMp, containing
zp. We shall continue to denotate by p the restriction of x onto pMp and N. Let T
be the conditional expectation from L;(pMp, u) onto Ly(M, u). Since

Yn = PTnp 7 Tp,

we have p(T(yn)y) = pu(yny) — p(zpy) for any y € N, i.e. I’(y,.)—»zp It is clear
that E(N,u) = ENLy(N,p) is a regular symmetric space on (¥, ,u) with the norm
induced from E. Since £ is fully symmetric (see Proposition 2.6) and T'a < a for any
a € Li(pMp, i) [19], we have Ty, € E(N, ). From this and from the first part of
the proof we get

limljz, |z 2 limllyallz > lim||Tyn||z > llzplle > (|2ilz - e

We shall say that a symmetric space E on (M, p) has the property (H) with
respect to I', if from z,,z € E, z, it l|lznlle — liz|| g it follows, that ||z, — z||g —
0. It is shown in [12] that if ¢ is a strictly concave increasing continuous function
on (0,@), @ < 0o, ¢(0) = 0, then A4,(0, ) has the property (H) with respect to
(Loo(0,@))n. The next proposition states the analogous result for the self-adjoint
part (A,(M, )y of a Lorentz space associated with an arbitrary commutative non-
atomic von Neumann algebra M with a faithful normal finite trace p.
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ProroSITION 4.2. Let E be a symmetric space on a non-atomic commutative
von Neumann algebra (M, ), (1) < co. Then Ej has the property (H) with respect
to My, if and only if E(0,«) has the property (H) with respect to (L (0, @)).

In the proof of this proposition we shall use the following.

LeMMa 4.1. Let M be a non-atomic commutative von Neumann algebra, let
# be a faithful normal finite trace on M, let & = u(1), zn € (Li(M,p))n, n =
= 1,2,.... Then there exists a non-atomic commutative von Neumann subalgebra N
in M and a positive isometry U from L, (M, p) onto L1 (0, @) such that z, € Li(M, p),
n=12.., w(z) = (Uz)t) for all t > 0, z € Li(N,p), UN) = Leo(0,2) and
Uzy) =U(=)U(y), = € Li(N,pu), y € N.

Proof. Let ¥ be a countable Boolean subalgebra in P(M) which contains all the
projections {z, > r},n =1,2,..., where r is a rational number. Let ¥ be the closure
of Vj in the measure topology 7. Then V is a complete Boolean subalgebra in P(M),
and besides the least upper bound in V for any subset A C V coincides with the least
upper bound of A in P(M). Such subalgebras are called regular. Let A be the set of
all atoms in V and A # 0. Since P(M) is a non-atomic Boolean algebra, for every
g € A there exists in ¢V a non-atomic regular Boolean algebra V, which is separable
in the topology 7. Let B be the set of all e € P(M) for which e(1 — sup A) € V and
eq € V, for any g € A. It is clear that B is complete regular non-atomic and separable
(with respect to the topology ) Boolean subalgebra in P(M) which contains all the
projections £, > A, n = 1,2,..., where X is a real number. Hence, there exists an
isomorphism ¢ from B on the Boolean algebra P(L (0, a)) such that m(¢(e)) = u(e)
for all e € B [5]. Let us denote by N the non-atomic commutative von Neumann
subalgebra in M for which P(N) = B. Then z, € L;(N,p) for all n = 1,2,....
Evidently, the isomorphism ¢ may be extended up to the positive isometry U from
Li(N, ) onto L1(0, ) and, in addition, U(N) = Le(0, ), ti:(z) = (Tz)(t) for all
t>0, € Li(N,pu) and U(zy) = U(z)U(y), z € L1(N, ), yEN. n

Proof of Proposition 4.2. Let E(0,c) have the property (H) with respect to
(Lo (0, @))n, let z,,2 € E; and let x"n—i;x’ |zallz — |lzlle- Let N be a
*-subalgebra in M, let U be an isometry from L (N, ) onto L; (0, a) for which z,z, €
€ E(N,u) = Li(N,u) N E and the statement of Lemma 4.1 is fulfilled. It fol-
lows from the equality p(y) = (Uy)(t), y € BE(N,p) that U(Ex(N,p)) = E(0,«)
and ||Uzl|lgeo,e) = ||z|lg for all z € Ex(N,p). Put f, = Uz,, f = Uz. Then
fn, f € E(O’a)’ n=12.. fa — [ and I!fn“E(O,a) —* ”f”E(O,a)— S0

(Loo(0,0))n

l|zn ~ el =|fa— f”E(o,a) — 0. The converse part is proved similarly. |
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Proposition 4.2 and [12] imply the following.

COROLLARY 4.1. Let M be a non-atomic commutative von Neumann algebra,
let i be a faithful normal finite trace on M, let v be a strictly concave increasing
continuous function on [0, u(1)), ¢(0) = 0. Then (A,(M, p))y has the property (H)
with respect to M.

The basic aim of this section is proving the following theorem.

THEOREM 4.1. Let M be a non-atomic von Neumann algebra, let p be a faith-
ful, normal, semifinite trace on M, let © be a strictly concave increasing contin-
uous function on (0, u(1)), and let (0) = 0, tl_l.r& o) = oo if p(1) = oo. Let
n,2 € Ag(M, ), zn —= 2, |[pe(2n) = pe(2) || Ay 0,0y = O- Then [jen—2{|4, (M, ) — 0.

