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APPROXIMATION BY NORMAL ELEMENTS WITH
FINITE SPECTRA IN SIMPLE AF-ALGEBRAS

HUAXIN LIN

1. INTRODUCTION

In 3, 2.6), a C*-algebra A is said to have (FN) if every normal element in A is
n
a norm limit of elements with the form ZA;;pk, where each A is a complex number

in the spectrum of = and each py is mutllc;ily orthogonal projection in A. It is known
that every von Neumann algebra and every AW*-algebra have (FN). It is recently
proved that the corona algebras of finite matroid algebras have (FN) ([16]). In [17],
N.C. Phillips constructs two separable simple C*-algebras have (FN) which are not
AF. In this note we will consider the following question:

Qi: Does every AF-algebra have (FN)?

The question was mentioned in [17, 3.11]. But it may be raised before ([3]).

Recall that a C*-algebra A is called an AF-algebra if for any € > 0 and finitely
many elements ay,as,...,a, € A, there are a finite dimensional C*-subalgebra B of
A and elements by, bs,...,b, € B such that

Has = bl <&, i=1,2,...,n.

AF-algebras have been intensively studied, in particular, those simple separable AF-
algebras such as matroid algebras and UHF-algebras (see [6], [10], [11], [12] etc. It
is almost impossible to give a complete list.). AF-algebras appear to be most under-
standable C*-algebras. Nevertherless, the answer to question Q is still not known.

If z is a self adjoint element in an AF-algebra, then for any ¢ > 0, there are a
finite dimensional C*-subalgebra B and an element y € B such that

llz — 9l <e.
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Set yy = %(y +y"), then ||z — 31|| < €. Since y3 € B, y has finite spectrum. So the
question Q has an affirmative answer for selfadjoint elements. If z is a unitary, then
the unitary part of the polar decomposition of y (in B) is close to £ in norm, provided
that € is small enough. So the question Q; has an affirmative answer for unitaries
too. In general, if z is a normal element, one hopes that y is close to a normal element
(in B). In fact,

llyy* — g ol <e.

Therefore one can give an affirmative answer to question Q; if one can prove the
following;: ‘

Q3: For any € > 0, there is a § > ( so that whenever B is a finite dimensional
C*-algebra and y is an element in B such that

llv*y —yy'll < 6 and gl =1,
then there is a normal element 2 € B satisfying
lly — 2l <e.

But Q3 is an old problem in linear algebra (see [20], [21] and [9]) and, unfortu-
nately, remains open.

However, without making any effort to solve the problem Qg2, we would like to
shed some light on the question Q;. We will show that the answer to Q, is affirmative,
if A is a matroid algebra (in particular, A is a UHF-algebra). In fact, we show that
for a more general class of simple AF-algebras, the answer to the question Q; is
affirmative. The techniques used in this note come from (2], [18] and [14].

Let A be a separable simple AF-algebra. Fixa nonzero projection e € A, let T be
the set of those (lower semi-continuous and semi-finite) traces = such that 7(e) = 1.
With weak®-topology, T' is a compact convex set. If 7 € T' is an extreme point of T,
then we say that 7 is an extremal trace. Let p be another nonzero projection in A and
let T” be the set of those (lower semi-comtinuous and semi finite) traces  such that
7(p) = 1. If T has only countably many extreme points so does 7" (see [13, 6.17]).
The main result of this note is the following:

THEOREM A. Let A be a separable simple AF-algebra. Suppose that T has only
countably many extremal traces. Then A has (FN).

It is known ([19, 3.1.8]) that T is a metrizable Choquet simplex. By [1, 1.49],
every point in T is a barycenter of measure concentrated on its extreme points. If T
has only countably many extremal traces {7, } then for any 7 € T', there is a sequence
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oo

of nonnegative numbers {a,} such that Zan =1 and
n=1

=%
T= E AnTy.
n=l

We have the following:

CoOROLLARY B. Let A be a unital separable simple AF-algebra. Suppose that

there is a countable subset {r,} of the normalized traces such that for any normalized
o

trace T there is a sequence of nonnegative numbers {a,} such that Zan =1 and
n=1

[ae)
T= E anTn.
n=1

Then A has (FN).

Since every matroid algebra has only one trace (up to the scalar multiples), we
immediately have the following: .

CoroLLary C. Every matroid algebra has (FN).
CororLary D. Every UHF-algebra has (FN).
We also have the following result for non-simple AF-algebras:

THEOREM E. Let A be a separable unital AF-algebra. Suppose that (1) < oo
for every (lower semi-continuous and semi-finite) trace v. Let T be the set of (lower
semi-continuous and semi-finite) traces T such that v(1) = 1. If there is a countable
subset {r,} C T such that for every trace 7 € T, there is a sequence of nonnegative

n

numbers {a,} suck that Zan =1 and

n=l

o
T= E s 7% "I
n=1

Then A has (FN).

