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COISOMETRIC EXTENSION AND FUNCTIONAL CALCULUS
FOR PAIRS OF COMMUTING CONTRACTIONS

ALFREDO OCTAVIO

INTRODUCTION AND PRELIMINARIES

In studying the properties of pairs of operators, one of the main concerns is the
existence of functional calculi. While most of the work has focused on constructing
a several variable version of the Riesz-Dunford functional calculus {cf. [8] and [17]),
some attention has been given to a two variable version of the Nagy-Foias functional
calculus (cf. [4]). The latter is the main tool in the theory of dual algebras. Even
though we will not treat the topic of dual algebras generated by commuting contrac-
tions in this paper, it is important to point out that this work sprang from our interest
in dual algebras.

The purpose of this paper is twofold: on one hand we aim at presenting a (modest)
extension of the functional calculus for pairs of commuting contractions constructed
in [4]. On the other hand we are interested in studying joint coisometric extensions
of pairs of commuting contractions. Related dilations have been studied by Slocinski
in {16]. This two topics are not without relation and we intend to exploit this relation
in this and future work.

This paper is intended as background material for a series of papers developing
the theory of dual algebras generated by commuting contractions. For this reason
we shall present some details central to the developement of the theory, which are
available elsewhere in the literature.

We now introduce some notation used throughout the paper. Let H be a com-
plex, infinite dimensional, separable, Hilbert space, and let £(H) be the algebra of
all bounded, linear operators on H. Let N be the set of positive integers, Z the set
of integers, C the complex plane, D the open unit disk in C, and T = 8D the unit
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circle. If A C C and n € N, we denote by A™ the Cartesian product of n copies of A.
We shall call T2 the torus and D? the bidisk. The space LP(T) and H?(T),1 <
£ p £ oo, are the usual Lebesgue and Hardy spaces relative to the normalized
Lebesgue measure m on T. Let B be a Banach algebra. We denote by B(™) the
set of n-tuples a = (a1, as,...,an) of elements of B, and by Bg%m the subset of B(M)
such that a; commutes with a; commutes with ag, for all 5,k =1,2,...,n.

If X is a compact Hausdorff space, we denote by C(X) the Banach algebra of all
continuous, complex-valued functions on X under the supremum norm. The closure
in C(T) of the algebra of polynomials will be denoted by A(D). The algebra A(D)
can be identified with the disk algebra, which is the algebra of all bounded analytic

functions on D that have a continuous extension to T.

1. BANDS OF MEASURES AND BOUNDED ANALYTIC FUNCTIONS ON THE BIDISK

We denote by LP(T?),1 € p € oo, the Lebesgue spaces relative to normalized
Lebesgue area measure my on the torus T2. We shall need some facts from [14] about
boundary values of analytic functions on the bidisk. The algebra H>(D?) of bounded
analytic functions on D? can be identified with a subspace of L?(T?). We now describe
how this identification is achieved. Let w; = r;e'® €D and X; =¥ €T, j = 1,2,
let w = (wy,w2) and A = (A1, A). The Poisson kernel P, ()} is the product

Py(A) = Pry (81 — p1)Pr, (2 — 92),

a-r%
1 - 2r cos(8) +r?
Poisson kernel has the following properties (cf. [14 Section 2.1]):

(8) Puy(X) >0, A€ T2, weD2
(b) /Pw(A)dmz(A) =1, weD?

where P;(6) = is the familiar Poisson kernel for the unit disk. The

T3

© P = 3 rlulplbaleik®=0) yhere k.6 = £:6; + k28, w e D2
k=(ks,k2)€22

If f € L°(T?) its Poisson integral is

PUAI(w) = [ Pu)F(Nma(X),  w e D2
T2
By using the series expansion in (¢) and integrating, we see that P[f] is biharmonic
(i.e., harmonic in the two variables wy and w,). Let H*(T?) be the set of functions in
LP(T?) whose Poisson integral is analytic on D?. The map f + P[f] is an isometric
linear algebra isomorphism between H°(T?) and H*(D?). The following lemma
describes the properties of H%(T?) (cf. [14 Chapter 2] and [4]).
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LemMma 1.1.