We shall divide the proof of the theorem into several steps.

LemMa 4.2. It is sufficient to prove the statement of Theorem 4.1 for the case,
when pi(2,) = pe(z), n =1,2,....

Proof. Suppose that the statement of Theorem 4.1 is valid under the extra
condition s3(2,) = pe(z), n = 1,2,...,t > 0. Let z,,2 € A,(M,p), Tn =2 and
ll#e(2n) — pe(2)l4,(0,6) — 0. Suppose that p(1) = oo (in the case p(1) < oo the
proof is similar). Denote by .J the set of all indices n for which u(s(|z.])} < oo, where
s(}zn]) is the support projection of |z,|. Using Lemmas 2.1 and 2.2 for each n € J,
we can construct y, € (Ax(M, p))+ such that s{y, )({{zs) +1(z})) = 0, u(s(yn)) = 00
and |[yn(|4, a0y = 1.

Put @, = z, +n" 1y, forall n € J and a, = 2z, if n € J. Since |an| = |zal +
+n~y,, we have p(s(las|)) = 0o. Let U, be a non-atomic commutative von Neumann
subalgebra in s(|as|)Ms(lan|) containing all the projections {la.| > A}, A > 0 and
such that the restriction p, of g onto U, is o-finite (see Lemma 2.1). We shall
identify U, with Loo(2n, Zn, pin) and Ly (U, pn) + Uy with L1(2:.) + L1(£2,). Since
lan] € L1 (Up, p)+Uy, by Lemma 2.2, there exists a measure preserving transformation
én from £, onto [0, 0) such that |an|(w) = g4, w)(an), w € 25, n =1,2,.... Put
bn(w) = . (w)(®) — lanl(w), w € . It is clear that p(lan| + ba) = (), ¢ > 0.
Let an = v,|an| be the polar decomposition of a,. Put d = vpb,, n=1,2,.... We
have ||dnlia, (a,u) < llee(2) = e(an)lla, 0,0y < llse(2) — pe(2n)lla, 0,00 + HHe(zn) —
#t(an)li4,(0,4)- Since

llse(n) = pilan)llap(o,e) < llie(zn = andllag(0,0) = 120 = anlla, 0,0y = 0,

we have ||dal|4,m,4) — 0 and, in particular, dn 70' From this and from the con-
vergences 311;‘-'3, [[zn — an]|4w(M,“) — 0 we get z, = an + d,-,»—;w Since z, =
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= vn(lan| + bn) and Vv, = s(lan]), we have 2}z, = (|an| + bs)? and, therefore,
#1(2n) = pe(x). It follows from the conditions of the lemma that ||z, '“1?”114,(1‘1 ) 0.
Hence (|zn — 2l 4, (M, — 0. -

LemMma 4.3. Let the conditions of Theorem 4.1 be satisfied and, besides, u(z,) =
=mz),n=1,2..,p={lz]| > A}, A > 0. Then

Jlim [lzaplla, (4,0 = lzplla, -

Proof. Put # = u(p). Using Proposition 1.1 and Remark 4.1 we get

) B
£npllap e, = / p(znp)de(t) < f pe(zn)dip(t) =
0 [

8
[ @aeote) = lelollayar.0 = Neplla,caen
0

On the other hand, since Tn=>E, We have Tap = ZP, and, by Proposition 4.1,
“mp“Ag(M,p) < &m“mﬂpud‘.(M,y) n

LEMMA 4.4, Let the conditions of Theorem 4.1 be satisfied and, besides, ¢ €
€ Ap(M,p), p = {jz| > A}, A > 0, ¢ € P(M), p(q) = u(p) = B, pllp—4l) =&
Then ||zglla, a,u) < l|2Plla,(m.py — d, where d > 0 depends on ¢, B, pi(z) and does
not depend on q.

Proof. By Remark 4.1, we may suppose that z > 0. It follows from Proposition

1.1 that z¢ < ps(x)pe(q) = a2 )x(0,8) = pe(2p), i.e. £q < zp. At first we shall prove,
that
8

]
f m(zg)dt < f p(zp) — 7,
0 0
where v depends on ¢, 8, pi:(2) and does not depend on ¢. Using Lemma 2.1, we can
find a commutative von Neumann subalgebra I/ in M which contains all the spectral
projections of 2 and such that the restriction of g onto I is semifinite. Let T be
the conditional expectation from L;(M, ) + M onto Ly (U, 1) + U. Using the polar
decomposition zq = v|zq| of zq, we get

B
[ nwarit = ulizal) = uo*20) = p(T(za0")) = WaT(e2")).
a
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Since (28)~lp — alf2, (ar.y < 2 = allF 1,y = (2 — ©)*) = 28 — 2(pg), we have
0 < u(pg) < B — p, where p = (48)7 €.
Hence
T (qv*)|Ly(aa oy < 1Pl s(aa,m) S NIPllzaeas,n - lPallLaqary) =
= B2 p(ape)'/* < B(L ~ pB~ WP KB - 270,

=]

Choose o' € [271p, 8] such that /pt(T(pqv*))dt = [T (pgv* MWz, (a,5) = B=p'. Then,

(=]

using the inequality p:(T(pgv*)) < 1 for all ¢ > 0, we get u:(T(pgv*)) < X(0,8-5)
o0 B—p'

Therefore (T (pgs"))] < / e (@) (T (pg0 )t < f ps(z)dt. Purther,
0 [}

le(zT((1 —p)gv* )| = |p(z(1 - p)T((1 - p)ev*))| € / #e{(1 = p))p(T((1 — p)gu™))dt.
/ .