The following are some terminologies which will be used later.

Let p and ¢ be two projections in a C*-algebra A. We say p is equivalent to ¢, if
there is a partial isometry v € A such that u*u = p and uv* = q.

We use the notation [p] for the equivalence class of projections containing p.

We write [p] > [g], if there is a partial isometry u € A such that w*u = ¢, uu* < p
and uu* # p.
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Let p € A™ be an open projection, where A** is the enveloping von-Neumann
algebra of A. We use the notation Her(p) for the hereditary C*-subalgebra pA**pNA.

2. PROOF OF THE RESULTS

LeMMa 1. Let X be a compact subset of the plane and let f € C(X). For
any € > 0, there is § > 0, for any C*-algebra A and normal elements z,y € A with
sp(z),sp(y) C X, if || — | < &, then

[l f(z) — F(W)Il <&

Proof. The proof is similar to that of Lemma 2 in [8]. By the Stone-Weierstrass
theorem, for any f € C(X), there is a polynomial p (of two variables) such that

ilf(z)—p(z.z)||<§ forall zeX.

Set
d=sup {|A|: A € X}.

Then, as in [8, Lemma 2], one has
lz* (™) =" (W™l < n-m-d &

The rest of the proof is exactly the same as in [8, 2]. [ |

LEMMA 2. Let A be a unital C*-algebra and = be a normal element in A. For
any £ > 0, there is § > 0 such that if

(1) Ay, Az, ..o, Aq €sp(e) and | — X;| 2 6,1 # 7

(2 S ={A: 12— M| <6}

(3) gx is the spectral projection of z in A™ corresponding to the open set S;

(4) pr is a projection in Her(gqy);

G)y= (1 - Zﬂ:p.) z (1 - ipk),
i=1 i=1
then

<k,

n
z— (y +3 J\m-)
k=1

<E.
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Proof. Notice that pr < g and gx’s are mutually orthogonal. We have

(5) B (Be) () ()

n
= zgk (m - )\qu) < 4.
k=1
Similarly,
n n
(zpk) T — Zlkfi’k < 8.
k=1 k=1

Moreover,

k=1

(%) (5 (- 5)

k=1 k=1 k=1
Similarly, |
(I*Zpk) z— (I—Zpk) z (l—zpk) < é.
k=1 k=1 k=1
Set
y= (1—21%)-’6 (1-21%) -
k=1 k=1
Then
- (y+ Z)\kpk) < 26
k=1
and 7
| (1—2;};) r—z (I—Zp,') < 26
f=1 i=1
So take § = /2. |

LEMMA 3. Let A be a separable simple unital AF-algebra satisfying the condition
in Corollary B, and let z be a normal element in A. For any € > 0 and positive
integer K there are complex numbers A1, Az, ..., A, € sp{z) and mutually orthogonal
projections py,pz,...,pPn € A such that

- (wi,\,-p.-)

§=1

<€,
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(-g)ee (-5

[pe] > K [1 - i?i]

i=1

<€

fork=1,2,...,n.

Proof. Without loss of generality, we may assume that ||z|| < 1. Denote by B
the C*-subalgebra generated by = and 1. Then B = C{(X), where X = sp(z). Let
7 be a trace on A with 7(1) = 1. The restriction of 7 on B gives a state on B. By
the Riesz representation theorem, the state defines a normalized Borel measure p, on”
X. Let D denote the unit disk. Then X C D. For any open subset O C D, let ¢o
be the spectral projection of ¢ in A** corresponding to the open subset O N X. The
projection g is an open projection in A**. Suppose that h € B(= C(X)) such that
1> h(t)>0forallt € ONX and h(t) = 0 for all £ € X \ O. Then {h%} forms an
approximate identity for Her(go). It is clear that

p(ONX) = lim 7(h¥).
Let {eﬂ} be an approximate identity for Her(go) consisting of projections. Then
pr(0ON X) =sup {r(e])} .
In fact, we have
T(h¥ed) = r(hFelhF) < r(hY) < 4, (O N X)

and
T(h¥el) = r(eSh¥ed) < r(el)

for all k and n. Since htel — €2, if k — oo, and h*el — At if n — oo, from above

equalities and inequalities, we conclude that

#-(0NX) =sup {r(en)} -

Let Tp denote the countable subset {r,}. For the simplicity, we use the notation y;
for the measure p.,.
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For any ¢ > 0, there is a finite subsets {(1,(2,...,{m} of D such that for any
{ € D, there is an integer ¢ such that

€
Kz’ - Cl < 3—2
and for any i, there is j # { such that
€
16 = Gl < 13-

For each 17 set

D‘-z{(:%g\lﬁ“dsfé}'

. [ &
Fix ¢, for each 35 £rg 6’ set

Se={¢:[(~&l=r}.