(a) H*(T?) is a weak*-closed subalgebra of L®(T?).

(b) A bounded sequence {f,} in H®(T?) weak*-converges to f if and only if
{P[fa]} converges pointwise to P[f] on D2.

(¢) The polynomials form a sequentially weak*-dense subalgebra of H*(T?).

(d) The isomorphism f v P[f] is multiplicative on H®(T?).

A function f € H®(D?) can be recovered by finding the Poisson integral of the
boundary values of f (which exist almost everywhere, cf. [14, Section 2.3)).

The above discussion can be applied to other H? spaces. For 1 < p < o0, we can
define H?(T?) to be the subspace of LP(T?) consisting of all the functions f € LP(T?)
such that P[f] ic analytic on D?. Theorem 2.1.4 of [14] says that a function f in
L?(T?) belongs to HP(T?) if its Fourier coefficients defined by

k) = / FODIT T2 dmg, k= (y, ) € 22,
T2

are zero for every k outside of 2% (22 = {(k1,k2) € 2% : k1, k2 2 0}).

NoTaTioN. In what follows we shall make no notational distinction between a
function h € HP(T2?)(1 € p € o) and its analytic extension to D?, namely P[A).
We will write h(w) to denote the value of the value of the function P[R] at the point
w € D2

Observe that T2 is only a small part of the boundary of B2. But it is the part
that matters the most, since

llAlleo = ess sup ||, he H®(D?).
T2

In fact, T? is usually called the distinguished (or Bergman-Shilov) boundary of
D?, since values of a function on DB? can be recovered from the boundary values on
T2

As in the one variable case, we shall denote by A(D?) the closure in C(T?) of
the algebra of polynomials. The algebra A(D?) can be identified with the algebra
of bounded analytic functions on D? that have a continuous extension to T2. We
call A(D?) the bidisk algebra. The bidisk algebra is a uniform algebra with Shilov
boundary T? (cf. [9, Chapter 3]).

We follow [4] in the construction of the functional calculus. Other methods of
constructing this functional calculus have been presented (cf. [10]) but the approach
in [4] seems to be the only one suitable for our desired generalization. A complex,

Borel measure p on T2 is called an annihilating measure for A(D?) if | fdu = 0 for
T2
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all f € A(D?). The set of all annihilating measures of A(D?) will be denote by AL.
Let X be a measurable space, and denote by M(X) the set of all (finite) complex
measures defined on X. A set 8 C M(X) is called a band on X if is satisfies

(a) If 4 € B and v € M(X) is absolutely continuous with respect to g, then
vep.

(b) If {1n}5%, is a sequence in B with 32, |un| < oo, then

oo
Z fn € 8.
n=1

For more details on bands of measures confer [4]. If 4 is a band on X we denote by

Bt the set of all complex measures on X singular with respect to every measure in S.
Note that both A+ and A* are bands on T2, Following [4] we define three additional

bands on T2 as follows:
Bi = {u € M(T?) : p is carried by E x T, E a Borel set, m(E) = 0},

B2 = {v e M(T?) : v is carried by T x F, F a Borel set, m(F) = 0},

and
fo= At NpLENGy.

The following is Lemma 2.1 of [4].

LEMMA 1.2. Let u € fy, and let {f,} be a bounded sequence in A(D?). Then
fn = 0 pointwise on D? if and only if f, — 0 in the weak* topology of L= (T2, |u|).

We conclude this section by showing that H° (T2} is the dual of a quotient space.
Let X be a Banach space. The dual of X will be denoted X*. If § C A" we denote
by %S the preannihilator of S (i.e. %S = {z € X : y(z) = 0 forall y € S}).
It is well known that the dual space of L!(T?) can be identified with L*(T?).
Since H®(T?) is a weak*-closed subspace of L®(T?) (Lemrlna 21.1 (a)), we have that
H%(T?) can be identified with the dual of the space =) (cf. [5, Proposi-

tion 2.1]). Define L{(T?) to be the subspace of L'(T?) consisting of those functions
f € LY(T?) such that f(—n;, —ny) = 0for all (ny,n;) € Z_2|_ ={(n1,n) €L :ny,ny >
> 0}.