Since I is a commutative algebra, we have

p(IT((1 = p)gv*|) = p((1 — p)IT(gv")]) = p(|T(gv")]) — (| T(pgv")|) €

< fallzaat,y = 1T (gv* ML,y = P'-

From this and from the inequality ||7((1 — p)gv*)|lar < 1, we get p:(T((1 — p)gv*)) <
= X(0,p")- Therefore

’ J

™

+p

)
le(=T((1 - p)gv*))] < / m—pdt= [ p(2)dt.
0 g

Thus we have

g B-p' B+0 8
[t [ @i+ [ w@a= [ nEi-m,
0 Q0

o 8
8 B+e'
where 79 = / pe(z)dt— / pe(z)dt. Since py(z) is non-increasing and p:(z) > ps(z)
B—p' 8

for t € (0, 8), we have

B g+27'p
Yo 2 / pe(z)dt — / pe(z)dt = v > 0.
B=~2-1tp 8
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and, in addition, v depends on ¢, 8, u:(z) and does not depend on g. Thus we have

B B
[mtzaat+ < [miae.
0 0

g 8 £
Choose 8y € (0, 8) such that /pt(:c)dt € 27'y. Then /,ut(:cq)dt+2‘ /p,(:::)dt
o

B
It follows from this inequality and from the relation z¢ < zp that g, (zg) < #t(-’ﬂ)X(o 81)-
Hence

. I B B
llzalla, M,u) = / p(zg)¢' (t)dt < / pe(2)p! (1)t = ||zplla, (m,0) — / pe(z)e' ()dt.
0 0 b1

Since ¢ is strictly concave, we have d = / pi(z)e' (t)dt > 0. From the way we have

-3
constructed d we see that this number depends on €, 8, p:(z) and does not depend
on gq. [ ]

LEMMA 4.5. Let the conditions of Theorem 4.1 be satisfied and, besides, pi(zn) =
= pi(z), n=1,2,.... Then |||za| - |2| |4, (a1,) = 0.

Proof. For every A > 0 we put pa(n) = {|za| > A}, pa{lz| > A}. We shall
prove that ||px(n) — pa|lL,(amr,u) — 0. If this is not the case then, passing to a sub-
sequence, we get |[pa(n) — pallz,(am,u) 2 € for alln = 1,2,... and some € > 0. Since
pi(zn) = pe(z), we have p(pa(n)) = u(px) =6, n=1,2,.... By Lemma 4.4, we have
“%PA”A.,(M,M < ”%PA(")”A,(M,;;) — d, where d > 0 depends only <ln;1 €, 0, 1i(zn).

B
Since lleapa(Mllau ) = llznlpr®lla, o = [u@n)do®) = [m@)et) =

0 0
= |lzpalla, (a,u), We have l|zapall 4, (M,u) € 2Dl 4, (41,4)—d, Which contradicts Lemma,
4.3. Hence ||pa(n) — pallz,(a,4) — 0. Therefore, pi(pa(n) —pa) =0 on (0,25). Using
the Lebesgue dominated convergence theorem we get

00 28
(1) llpa(n) = palla,mp) = / p(pa(n) — pa)de(t) = / #i(pa(n) — pA)e' (£)dt — 0.
0 0

Fix ¢ > 0. Since A,(M, p) is a regular symmetric space on (M, i), there exist A" >
> X > 0 such that foralln =1,2,...,,

(2) Hzalpan(n)lla, ) = || |2lpanlla,r) < €
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(3) Hznl(1 = prr(n)llapaemy = HelL = pr)la a0y < €

(see Proposition 2.5). Choose a partition X = Xy < Ay < X2 < --- < A, = A" such
that ||Ai—1 = Ml € gllpar — Panliz L a0y for all i =1,2,..., 7. Then

(4) |zl (par — pan) — Z/\i—l(PA.-_1 - p)\i)“/lv,(M,[J) e
vt
(5) N 1znl(pa = pan) = > Aica(Paiy (7) = Prs(n))la (i) S &
t=1

Using (1)—(5) and arbitrarness of €, we get

Hznl = |2l a,c01,0 — 0. =

LeMma 4.6. Let the conditions of the Theorem 4.1 be satisfied and, besides,
20,2, =25, n=12,.... Then ||zn — ||a,(a,s) = 0. ‘

Proof. Suppose first that p(2n) = p(2), » = 1,2,.... Fix &€ > 0 and choose
p = {z > A} such that ||z(1 — p)|la, (am,x) < & By Remark 4.1 and Lemma 4.5, there
exists ng such that for n 2 ng