Since px(D; N X) < 1and S, NS, = @, if r # +, there are only countably many r’s
in (5%, %) such that
175 (Sr N X) > 0.

Since the union of countably many countable sets is still countable, we conclude that
. - e e
for each %, there is r; € ('§§’ TE) such that
#e(Sr, N X) =0
fori=1,2,....mand k=1,2,...

Now D\ |JS;,, is a disjoint union of finitely many open sets Oy, Os, ..., Oy such

that the diameter of each O; is < % and

o (Us)nx) =0

for all k.
Let {es.')} be an approximate identity for Bo,. Then

() /7 1 (0: N X)

N
Jj=12,...and i=1,2,...,N. Since y; (X\.U O,'RX) =90,

=1

N
7 (Zeﬁ.‘)) /1,

=1
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asn— o0, 1 =1,2 ..., Since every 7 € 7" has the form
00
T= Z&jTjw
i=1

o
where o; 2 0 and Za,- = 1, we conclude that
i=1

i=1

OO
T(Zeg))/‘l, as n — oo

for all 7 € T. Since T is compact, by Dini’s theorem, the continuous functions
N

¢{)(7) defined on T converges to the constant function 1 uniformly on T, as
# 24

i=1 )

n — oo. Hence we have projections p; € By, such that

"N
(p;) > Kr (1 - Zp;)
i=1
for all ¢ and 7 € T'. It follows from [4, Prop. 4.1] that
N
[p.‘} > K [1 ‘Zp{l .
[E-3
The rest of proof follows from Lemma 2. n
LeEMMA 4. Let A be a unital C*-algebra and let « be a normal element in A.
Suppose that there is a projection p € A such that
£
llpz — zpll < 3

and there is an element y € pAp such that

Ity — p2pl| < %

Then (in pAp)
(1) sp(y) C {X : dist(),sp(z)) < ¢} and
(2) 1A — )71l < [dist(}, sp(z)) ~ €]
for those X such that dist(},sp(z)) 2 .

Proof. Suppose that dist(A,sp(z)) > €. Then

le—p(A—2)Op =Yl € lp(A = ) A=) = (A = 2)plll €
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<O = 2) 7y = pall +llpep = 27l < g < 1.

Similarly,
llp = (dp ~ y)(A = =) 'pf| < 1.

Therefore Ap — y is invertible in pAp. This proves (1).
For (2), we have the following inequalities:

1Op =)< N2 —)7! = p(A = )7 pll + [Ip(A — 2) "5l <

<HOp=9)7Mlllp = Qe =92 = 2) 7ol + (A~ 2)7H <
S — o)~ - € + 1
<MOr =971 G ey T Toto.wE)

So, we have

. g
102 =97 < EmrsEy =

Let
18l < b}

[

S:{a«}-z’ﬂ:!a]{

be a subset of the plane, where b > 0. Suppose that

=<t < <t =

I =
[N

is a partition of the interval [~1, 1]. Set
D; =Sn{A:t,—..1 < Rel gti}, 1=1,2,...,k

and p p
R,:{a-‘-‘tﬁt,——ggat;ﬁ”a,‘ﬁlgb}, 521,2,..‘,1‘7"1.

The following lemma is a variation of Lemma. 5.2 in {2}

LEMMA 5. Let X be a closed subset of the square S. For any 0 < § <
< -1-(min {(t; = ti-1)}) and 5 > 0 there is € > 0, for any finite-dimensional C*-
algebras B, if z € B satisfies

(1) sp(z) = X,

(2) ||lz*z — z2*||} <,

(3) (A = =)~ 1| < [dist(A, X5) — €], where X; = {)\ sdist(X, X) < —g},

(4) [IRe 2| < 5 and [[lmz]] < 5,
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then there are normal elements yi,y2,...,4x~1 € B with sp(%) C Ry, ¢ =
=1,2,...,k~ 1, and elements z;,z,, ...,z € B with

) 8
sp(Re(z;)) C [&—1 - -z-,fi + :5] )

sp(Im(z:)) C [—b - g,b-i- 5;—]

sp(z;) C {A s dist(A, X;) < g} ,

where X; = [X N D;]U R; and there is a unitary u such that

flz@n®.. ®yp-1— v (21 ®22...25)ul| < .