PROPOSITION 1.3. The space L}(T?) is isomorphic to *(H*®(T?)).

Proof. To every bounded linear functional ¢ acting on L!(T?) there corresponds
a unique function g € L*°(T?) related by

o) = [ Fg()ams,  f € 1T,
T2
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If f € 9(H*®(T?) C L*(T?) and A = (A1, A2) € T?, then

/ FOONB AR dms =0, (my,ng) € Z2.

T2

But these are the Fourier coefficients f{—n1,—n2) of f, and thus by the above defi-
nition, f € L}(T?).
On the other hand, if f € L}(T?), then

/f()\))\?l/\g’dmg = f(——nl, —ng) =0, (ni,n2)€ ZZ+.

T2
Since a function g € H*(T?) is the weak*-limit of some sequence of polynomials
{pn}, we have that for any function h € L*(T?)

/ A(N)pn(A)dm; — / B(3)g(A)dms.
T2 T2
Thus, since f € L}(T%) C L(T?), and

f F(0)pa(N)dms = 0,

T3
we have
JEQTOT
T2
for every g € H®(T?). Thus, f € *(H*®(T?)). [
By the above proposition we have that the dual of #Tz) is isometrically iso-

morphic to H®(T?).

REMARK 1.4. The results in this section can be trivially extended to higher
dimensions. The proofs remain virtually unchanged.

In this section we discuss the existence of joint dilations and extensions of certain
types for an n-tuple T' = (71,7%,...,Tn) € .C(’H)ng)nm of contraction operators (i.e.,
T3] € 1for j=1,2,...,n).

T = (T1,Ts,...,.Tn) € L(%)&E}nm a joint dilation of T is a n-tuple § =
= (51,52,...,8:) € ﬁ(lC)gg,)nm for some Hilbert space X D H such that K has a
decomposition K = K; & H @ K2 relative to which each S;, 7 =1,2,...,n, has a
matrix of the form ngl) ng% SE% ‘

Si=[ 0 T S
0 0o %)
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Note that this implies, in particular, that Ky & (0) @ (0) and K; @ (0) @ (0) are
common invariant subspaces for S, and consequently, H = (K1 ®H)©OK; is a common
semi-invariant subspace for 5. In this situation it follows easily that if m;, ma,...,m,
are nonnegative integers, then

PpSyrsy? . Spre =TT .. Te, z€H.

The equation above implies the existence of a joint dilation as we defined it (cf.
[15]). Some authors take it as the definition of joint dilation (cf. [11]).

A joint extension of T is an n-tuple B = (B;, Bs,...,B,) € ﬁ(lC)gg,)nm such that
K D H, the subspace H is a common invariant subspace for B, and

Tix=DBix z€eH,:i=1,2,...,n

T = (N,T...,T,) € L(H)SZ;?,,,,, is an n-tuple of contradictions, then a joint
dilation (extension) S = (5y,S2,...,5,) € ,C(’H)Eg,)nm where KL D H, is said to be a
joint unitary (resp., isometric, coisometric) dilation (extension) if each of the operators
Sj, 3=1,2,...,n, is a unitary (resp., an isometry, a coisometry).

Now, we will define the concept of “minimal” dilation (extension) for an n-tuple
of contractions. To see that our definition makes sense in the case of dilations we will

need the following

LEMMA 2.1. If U = (Uy,Us,...,U,) € £(lc)£2,)m is a joint dilation for T =
= (N,T5,...,Tn) € £(H)£’3,)nm and K' O 'H is a common invariant subspace for U,
then U[K' = (U1 |K', UslK!, ..., UnlK' € L(H)2m is a joint dilation of T.

Proof. Tt is enough to show that if H = N; © N, where Ny D Az and N is a
common invariant subspace for U, j = 1,2, then H = (M, NK')© (M2 NK’). To see
this we take x € H = M © NM,. Then z € N1 NK', r is orthogonal to N, and hence,
to My NK’. Therefore, z € (M; NK') © (M2 NK'), and

H=MoeMN CcWNNK)eMNK'.