(6) M =pzallayam = l12a(L = PYlay 1, = 2al(X = P)la, i) <

Since u(p) < oo, we have pz, plenlp € Ap(pMp,u) C Li(M,p). Therefore, the
convergence |[plzaip — pella,(m,u) — O (see Lemma 4.5) implies u(plzalp) — ppz).
Since @, -z, we have p(pzap) — p(pz). Hence, ||p(zn)-pllL, a1,y = p(p(2n)-p) =
= 27'u(p(Jzal — z)p) — 0, where (z,)- is the negative part of z,. Therefore, )
I(xn)l_/2p|2 = p(zn)-p-50, and so [17] (zn)i”p-io from which p(xn)}_lz—‘ﬁo. Since
[H€al — zlla,car,0) — 0, we have [z,] 52z and |za|'/2 5 2l/2. Hence, p(zn)- =
p(zn)?|2,[2 £ 0. Since the sequence {|zn|} has a.e.n. (see Proposition 3.1),
{p(2,)-} has a.en. too, and so, by Proposition 3.1, ||p(#n)- |4, (ss.u) — 0. There-
fore, {lp(zn)+ — pzlla,(m,u) = 0, where (2,)4 is the positive part of z,. Thus
llpzn — prila,(a,uy — 0. From this and from (6) we get ||zn — 2]la, (a0 < 3¢ if
n 2 ny for some n; > ng.

Suppose now, that the assumption u:(zn) = pe(x) does not hold, but [|u:(zn) —
~p(z)|| 4, a1,y — 0. Take, as in the proof of Lemma 4.2, a non-atomic commutative
-von Neumann subalgebra U, containing all the projections {(a,)+ > A}, (an)- > A},
A > 0. Repeating the proof of Lemma 4.2 and taking into account, that v, =
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= v, € U, yo = y, (these notations are from the proof of Lemma 4.2), we get
llzn — 2lla, (a0 — 0. n

LEMMA 4.7. Let ¢ be a strictly-concave increasing continuous function on [0, &),
@ < 00, hn, fa,9n € 45(0,0), Ao = hn, fa = fa, 9n = gn, Bo < fo < gn, n =

=1,2,..., [lhn = fllay 0,0y = 0, 195 — flla, (0,00 = O- Then || fu — flla,(0.0) = 0
Proof. Since ||hnl|a,0,0) < ||falla,(0.0) € |l9nlla,0,0), We have ||falls,(0,0) —
~ |[fll4,(0,0)- We shall show that f, @ (ho+ ) f. Then it will follow from [12] that
oo U, ) jn

[lfa — flla,0,a) — O. For every t € (0, oz) we have

jh,,(f)drg jfn(r)dT < U/tgn(’r)df.

It follows from these inequalities and the conditions of the lemma that

o &
/an(o,:)dT‘* [fX(Q,t)dT-
o ]

Hence, /fnx(s odr — /fx(, pnd7 forall 0 < s <t < e Fixe > 0. Since A,(0, o)
is contmuously 1mbedded into L1(0 «), we have Hgn — fllz.(0,6) — O and, therefore,

there exists § > 0 such that / gn(t)dt < € for all n = 1,2,... (see Proposition 3.1)
0

and / f(t)dt < ¢. For any measurable set A C [0, o) choose

B = O(Si,t;) c0,e)

i=1

o 2 4
/hm&~/th

o
fanBdt—
5

/fXBdi + /IXAABdt /gn(t)dt +e+ /f(t)dt < 3¢ as n 2 ng for some ng.

Usmg Remark 4 2, we get &
8t I oot o
LEMMA 4.8. Let the conditions of the Theorem 4.1 be satisfied and, besides,

220, p(zn) = pe(2), n=1,2,.... Then |2, — z|la,(m,5) — O

&
such that m(AAB) < §. Then < /fnxAABdt +
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Proof. By Lemma 4.5, || |£n| = 2|4, 0,0 = 0, | |25 =2 4,(a2,4) — 0. Therefore,
for given € > 0 there exist p = {x > A}, A > 0 and np such that for n > ng

(M e —Pllag ) <& 1221 —Plla, ) <€ [l2n(l = Plla, a1,y <&

Put a, = Rez, = 27%(z, + 2},), and let N, be a commutative von Neumann sub-
algebra containing all the spectral projections of Ja,| and such that the restriction
of u onto N, is semifinite, n = 0,1,..., (we put zp = z). Let T, be the con-
ditional expectations from Ly(M,p ) + M onto Li(Nn,p) + Nn. Then T,(z,) =
= an +iTh(Imz,), where Imz, = (2i)~(z, — z,), and, so |an| < |Tn(2,)|, whence,
#e(an) € w(Tn(2n)) < pe(2n) = pe(z), n = 1,2,.... Therefore

be(To(panp)) < pe(panp) < palan)pe(p) < pe(z)pe(p) = pe(zp).

Hence, || To(panp)ll4,(oNop) € 112Dl 4, (4,4 (remember that Tha < a for all a €

€ Li(M,p) + M [19] and so To(Au,(M,u)) = Au(No,p)). On the other hand,

since Panp— p, We have To(panp)FTg(a:p) = p and hence (see Proposition 4.1)
4]

Lm(|To(panp)lay (pNopy 2 2Pl 4 (oNop,uy-  Thus, lim ITo(Panp)l|a, (oNop.s) =
= |lzpllay(pNop,u)- By Corollary 411, ||To(panp) — zplla,(pNep,u) — 0, whence
le(To(panp)) — pue(2p))ia,c0,0) — O (see Proposition 3.2). Therefore, by Lemma 4.7,
we have ||p(panp) — pe (zp)||4,(0,e) — 0. By Lemma 4.6, we get ||panp—2z||4,(p,u) =
0. Thus, [2,| Bz, |22 | & 2, Rezn D 2. Since 2(Re 2n)2+(Imz,)?) = |24 |2+ (252 S
£ 222, we have Imz,| A 0, whence Im z,, £ 0. It means that z, =Rez, +ilm z, = z.
Since the sequence {|z,|} has a.e.n. (see Proposition 3.1) we get, by Remark 4.1, that
the sequence {z,} has a.e.n. too. Then, by Proposition 3.1, [len — z||4,(ar,u) — 0. B

LemMMA 4.9. Let conditions of the Theorem 4.1 be satisfied and, besides, p(2,) =
= pe(z), n=1,2,.... Then |[zn — z|ja,(m,u) — 0.