Proof. By applying Lemma 5.2 of [2] repeatedly, we obtain normal elements
Y1,¥2,-- -, ¥k-1 1n B, elements 1,2,...,2; € B and a unitary u such that sp(y) C
CRiyt=1,2,...,k=1,

sp(Re(z:)) C [t,-_l S -g-]

and
lz@n® - Bu-1— v (10228 - Dzx)ul| < 1

(if € is small enough). Furthermore, if 7 < é,

4
(o)l < b+ 5.
Let
2=zhn d O Y-t
and

z” = u*(zl DryP---P :ck)u.

k-1
If dist (}.,X U (U R,)) 2 5 and 7 is small enough (so € is small), then, by (3),
i=1

[N

=G =2)" =2l <

SO =)A= - =2l <
7 7

< 7= < < 1.
(dist(h, X5)—¢) = 0
’ (5 —¢)
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Similarly,
==z -2 <1

So, A & sp(z”'). In other words,
k-1 5)
7 v Az : —
sp(z") C {A : dist ()\,XU (,._ul R,)) < 2}.

sp(2i) C {A :dist(A, [X ND;JURy) < g—} ]

This implies that

Proof of the Theorem A.

We first assume that A is unital.

Step 1. For any 1 > 8§ > 0, since sp(z) is compact, there are finitely many open
balls By, By, ..., B, with centers in sp(z) and diameters less then & such that

n
sp(z) C U B;.
i=1

Therefore

n m
UBai=U X,
i=1 k=1

n
where each X is a connected component of | B;. Since each X} is a union of some
=1
By’s, we may assume each Xj is homeomorphic to a rectangular region with possibly
finitely many rectangular holes. Notice that Xz N Xy = @, if & # k'. So we may
m
write ¢ = Z @ 1, where each z; is normal and sp(z) (in a corner of A) is a subset

k=1
of Xi. Furthermore, for any A € X; there is a { € sp(z;) such that

dist(),{) < .

Without loss of generality, we may assume that sp(z) is a subset of one of those X;
and denote it by X. Let 2 be the rectangular region with & rectangular holes (k
could be zero). Let ¢ be the homeomorphism from X on to £2. It is enough to show

that ¢(z) is a norm limit of normal elements with the form E/\;pg where p;’s are

§=1
mutually orthogonal projections and A; € £2. Therefore, we may assume that X = 2.
To be more precise, we assume that X is the unit disk, if k£ = 0; and

X.—_{/\"-%:)\EX'}
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where

k
X'={z:0gRez$1,!Imz|sb}\U{z

j=1
0<r<band
(67 + (G < 3~ 20—
Furthermore, we may simply assume that sp(z) =
Step 2. Notice now X is fixed. For any €1 > 0, by applying Lemma 3, there are
complex numbers Ay, A, ..., A,, mutually orthogonal projections p;, pa,...,pn such

that R
z - (y+ Z/\;'Pe)

where y = (1 - Z“:p) z (1 - ip;) , N

i=1 i=1

i=1
n
[pi] > 2(k + 1) [1 - EP&]
for i = 1,2,...,n and for any { € sp(), there is X; such that |[{ — )| < ¢;. Since A
is an AF—algebra without loss generality, we may assume that y € B where B is a

[E31
finite-dimensional C*-subalgebra of (1 - Zp ) All- Zp.)

i=1 i=1

< &1,

< €1,

Step 3. Suppose that k = 0. In this case X is the unit disk. By [9, 4.5], there
are normal elements ¢ € B and 3" € M2(B) such that

Jvoy ~v'll<s

and ||¢/}| € 1, if €; is small enough. For any £ > 0, if ¢; is small enough, since B is
finite dimensional and sp(y’) C X, we may assume that there are mutually orthogonal
projections ¢; € B, i =1,2,...,5; and mutually orthogonal projections ¢; € M2(B)
such that

i 52
¥y Y Mg — Y ajd]
i=1 j=1

n
where 0 € 51 < n and ¢; are complex numbers in X. Since [p] > 2 [l - Zp;],, we
| i=1
may write

P ﬁpfl)aap(z), i=12...,8
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such that there are unitaries v; € A with the property that v;p(]) v} =g, 1=

=1,2,...,51. Therefore, there is a unitary v € M»(A) such that

(ﬁ: xpD @ ) - (i a;v*g; v)
il j=1

Thus we conclude that

( > AsP.QZ)\aP, )Gaza,v v ) <e.