Thus, we can decompose the space (M NK') & (N2 NK’) as H & H' (where H' =
=[MNKYoMNK)eH.)Ifz € (N NK)S (N2NK'), we can decompose z
as & = 21 ® z2, where £, € H and z2 € H'. To finish the proof it is enough to show
that zo = 0. The vector z2 is in N1 N K’ C Ni. On the other hand, since x5 € H’,
then z, is orthogonal to V] & M2 = H. Thus, z; € A,. Since z; € K/, we have that
z3 € NaNK'. But z,, is orthogonal to M3 N K'. Therefore, x5 = 0. [ ]

Let T = (0,T5,...,Tn) € ﬁ(H)&’;Bnm be an n-tuple of contractions and let
U=(U1,Us,...,Us) € ,c(x)g"o,),,m be a joint isometric (resp., a unitary, a coisometric)
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dilation(extension) of T. We say that U is a minimal joint isometric (resp. unitary,
coisometric) dilation (extension) if there is no nontrivial subspace K’ D H for U such
that U;[K’/, j =1,2,...,n, is an isometry (resp., a unitary, a coisometry). Note that
contrary to the one variable case, all minimal unitary dilations of a pair of contractions
are not isomotphic. '

The question whether an n-tuple T = (11,T3,...,Ts) € E(’H)gﬁ,)nm of contrac-
tions has a joint unitary dilation is an important one, and it turns out, rather sur-
prisingly, that the answer depends on n. The following beautiful theorem was proved
by Ando in [1] (cf. also [11], Theorem 6.4]).

THEOREM 2.2. Every pair of commuting contractions has a joint unitary dilation,
and thus (Lemma 2.1) a minimal joint unitary dilation.

On the other hand, we have the following striking example by Parrot [12] (cf.
also [11}).

EXAMPLE 2.3. For every n > 3, there exist an n-tuple of commuting contractions
which has no joint unitary dilation (cf. EXAMPLE 2.4.3.).

Here we will need not only Theorem 2.2, but the following easy consequence of
the proof given by Ando [1].

THEOREM 2.4. A pair (T1,T3) € ,C('H)S:gznm of contractions has a joint coisomet-
ric extension, and thus a minimal joint coisometric extension.

Proof. Let (V41,V2) € C(H)g%nm be the joint isometric dilation of (T7,T5) con-
structed in [1]. In [1] it is shown that KX © H is a common invariant subspace for
(V1, V). Thus, H is a common invariant subspace for (Vy*, V3'). Define B; = V", for
j = 1,2. We have that B; commutes with By, the space H is a common invariant
subspace for (By, By), and T; = B;|H for j = 1,2. Note that a joint isometric dila-
tion (1, ¥2) € C(’H)gznm of a pair of contractions is minimal if and only if K = K,
where K' is the closed linear span of V{**V;**H (cf. {11]). Hence, by reducing to X',
and noticing that B;|K’ is a coisometry, it is clear that we can find a minimal joint
coisometric extension. |

We now take time to explore this phenomenon in some detail. Let T = (T, T3) €
€ ,C(’H)S;Qnm be a pair of contractions, and B = (B, B;) € ﬁ(H)gﬂnm be a joint
coisometric extension of T, so that X D H, H is a common invariant subspace for
B, and Bj|H = Tj, j = 1,2. Then, of course, By commutes with Bz, and by the
von Neumann-Wold decomposition theorem for isometries, one knows that K has
decompositions K = S; @ R;, j = 1,2, such that S;, R; are reducing subspaces for
Bj, j =1,2 and B;|S; = 8%, Bj|R; = R;, j = 1,2, where 8§ and &5 are backward
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shift aperators of some multiplicity and Ry and Rz are unitary operators.

The reader who is familiar with the theory of dual algebras “in one variable”
will have no difficulty understanding that a question of primary interest for us is how
these decompositions K = &) @ Ry and K = 8 ® R, are related to each other. In
this direction we have the following theorem. For a related result confer [16].

THEOREM 2.5. Suppose (By, Ba) € £(’H)g?nm is a pair of coisometries and that
K has the decomposition K = Sy @ R4 relative to which the matrix for B, Is

S 0)
By = ,
' (0 R

where St € £(81) is a backward shift and Ry € L(R) is a unitary operator. Then
the matrix of By with respect to the decomposition K = 8; @ Ry has the form

AL Ay )
By = ,
2 (A4 As
where As = 0, A3d =1, A2A5 =0, A1A]+AAS = 1, ST Ay = Az Ry, As commutes
with R;, and A, commutes with S;. Furthermore, if Ry has no part of uniform

multiplicity Rg or B, and B are doubly commuting isometries (i.e., B1 By = BB,
and By B} = B3 By ), then Ay = (.