Proof. Put f =1 —1I(z), e =1 — l(z*). By the projections comparison theorem
(see, for example, [16], p. 293) there exists a central projection z in M such that
fz<ez and e(l = z) < f(1 — 2). Let v and w be partial isometries from M such that
vw' = fz, v*'o ez, ww =e(l-2), wwg f(l—2). Pty=zz+2*(1—-2), yn =
= a2z + 25 (1 — 2). It is clear that Yn =Y. Besides, |y| = |z|z + [=*|(1 — 2),
hence, using the equality u,(2*(1 — 2)) = p(z(1 — 2)) [18], we get u(ly| > A) =
= p(lzlz > A) + p(l2*|(X = 2) > A) = p(]z| > A), A > 0. This means that p(y) =
= pe(z), t > 0. Similarly we get ps(yn) = pe{zn) = pu(y), n=1,2,.... Let = = ulz]
be the polar decomposition of z. Put a = (v + u)z + (w + u*)(1 — z). Since wv* =
= 0, wu = 0, we have ag* = (vw* + uv*)z + (ww* + vw*u)(1 — 2) = 1. Put
b=a"y, bn = a*yn, n = 1,2,.... Since b}b, = Yhyn, we have p(bn) = ps(yn) =
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= m(y) = m(b), n = 1,2,.... Using the equalities v*z = 0 and w*z* = 0, we
get b = ((v" +u*)z + (w* + u)(l — 2))(zz + 2*(1 — 2)) = v'zz + uz*(1 —2) =
= |z|z+ |z*|(1L — z) > 0. Since b, Tb we have, by Lemma 4.8, [|by ~ 8[|, (m,) — 0.

Using now the equality as* = 1, we get llyn — y”A,(M.u) ~ 0. Hence [[(zn —
D)ella, ) = 100 = V)2lla, ) — 0 and [i(za = 2)(X = )4, aa) — 0. This
means that |[zn — zf[a,(a1,5) = 0. =

The proof of Theorem 4.1 now follows from Lemmas 4.2 and 4.9.

5. WEAK CONVERGENCE IN REGULAR SYMMETRIC SPACES

The aim of this section is proving the basic results of this paper: Theorems 5.1
and 5.2.

THEOREM 5.1. Let M be a non-atomic von Neumann algebra, let u be a faithful,
normal, semifinite trace on M, let E be a regular symmetric space on (M, ), let
zn,z € E, n=1,2,.... Then the following conditions are equivalent:

L ||lzn = zllg — 0;

2. ||pe(zn) = pe(2)llB(0,0) — 0 and zp, — z weakly;

Hpt(zn) — pe(2)|lB0,0) — O and p(zap) — p(zp) for all p € P(M) with
#(p) < oo.

The proof of Theorem 5.1 essentially uses the statement of Theorem 4.1 and
requires some preliminary preparations.

LEMMA 5.1. Let (F,| - ||r) be a regular symmetric function space on [0, a).
Then there exists a continuous concave function ¢ on [0,a) such that ©(0) = 0,
llm p(t) = 0 if @ = 00, F C Ap(Leo(0,00),m) and 11l Ap(Loo(0,0),m) < || fllp, for
every fEeF.

Proof. Let a = co. We shall show that f(co) = 0 for all f € F”, where F* is the
second associated space of F. If this is not the case, then X[0,00) € F* and, therefore,

sup {|xo,n)llP = sup [Ixgo,njll 7 & {1X0,00)[| 7+ < 0.
n21 n>1

It means that the fundamental function @F,j-Ilr)(t) of the space F is bounded on
[0,00). Consider another norm || - ||’ on F which is equivalent to the norm [| - 1lF
and such that (F,]|-||') is a symmetric space on [0, 00) and ¢(2) = dr 4 (t) is a
concave function (see (7], p. 164). Then (see [7), Theorem 5.5, p. 160) A,(0,00) C Fi
and, since ¢(t) is bounded on [0, c0), we have (Loo(0,00))n C A,(0,00) C Fh which
contradicts with the regularity of F' (see the Proposition 2.1). Hence, f(co) =
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for all f € F”. This means that there exists g € F' such that g = §, |l¢gll= = 1,
g€L1(0,00) (otherwise F’' C Li(Leo(0,00), m) and 80 Lo (0, 00) C F”'). The function
!

o(t) = /g(r)dr is continuous concave increasing and (0) = 0, ¢(co) = co. For

every f oe F we have
/ Fyap(t) = / Faaae < ifilelllle = 1Ale

ie. fe A“,(L (0, 00), m) and |} f|| 4, (Leo(0,00),m) < [|fll7. If @ < oo, then the function
p(t) = fg(r)dr where g =g € F', |lgllr =1, does the job. |
0

LEMMA 5.2. Let E be a regular symmetric space on a non-atomic von Neumann
algebra (M, p). Then there exists a continuous strictly concave increasing function ¢
on [0,a), & = p(1) such that ¢(0) = 0, hm p(t) =00 if o = 00, E C Ap,(M, 1) and
1zl 4, (a1,0) € cliz|le for all x € E and some ¢> 0.