=gy 41 i=1

£

<2.

This completes the proof for k& = 0.

Step 4. Now we assume that £ > 0. Fix 0 <6 < ( )r. Set

| A
t; =—-~§+ P is 1,2,...,k.
For any € > 0, if £, is small enough, applying Lemma 3 and Lemma 4, we obtain
normal elements y1, ¥z, .. ., Yk-1 € B with sp(y;) C X and elements 2y, z5,...,2; € B
with 5
sp(z;) C {A sdist(A, [X N D] U R;) < Z} ;
1 ¢ &

op(Rez)) C [~3+ 3 -3, -3+ 1+ 43

k 4

§ i+ 1 5]
k4

§ 6
sp(Im(z;)) C [—b - Z’b+ 21_] ,
and a unitary u such that
£
lv®n®.. Op—1—u* (1 Bz2®... ®zr)uf| < T
where D; and R; are as Lemma 4, and [X N D;]U R; is homeomorphic to an annulus.

For each 1, let

then s ;
wuoc{wr~;<m<d+z}

1
2k
of Lemma 4. By applying Lemma 4 and using some inequalities in the proof of Lemma

§ 1 .
and |jz;|| € d+ T where d = |52 + ( ) } . Notice that ] satisfies the hypothesis
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5\ 1

5, if £1is small enough, we have [|(z})~!|| € <r - 5) . By applying [2, 4.1] (see also

[2, 4.2)), if €1 is small enough, we have normal elements 2] € B and z{’ € M3(B) such

that
£
16

@ 2 - 2] <

and sp(z{) C {z ir - g-» <z d+ Z} Now let

2i—1 1 211 1
fronad ! B '."-_— '.‘" —_——
yf_z,-{*[ T 2] and ¥ =z +[ ok 2],

V= Qy®.. Ou- 10y 00 ... 0,
and
Y=oy e.. oy
Then
(4
flvey - o'l < 3

Notice that even sp(y]) may intersect with sp(y}), sp(y) does not intersect the hole

{z: 25 -1

2k

and there is a retraction r from Y onto sp(z). It is important to notice that such Y

-z

< r} , i # j. So there is a region Y such that sp(y’),sp(z) C Y,

and r do not depend on ¢ or &; but depend on X and §. If ¢; is small enough we can
make

n
20y - Y dpi®y’

i=1

<€
1

Furthermore, since 3’ is normal, by assuming €; and ¢ small, we may assume that
sp(y’’) C Y too. By applying Lemma 1, we may assume that

<
3"

r(z)@®r(y) — Z r(Ai)p: @ r(y")

Since r(z) = 2 and r(\;) = )A;, we may further assume that sp(y’) C sp(z). We now
apply the absorption argument used in the step 3. Notice in this case £ > 0. However,
we have

[pi]l > 2(k+1) [l—im] , 1=1,2,...,n.
i=1

This completes the proof for the case that A is unital.
Now we assume that A is not unital.
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Then 0 € sp(z). Let h be a continuous function defined on the unit disk D such
that [[h]| < 1, A(¢) = ¢ if |¢] > % and A(¢) = 0 if [¢] < % Then

Ih(z) - =]l < .

Now let p be the spectral projection of # in A** corresponding to the open subset
£ . . ,
{C eED:¢|> T and ¢ be the spectral projection of z in A** corresponding to the

closed subset {( €eD: K|z %} Then p is an open projection in A** and ¢ is closed
projection in A**. Moreover, ¢ < p. Suppose that g is a countinuous function defined
on D such that [|g]| < 1,9(¢) = 1if |¢| > % and g(¢) = 0 if i¢| > -1% Then g(z) € A
and g(x) > ¢. So ¢ is compact. It follows from [7] that there is a projection ¢ € A
such that

gsesp.
Clearly,
h(z)q = gh(z) = h(z).
So h(z) € eAe. Since eAe is a unital simple AF-algebra and the compact convex space
of the normalized traces (of eAe) has only countably many extreme points, from what
we have established, there is a normal element z € eAe with finite spectrum contained
in sp(z) such that
| Ia(z) — #l| < %

Therefore '

[lz = 2|| < e. ]

Proof of Corollary B and Theorem E. By [4, Proposition 4.1], we known that if
p and ¢ are two projections in A and 7(p) > r(¢) for every (lower semi-continuous
and semifinite) trace 7 on A, then [p] > [g]. From the proof of Lemma 2, we know
that Lemma 2 holds for unital separable AF-algebras that satisfy the condition in
Theorem E (and Corollary B). So the rest of the proof is exactly the same as that of
Theorem A (and: Corollary B).
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