Proof. Since B; commutes with Bs, an elementary matricial calculation shows
that Ry A4 = A4S], from which we obtain R} Ay = A4St™, n € N and since {57}
converges strongly to zero, and R; is unitary, it follows immediately that A4 = 0.
A similar argument shows that if B, and B2 are doubly commuting isometries, then
Az = 0. Some additional easy matricial calculations now establish the other equations.
Last, suppose R; has no part of uniform multiplicity Rg. Then, it follows easily from
the fact that AgR; = RyAs and the theory of spectral multiplicity {(cf. [6]) that
the coisometry Az has a decomposition Az = @ Ag"), where A;") is an n-normal
operator (cf. [13]). We now need the following ;eer:ma.

‘LEMMA 2.6. If A € L(H) is an n-normal isometry for some n € N, then A Js a

unitary operator.

Proof. One knows (cf. [13]) that A can be identified (up to a *-algebra isomor-
phism) with a continuous A(-} : X — M, where X is an extremally disconnected
compact Hausdorff space and M, is the ring of n x n complex matrices. Thus, for
each z € X, A(z) is an isometry acting on a finite dimensional space, and thus is a
unitary matrix. Hence A(-)A*() = A*(.)A("), and thus A is a unitary operator. W

Completion of Proof of Theorem 2.5. It follows easily from this lernma that

each Ag") in the decomposition A3 = & Agn), is a unitary operator. Thus, since
nem

Ap A% = 0, we have A; =0, as desired. [ ]
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Is the operator A, in the above theorem necessarily zero without the hypothesis
on R;7 The answer, unfortunately, is no, as the next example shows.

ExAMPLE 2.7. Let B; € L(H) be the coisometry with matricial form

(S; : )

Bl = 3

0 R

with respect to the decomposition K = &) @& Ry, where S§ € £(81) is a backward

shift and R; € L(R;) is a unitary operator with uniform multiplicity Rg. Write

S1= P M,and Ry = @ N, for some Hilbert spaces M and . The operator S}
neM nel
is defined, relative to this decomposition of S1, by the (infinite) matrix

0 1pm O
51 = 0 1m O ‘

0 1m

and R; is defined, relative to this decomposition of R1, by the (infinite) matrix

v o0
R = 0O U o0 ...
Tlo o0 U L
where U is a (forward) bilateral shift of multiplicity one in £Z{A).
The coisometry By will have the form

A A
Bz=( ' 2)1
0 Aj

with respect to the decomposition X = &) & R1. We wish to define 4;, A; and A3
so that By is a coisometry commuting with By, and a short calculation (¢f. Theorem
2.5.) shows that this will be done provied

(1) A1 8] = 81 Ay,

(2) R1A3 = AsRy,

(3) Azdz = 1w,

4) A2 A3 =0,

5 AL AT + A2 A% = 1,
and

(6) | StAg = AsRy.
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To make (1) valid, we take A; to be the operator in £ ( ) M) defined by the matrix
neN

0 C 0
A= 0 C 0 ...
P 0 ¢ .|’
where C' € L(M) is to be determined later. To make (3) valid, we take Aa to be the
operator in £L | @ N | defined by the matrix

neN
0 1p O
0 1y 0 ...
Asz 3

0 1lu

Note that (2) also holds with this definition. To make (4) valid, we define A; to be
the operatorin L[ @ N, B .M) given by the matrix

neN neN
Dy 00
D, 00
A=lp, 00 .|

where D; € L(N, M), j € N is to be defined in order to make (6) valid. For this
purpose it is enough to define D;, j € N, so that it satisfies D;U = D;,. We now
proceed to do this. Let {e;}$2_, be an orthornormal basis for the space M and let
{fi}§2_c be an orthonormal basis for the space N'. The operator Dg, k¥ =1,2,...,
is defined by Dy f; = 0, j # —k, and Dif; = eg, § = —k. Finally, the operator
C € L(N) is defined so that (5) holds by Cej =¢;, j # 0, Ceo = 0.