Proof. By Proposition 2.2, Remark 2.1 and Lemma 5.1, there exists a function
 satisfying all the conditions of Lemma 5.2 except, maybe, the strict concavity of
®. Put po(t) = arctgt, and ¢1(t) = (1) + @o(t), t € [0,00). The function ¢;(t) is
continuous strictly concave and increasing on {0, @) and, in addition, ¢;(0) = 0 and
hm p1(t) = o0 if @ = 0. Since hm wo(t) < o0, we have (Leo (0, 2))n € Ay, (0, ).
Be51des it is evident that L (0, o:) c Apo(0, ). Therefore A,,(0, ) = L1(0,a) +
+Lea(0,a), and so Ay (M, ) = L1(0,a) + M. Hence by virtue of the continuity of
the embedding of A,,(M, ) into L1(0,«) + M, we have that the norms || - Ha,(a2,)
and || - ||+ are equivalent on L;(My) + M. In particular, 12]f 4y, ar,) < collz]|4 for
all 2 € Li(M,p) + M and some ¢; > 0. Since £ is continuously embedded into
Li(M, 1) + M too, we have 2|l Ay, a0 € coc1]|z|le for all z € E and some ¢; > 0.
We get from embeddings E C Ap(M, u) and E C Ay(M, ) that £ C Ay, (M, p)
and, in addition, ||z||4,, mu) = [1@]|4, (a0 + [zl 4y a0 € (1 + cocr)llzlle for all
r € F, which concludes the proof of the lemma. [ |

Proof of Theorern 5.1. The implication 1 = 2 follows from Proposition 3.2. If p €
€ P(M) and pu(p) < oo, then it follows from the inequality {u(zp)] < ||z||&-
x(o,ue)lE7(0,0), # € E, that p(zp) is a continuous linear functional on (E, || - |z),
and, therefore, the implication 2 = 3 is obvious.

3 = 1. Let ||m(zn) — m(z)llp(o,0) — 0 and p(znp) — p(zp) for all p €
€ P(M), pu(p) < oo. Then, by Remark 4.2, we have Tn — T Let ¢ be strictly
convex function from Lemma 5.2. Since

||#t(.mn) - #t(x)HA,,(o,a) < C”I-Lz(xn) - #t(z)HE(o,a),
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we have, by Theorem 4.1, ||y —2|| 4, (a,4) — 0- Hence, z,, £ z [11]. Using Proposition
3.2 we have ||z, — z{|g — 0. a

REMARK 5.1. The implicationg 1 = 2 = 3 from the statement of Theorem 5.1
are valid for any symmetric space E on a non-atomic von Neumann algebra (M, p)
with fully symmetric norm (see proof of Proposition 3.2).

PROPOSITION 5.1. If E is a non-regular symmetric space on a non-atomic von
Neumann algebra (M, 1), then the statement of Theorem 5.1 Is false.

Proof. We shall prove that the implication 3 = 1 is incorrect. Suppose at first,
that the fundamental function ¢z(t) is discontinuous at zero, i.e. l:ifrr)l ¢p(t)=¢>0.

Take a projection p with u(p) < co and represent it in the form p = sup p,, where
n2l

Pn EP(M), pape =0, n# k, u(p) =27 "u(p) foralln =1,2,.... Put zo = p— 2pn.
It is clear that ps(z,) = pi(p) for all n = 1,2,.. .. Besides, if g € P(M), then

#(Png) = p(pngpn) — 0,

and therefore p(zng) — p(pg). On the other hand, ||z, — plle = 2|lpalle 2 2¢,
n=1,2,..,1e. the implication 3 = 1 of Theorem 5.1 is false.

Suppose now, that ¢g(t) is continuous at zero. Then, since E is non-regular,
we have @ = u(1) = oo (see the proof of Corollary 2.2). If there exists z € E'\
Ko(M, ), then 1 € E. Choose p, € P(M) such that papr = 0, n # k, p(pn) =
27", and set z, = 1 — p,. Repeating the previous arguments, we obtain again
that Theorem 5.1 is false. Let now E C Ko(M,p). Using Corollary 2.1, choose
z € Ey such that u,(2)EF, where F is the closure of (L1(0,00) N Leo(0,00))s in
E(0,00). Suppose first that p(z)x(o,) € F for all # > 0. Let F” and E"(0,00)
be the second associate spaces of F and E(0,o0) respectively. Since F is regular
(see Proposition 2.4), we have ||fl|g#0,00) = IfllFe = Ifllr = |IfllE(0,00) for all
f € F. Hence, if [|s:(2)X(n,00)||E(0,00) — O, then j:(z)x(0,n) is a Cauchy sequence
in (F,||-||r) and therefore p;(z) € F, but this is not the case. This means that
ir)l%I|u,(x)x[,,,,o)|[£n(g,m) = § > 0. The norm || - ||gr(0,00) has the Fatou property,
therefore

Il26¢(2)X[r,c0) || 70,00y = Jim, lextr )l 400,00y

Hence, there exists a sequence of positive numbers 7, T oo such that
l2e(2)X[rn rns)llE(O,00) > 2716 for all n = 1,2,.... Let U be a non-atomic com-
mutative von Neumann subalgebra in s(z)Ms(z) containing all the projections {z >
A}, X > 0 and such that the restriction of u onlo U is o-finite (see Lemma 2.1).
Identify U with Loo(92, 2, p), Li(U, p) + U with L1(2) + Lo($2). By Lemma 2.2
there exists a measure preserving trasnsformation ¢ from £ onto {0, c0) such that
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z(w) = pyw)(z), w € 2. Put gn = Xfr,,rpy)(#(Ww)) and z, = & — 2zg,. Tt is clear
that p(z,) = m(z), n = 1,2,.... Besides, if ¢ € P(M), u(g) < oo, then since
2 € Ko(M, ), we have [u(ga9)| < llognllnei(g) — 0. Hence, pu(zng) — p(zg). On
the other hand ||z, — z||g = 2{|zgallz = 2/|pe(2)X[rn rrs)lE(O00) > 8, n=1,2,. .,
1.e. the implication 3 = 1 from the statement of the Theorem 5.1 is false.

It remains to consider the case u:(z)x(0,-)EF for some r. Using the same ar-
guments we obtain that su}ﬁ(”) [lee(2)x (0, )l 24¢0,00) = 61 > 0. With the help of the
Fatou property we can construct a sequence of positive numbers s, | 0 such that
[#4¢ ()X 0 nsr ,50)||E(0,00) > 27181. Repeating previous arguments, we obtain, that in
this case the implication 3 = 1 from Theorem 5.1 is false too. n

In the next theorem the variant of Theorem 5.1 for an arbitrary semifinite von
Neumann algebra M is given.

THEOREM 5.2. Let M be an arbitrary von Neumann algebra, let u be a faithful
normal semifinite trace on M, let E be a separable symmetric space on [0, (1)), let
Zn,2 € E(M,p), n=1,2,.... Then the following conditions are equivalent:

L flen = zllpaa,5) — 0;

2. ||lps(2n) = pe(z)|lp = 0 and &, — z weakly;

3. |lus(zn) ~ pa(2)|[E — 0 and p(znp) = p(zp) for all p € P(M), p(p) < co.

Proof. Consider a commutative W*-algebra N = Lo (0, 1) with the trace v(f) =
1

= / fdm, acting on the separable Hilbert space F' = L(0,1). Let A = M®N be the

0
tensor product of the von Neumann algebras M and N, A = p® v. It is clear, that

A is a non-atomic von Neumann algebra and ) is a faithful, normal, semifinite trace
on A. Consider a regular symmetric space E(A4, ) on (A, A) (see Remark 2.2). Since
p(z) = (2 ® 1), t > 0 for all z € Li(M, p) + M (the notations are taken from
the proof of Propositin 1.2), then we can identify the subspace {®1 : z € E(M, u)}
in E(A,)A) with E(M, ). In addition, ||z{lparu = [[p(@)ie = M@z =
= |[«®1|[g(a,x) for all x € E(M, p). This, together with Proposition 3.2, completes
the proof of implications 1 = 2. The implication 2 = 3 can be proved in just the
same way as in Theorem 5.1.

3= 1. Let [[A(2n81) = A(eB1)l|E = [|pe(zn) —pe(2) || — 0 and p(znp) — p(zp)
for all p € P(M), u(p) < co. Repeating the arguments from Remark 4.2, we obtain,
that for all ¥ € L,(M, u) N M we have the convergence

A(zn®1)(¥81) = p(zay) — A((zB1)(yB1).

Let T be the conditional expectation from Li{(4,)) + A onto Li(M&1,)) +
+M@1, p € P(A),A\(p) < co. Then Tp = y&1 for some y € Ly(M,u) N M and
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hence
A((z2®1)p) = M(2a®1)Tp) — A((z81)Tp) = A((z®1)p).

It remains to use Theorem 5.1, by which ||z, — zl| a0y = l2n®1 — z®1||£(a,2) — 0.
N

REMaARK 5.2. It follows irnmediately from Theorem 5.2 the statement of the
theorem, formulated in the introduction.

6. WEAK CONVERGENCE IN THE SPACE Cg

Let (E,|| - ||g) be an arbitrary fully symmetric space of sequences of complex
numbers (l.e. E is a fully symmetric space on (£, 4) (see Section 2)). Denote by
E(0,00) the set of all the functions f € L1(0,00) + Loo(0,00), for which (f) =

{ / f(t)dt} € E. Put ||f||B,00) = li7(f)l| -

PROPOSITION 6.1. (E(0,00), || - l|(0,00)) Is @ fully symmetric function space on
[0,00). In addition, if E is separable, then E(0, o) is regular.