3. ABSOLUTELY CONTINUOUS PAIRS OF CONTRACTIONS

Let (T1,T3) € L(H)g?nm be a pair of contradictions, let (Uy,Us) € ;C(‘H)g?nm
be a joint minimal unitary dilation of (T3, 73) and let E; be the spectral measure of
Uj, 7 = 1,2. Following [2], we can form the amalgamation (or product) of E; and
E,, thus obtaining a projection valued measure E on Borel subsets of the torus. This
measure is called the joint spectral measure of (U1, Us). As is shown in [2],

Urup = /A?‘A;"dE(Al)\g), ni,ng €N.
T3
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The spectral measures E;, Es and E satisfy the following additional properties (cf.
(2]):

(a) E1 commutes with Ej (i.e., if M, and M are Borel subsets of T, then the
projections E1(M;) and Ea(M;) commute).

(b) If My and M, are Borel subsets of T, then E(M1 x Ma) = E1(M1)E2(M3).

For z € K, we denote by p; the measure on the Borel subsets of T? given by

ua(M) = (E(M)z, z)

for Borel subsets M C T2. We say that E is absolutely continuous with respect to
some (finite, Borel, positive) measure v € M(T?) if y; is absolutely continuous with
respect to v for all z € K. We say that (11,T2) € ﬁ(H)E?,L.m belongs to the class
ACCP(H) of absolutely continuous pairs of the contractions if the joint spectral
measure of (some) minimal unitary dilation is absolutely continuous with respect to
some (positive) measure v in fy. The following is a reformulation of Lemma 4.3 of

[4].

LemMma 3.1. If (Th, T) € C(’H)g%nm is a pair of completely nonunitary contrac-
tions, then (T}, Ty) € ACCO(H).

There are several questions one could ask about membership in the class
ACC(H). One question is : In the above definition, can we replace “some measure
v in Bo” by “my”? In other words, if (T1,T2) € ACC®)(H), and (U1,U,) and E
are as above, is E absolutely continuous with respect to m,? The following example

provides a negative answer to this question.

ExaMmPLE 3.2. For ¢ € H®(T), let M, denote the multiplication operator
defined on L?(T) by

Let Ty = Ty = M;|H?(T), where z denotes the position function z = €® - €', One
knows that the operator M,|H?(T) is a completely nonunitary contraction whose
minimal unitary dilation is M,. The spectral measure of M,, denoted by F,, has
support T, and is given by

Ei(A) = M,

a?

for every Borel subset A of T. Thus, by Lemma 2.3.1, (T, T3) € ACC)(H). What
is the support of the amalgamation of E; with itself (denoted E; x E;)? A simple
calculation (using property (b) above), permits us to conclude that if A; and A,
are disjoint Borel subsets of T, then (E; x E1)(A: X As) = Ei(41)E1(A42) = 0.
By the construction of the amalgamation (¢f. [2]), this implies that the “diagonal”
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{(A\,2) : A € T} contains the support of E; x E;. Thus, Ey x Ey is not absolutely
continuous with respect to msy.

Recall that T € £(H) is said to be absolutely continuous if the spectral measure
of its minimal unitary dilation is absolutely continuous with respect to m (normal-
ized Lebesgue measure on T). An important question whose answer has, thus far,
eluded us is as follows:

ProBLEM 3.3. If (T1,T3) € ;C(H)g)mm is a pair of absolutely continuous con-
tractions, is (T1,Ty) € ACC(H)?

The following lemma provides us with some additional members of the class
ACCPI(H). Its proof follows easily from the properties of a minimal joint unitary
dilation and our construction of a coisometric extension (cf. Theorem 2.4).

LEMMa 3.4.

(a) If (T3, Tz) € ACCPN(H), then (T}, T3) € ACC(H).

(b) If (T1,T2) € ACCP)H), then there is a minimal joint isometric dilation
(Vi, V) € L) hm of (T1, T) such that (Vi, Va) € ACCO(K).