Proof. Using the properties of rearrangements we get for any f, g € E(0, 00)

> / (FF o) < Z / foa+ Z f fe)e

n=1,

k=12 1ie =x(f+g) < n(f) + 7(g). Since Eis fully symmetric, f 4+ ¢ €
€ E(0, oo) and ||f+g||E(0 o) € [Ifll20,00) + I9]lE(0,00)- Hence, E(0, co) is a subspace
of L1(0,00) + Loo(0,00) and || - ||5(0,c0) is a fully symmetric norm on E(0, 00). Let
{fa} be an increasing Cauchy sequence of negative functions from E(0,00). Since
([7], p- 113)

(8) Fa(®) = Fn(®) < (fa = fm)(2),

T(fn) = 7(fm) < 7(fa — fm) and therefore {n(f,)} is a Cauchy sequence in E. Hence,

there exists # = {8,} € E such that ||n(f,) — z||g — 0. Besides, it follows from

(8) also, that {f.(2)} is a Cauchy sequence in E(0,00), and therefore it is a Cauchy

sequence in the measure topology with respect to Lebesgue measure m ([6], p. 139).

Consequently, there exists a function h on [0,00) such that f, 5 h = sup f,. By
n n n2t

Levy’s theorem we have for any fixed n, fﬁ(t)dt — /h(t)dt = fnas k — oo,

n—1
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It means that h € E(0,00). Since {f.} is a Cauchy sequence with respect to the
convergence by Lebesgue measure m, there exists a measurable function f on [0, 00),

such that f, 3 f = sup f.. In particular, f, — f almost everywhere. Hence, f = h
nz2l
almost everywhere, and therefore f € E(0,00). By the Amemiya’s theorem (see for

example [6], p. 378) Ex(0,00) = {g € E(0,00) : ¢ = G} is complete, and since
[19ll£¢0,00) = Tl (0,00 for all g € E(0, 00), E(0, c0) is complete too.

Suppose now, that F is separable. Then the norm || - ||z is order continuous,
in particular, 8, — 0 for any z = {f,} € E. Let f, € E(0,00) and f, | 0.
Since fi(oco) = 0, we have f, | 0 ([7], p- 94). Therefore 7(f,) | 0 and hence

1 fallE(0,00) = I (Fa)llE — 0. ]

Let H be a Hilbert space, B(H) be a x-algebra of all continuous linear operators
acting in H, let tr be the canonical trace on B(H), let ¥ be symmetric space on
(B(H),tr). It is clear, that K(B(H),tr) = B(H). Besides, since F is a two-sided
+-ideal in B(H), then, in the case F 3 B(H), the space F is contained in the ideal
C(H) of all compact operators in H. In addition, the rearrangement p.(z) for any
z € F has the form

2]

p;(:t) = Z Sn(m)X[n—-l.n](t);

n=1
where {s,(z)} is the sequence of s-numbers of z.

Let (E,]}-]|g) be a fully symmetric space of sequences, E # £, let G = E(0, c0)
be the fully symmetric space on [0, 0o) associated with E (see Proposition 6.1). Denote
by Cg the set of all z € C(H), for which {s,(2)} € E, and put {|zllcy = ||sn{z)||&
(separability is not supposed). The following proposition is obvious (see Proposition
2.3).

ProrosiTioN 6.2. Cg = G(B(H),tr), |lzllcs = [zllgpia tr) for all z € Ck.
By Propositions 2.3, 6.1 and 6.2 we have.

Cororrary 6.1. (Cg,l| - llcg) is a fully symmetric space on (B(H),tr). In
addition, if E is separable, then Cg is regular.

THEOREM 6.1. Let E be a separable symmetric sequence space, Cg be the
symmetric space of compact operators acting in a Hilbert space H, associated with
E, zx, € Cg, k=1,2,.... The following conditions are equivalent:

L [lee = zllcs — 0;

2. ||sn(zk) — sn(2)l|z — 0 and 2 — = in the weak topology o(Cg,CE);

3. ||sn(2k) — sn(z)|lg — 0 and (z4,£,8) — (2€,€) for any £ € H.

The proof of Theorem 6.1 follows from Theorem 5.2 and Propositions 6.1, 6.2.
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In the case, when H is separable Hilbert space, the statement of Theorem 6.1 was
obtained in [1], essentially using the matrix representations of operators from B(H).
Our theorem is valid for any Hilbert space.

ProrosiTiON 6.3. If E is a non-separable fully symmetric space, E # £, then
the implication 3 = 1 from the statement of Theorem 6.1 is false.

Proof. Let F be the closure in (E, || - ||g) of the subspace of all z = {a,} € E
such that o, = 0 for all but finitely many n. Since E is non-separable, F' # E.
Choose z € (Cg)+ such that @ = {s,(2)}€F. Put pn = {Bi}r=1, where f§; =
0ifl £ k< nand e = 1if k > n. In just the same way as in the proof of
Proposition 5.1 we can establish that inf||apa||gr = é > 0, where E” is the second
associate space of E. Using the Fatou property for the norm || - ||g#, construct

an increasing sequence of indices ng such that {[a(pn, — Py, )7 > 2716, Set z =
(<)
an (x)en, where e, is a sequence of one-dimensional pairwise orthogonal projections
n=}1
g4 1
from B(H). Put zj = 22 E si(z)e;. It is clear, that sa(zi) = sa(2), k= 1,2,..,
i:ng

and (zx€,£) — (z£,€) for all £ € H. On the other hand

fgq4r—1
ok — zllcs =2[ D si(@)es| = 2lla(pay = Parya )z > 4,
t=ng Ce
k=1,2,..,ie. the implication 3 = 1 from the statement of Theorem 6.1 is false.
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