(¢) If (T1, T2) € ACCP)(H), then there is a minimal joint coisometric extension
(B, By) € L(H)\hm of (T3, Ty) such that (By, By) € ACCN(K).

4. THE FUNCTIONAL CALCULUS

Let p € fo be a (positive) measure. We define the algebra H® (s + mz) as the
weak* closure of the bidisk algebra A(D?) in L%(T?, s+ m3) (the space of essentially

bounded functions on T? with respect to the measure u + m;). The Poisson integral
(cf. Section 1),
PIfiw) = [ PufO)ams(y), weD?,
¥2

can be used to define the map f — P[f], which is an isometric isomorphism from
H™(u 4+ m3) onto H®(D?) (the onto part follows from the weak*-density of polino-
mials and Lemma 1.2). The remarks in Section 1 about the relation between H>(T?)
and H*(D?) apply to H®(u + m2). We define a map ¥ : H®(T?) — H*®(u + my)
by extending the identity map from A(D?) onto itself in such a way as to make ¥ a
weak*-continuous algebra isomorphism. The map ¥ is defined in the following way:
For f € A(D?), we define ¥(f) = f, for h € H*(T?) we approximate % in the
weak*-topology by a (bounded) sequence {h,} in A(D?) (cf. Lemma 1.1{c)). For
each w € D? the sequence {h,(w)} converges to A(w) = P[h](w) by Lemma 1.1(b).
Hence, Lemma 1.2 implies that the sequence {h,} is a weak*-Cauchy sequence in
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H®(u + my). Let h € H®(u + my) be the weak*-limit of the sequence {hn} in
H%(p + m3). We define ¥(h) = h. The map ¥ is clearly multiplicative since it is
multiplicative on A(D?). Since sequences are enough to determine weak* continuity
(cf. [5, Theorem 2.3]), we have the following:

PROPOSITION 4.1. If u € By, then there is a weak®-homeomorphism ¥ from
H®(u + my) onto H®(T?). Furthermore, ¥ is an algebra isomorphism.

Let Ap, 1, denote the dual algebra generated by (73,7%) (i.e., the smallest weak™-
closed algebra with identity containing 77 and T3) (c¢f. [3]). It is well known that
Ar, 7, can be identified with the dual of a quotient space (cf. [3]). We denote this
quotient space by Qr, 7,.

Finally, the following theorem constructs a functional calculus and lists its prop-
erties. This theorem is a modest generalization of Theorem 4.4 of [4].

THEOREM 4.2. If (Ty, Tp) € ACC)(H), then there is an algebra homomorphism
.¢T1,Tg : H®(T?) — Ar, 1, with the following properties:

(a) &7, 7,(1) = Iy, Op, 7,(w1) =T1, Pr, 7.(ws) =T, where w; and w» denote
the coordinate functions.

(b) |27, 7, ()| < Ifhlloo, for all h € H(T2).

(¢) Pr, 1, is weak™ continuous. (l.e., continuous when both H® and Ar, 1, are
given the corresponding weak*-topologies).

(d) The range of &r, r, is weak*-dense in Ar, ,.

(e) There is a bounded, linear, one-to-one map

112
7.1, Q11 — %

with gof}l Ty = D7, 7,

(f) If &7, 1, is an isometry, then it is a weak*-homeomorphism onto Ar, 1, and
LY(T,)
L§(T?)

Proof. Parts (a), (b), and (¢) were proved in [4, Theorem 4.4]. For the sake
of completeness we present an outline of the proof. Let (U1, Us) € ﬁ(’}{)gﬁnm be a

T, T, IS an isometry onto

joint minimal unitary dilation of (71, 7%) whose joint spectral measure E is absolutely
continuous with respect to some (positive) measure g € By. By Proposition 4.1, it
sufficies to construct a homomorphism with domain (it +m2) instead of H*(T?).
Let h € H®(u+ my). For all z,y € H, the complex measure p, () = (E()z,y) is
absolutely continuous with respect to u. It is not hard to see that the function

(2,9) f RO, o)y
e
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is a bounded sesquilinear functional, and hence defines a unique operator, which we
denote by h(T1,T3), such that

T T2 0) = [ BOu M)y, 2y €N,
TQ

We define our homomorphism by @r, 1,(h) = h(T1,T2). Easy computations imply (a)
and (b) above and the linearity of A +— h(7},T3). That & is multiplicative follows
from the fact that it is multiplicative on polynomials. If {h,} is a sequence in H*®(u+
+my) that weak*-converges to some h € H®(u + mz), by the definition of weak*-
topology and the Radon-Nikodim theorem, for any measure v which is absolutely
continuous with respect to u + my we have that

/hndy—rfhdu, as n — oo.
T2 T2

Since p. y is absolutely continuous with respect to u+ms, we have that forall z,y € H

(hn(ThTz)z,y) = /hn(AI;AZ)dﬂz,y - /h(Aly-)‘?)dP-:.y = (hn()\la )‘2)3:1!!)’
Rk T

as n — co. Thus, the sequence {h,(71,T3)} converges to h(73,73) in the weak
operator topology. Since on bounded sets the weak operator topology and the weak*-
topology coincide, part (c) follows from the fact that sequences are enough to deter-
mine weak”-continuity (cf. [5], Theorem 2.3]). Part (d) follows from the weak*-density
of the polynomials p(T1,T3) in Az, 1,. Part (e) is a consequence of (c) and the fact
that a linear map between Banach spaces is weak*-continuous if, and only if, it is
adjoint of a bounded linear map (see [5}, Proposition 2.5)). For part (f) it is enough
to show that &7, 7, has trivial kernel and norm-closed range by virtue of [5, Theorem
2.7], and the hypothesis makes the verification trivial. [ |

We will need the following statement in our future work.

PROPOSITION 4.4. Let (T3,T») € ACC(H), let M be a common invariant
subspace for (T1,T3), and write ’f’, = T;{M, j = 1,2. Then there is an algebra
homomorphism & & : H®(T?) — Az, 7, with properties (a), (b), (c), (d), (e), and
(f) of Theorem 4.2.

Proof. The matricial representations of T} and 7%,

fﬁ * i"; *
T: —_
' (0 *)’ T (o *)
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with respect to the decomposition H = M @& M’ (where M’ = H & M), imply that
for any polynornial p we have:

p(T1,To) + )

s = (7

By taking weak*-limits, for A € H®(T?) we can define the operator h(ﬁ,’f’g) to
satisfy o

h(Ty,Ty) =
o)
Define diﬁ'ﬁ(h) = h(Ty,T»). Properties (a), (b) and (c) follow from Theorem 4.2.
Properties(d), (¢) and (f) can be proved in the same way as in the proof of Theorem
4.2, |

h(T,T2) = (

The possible absence of a joint unitary dilation for 3 or more commuting con-
tractions in £(H) is a serious disadvantage for the development of this theory. We
now note, in addition, that Theorem 4.2 does not extend to the case of 3 or more
operators. In particular, part (b) cannot hold even in the case of polynomials. Such
an example can be found in [7].

For an n-tuple (T1,7%,...,Ta) € f.(’hf)f;g%,m of contractions, we may ask the
question whether there is a constant K > 0 such for every polynomial p the equation

p(T1, T2, - - Ta)l} < K][Plboos

is satisfied. Varopoulos has shown in [18] that no constant K could work for all values
of n. Still the question remains open of whether for a fixed value of n (say, n = 3)
such a K exists, and whether for three fixed commuting contractions 71, T3, and T3,
there is a K(T,T»,T3) > 0 such that

lp(Th, T2, T3)|| < K(T1, T2, T3)}|p]| 0o

The functional calculus developed in Theorem 4.2 is a generalization to two
variables of the (one variable) functional calculus developed by Nagy and Foiag in
[11]. The properties (d), (€) and (f) are also generalizations of properties satisfied by
the Nagy-Foiag functional calculus (cf. [5, Theorem 3.2}). If o7(71,T2) C D?, then
the Taylor functional calculus and the functional calculus of Theorem 4.2 coincide.
This is a consequence of the uniqueness of the Taylor functional calculus (cf. [8]) and
the fact that Ap, 7, 1s contained in the double commutant of {73, 7%}.

In a future paper we will use these results to start a systematic study of dual
algebras generated by commuting contractions.
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